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Abstract: In recent years, the focus of the smart transportation industry has been shifting towards the
research and development of smart cars with autonomous control. Smart cars are considered to be a
smart investment, as they promote safe driving while focusing on an alternate transportation fuel
resource, making them eco-friendly too. Safe driving is one of the crucial concerns in autonomous
smart cars. The major issue for the better provision of safe driving is real time tasks management
and an efficient inference system for autonomous control. Real time task management is of huge
significance in smart cars control systems. An optimal control system consists of a knowledge
base and a control unit; where the knowledge base contains the data and thresholds for rules and
the control unit contains the functionality for smart vehicle autonomous control. In this work,
we propose a hybrid of an inference engine and a real time task scheduler for an efficient task
management and resource consumption. Our proposed hybrid inference engine and task scheduler
mechanism provides an efficient way of controlling smart cars in different scenarios such as heavy
rainfall, obstacle detection, driver’s focus diversion etc., while ensuring the practices of safe driving.
For the performance analysis of our proposed hybrid inference based scheduling mechanism, we have
simulated a non-hybrid version with the same system constraints and a basic implementation of
inference engine. For performance evaluation, CPU time utilization, tasks’ missing rate, average
response time are used as performance metrics.

Keywords: real-time tasks; inference engine; task scheduling; smart cars; smart control systems;
periodic tasks; event-driven tasks

1. Introduction

With the advancements towards autonomous driving vehicles, the focus of the smart
transportation industry is being shifted towards the research and development of smart cars with
autonomous control. Smart cars are considered to be a smart investment as they promote safe driving
while focusing on an alternate transportation fuel resource, making them eco-friendly too. Driving
a vehicle requires the utmost focus of the driver, as it is an extremely intricate task. Safe driving
is tremendously important and must not be taken for granted as it could be a matter of life and
death. Due to increasing number of vehicles on roads, traffic sometimes becomes extremely congested;
requiring a complete focus and full awareness of the driver of their surroundings without being
distracted by anything like mobile calls or radio, etc. According to a survey, around 3 million people
suffer injuries and around 40 thousand people lose their lives due to car accidents in the United States
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every year [1]. Therefore, ensuring the safety of everyone is the most essential element while driving
a vehicle. The major issue for better provision of safe driving is real time tasks management and an
efficient inference system for autonomous control. Real time task management is of huge significance
in smart cars control systems.

As driving is a multitasking job, a driver must simultaneously control the speed, avoid hazards,
set up directions and do strategic planning; an extremely experienced human being can also get
distracted by environmental conditions or by any other elements. Hence, the need for some kind of
automation in the transportation industry emerged, which can ensure the safety of vehicles and share
responsibility with the drivers. Car companies responded to this need by vigorously supporting car
safety features.

With the evolution of time and the development of smart technologies, automobiles or electrical
vehicles being a predominant mean of transportation witnessed a boost in the emergence of advanced
and innovative car models. The necessity of safe driving has resulted in the potential need for substitute
technologies in automobiles such as smart cars. Internet of things (IoT) and the power of computer
vision are the primary actors that enabled the existence of smart cars. These smart cars are autonomous
vehicles; an autonomous vehicle takes over the driver’s responsibilities by sensing the environment,
and navigating on its own.

Design and implementation of the precise control systems in the smart cars is very crucial.
The advanced control system collects data from different sensors and actuators; and interprets the
information in order to accurately identify suitable navigation paths, hazards, and appropriate signage.
The control system of a smart car usually manages the decisions based on the inputs from different
sensors e.g., GPS, rear camera, and radar sensors etc., and enables the actuators like distance control
module, steering control, wipers control etc., to work accordingly (Figure 1).

Electronics 2019, 8, x FOR PEER REVIEW 2 of 23 

 

efficient inference system for autonomous control. Real time task management is of huge significance 
in smart cars control systems. 

As driving is a multitasking job, a driver must simultaneously control the speed, avoid hazards, 
set up directions and do strategic planning; an extremely experienced human being can also get 
distracted by environmental conditions or by any other elements. Hence, the need for some kind of 
automation in the transportation industry emerged, which can ensure the safety of vehicles and share 
responsibility with the drivers. Car companies responded to this need by vigorously supporting car 
safety features.  

With the evolution of time and the development of smart technologies, automobiles or electrical 
vehicles being a predominant mean of transportation witnessed a boost in the emergence of advanced 
and innovative car models. The necessity of safe driving has resulted in the potential need for 
substitute technologies in automobiles such as smart cars. Internet of things (IoT) and the power of 
computer vision are the primary actors that enabled the existence of smart cars. These smart cars are 
autonomous vehicles; an autonomous vehicle takes over the driver’s responsibilities by sensing the 
environment, and navigating on its own. 

Design and implementation of the precise control systems in the smart cars is very crucial. The 
advanced control system collects data from different sensors and actuators; and interprets the 
information in order to accurately identify suitable navigation paths, hazards, and appropriate 
signage. The control system of a smart car usually manages the decisions based on the inputs from 
different sensors e.g., GPS, rear camera, and radar sensors etc., and enables the actuators like distance 
control module, steering control, wipers control etc., to work accordingly (Figure 1).  

 
Figure 1. General safe driving conceptual model for smart cars. 

The overall flow of the system for a smart car is shown in Figure 1; the basic components are 
sensors, actuators and a control unit. The control unit works according to the environmental 
conditions, the sensors collect data from the environment e.g., temperature, location etc. and this 
information are passed on to the control unit to make control decisions and the controller implements 
the control commands to actuate different functionalities e.g., controlling speed, steering wheel etc. 
The driver gets alerts through a user interface. This implies that an interface bridges between the real 
world and the system, and thus an inference system must be proficient enough to plan and produce 
control commands. An inference engine is a component of the inference system that applies logical 
rules to the knowledge base to deduce new information. However, only a tiny percentage of cars on 

Figure 1. General safe driving conceptual model for smart cars.

The overall flow of the system for a smart car is shown in Figure 1; the basic components are
sensors, actuators and a control unit. The control unit works according to the environmental conditions,
the sensors collect data from the environment e.g., temperature, location etc. and this information
are passed on to the control unit to make control decisions and the controller implements the control
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commands to actuate different functionalities e.g., controlling speed, steering wheel etc. The driver
gets alerts through a user interface. This implies that an interface bridges between the real world
and the system, and thus an inference system must be proficient enough to plan and produce control
commands. An inference engine is a component of the inference system that applies logical rules to the
knowledge base to deduce new information. However, only a tiny percentage of cars on the road today
have these driver alert systems and it will take a decade for this new technology to be commonplace in
most cars across the globe.

Efficient control systems demand a precise interaction between lower level nodes and a reliable
and robust data sharing between the sensing and control units for decision making with fast control
loop update rates. Since every action taken by an autonomous vehicle system results in a new
scenario, the action of each control function must be precisely synchronized. Previously, the inference
engine for smart control and the scheduler has been separated in design, resulting in the use of more
resources. In this work, we propose a hybrid of inference engine and task scheduler for efficient task
management and resource consumption. Our proposed combined mechanism provides an efficient
way of controlling smart cars in different scenarios and making them self-sufficient. Our proposed
hybrid system provides complex task management in embedded IoT systems; giving flexible parameter
setting options to consider all the system constraints for embedded IoT systems of different nature,
and maximizing the performance.

The rest of the paper is divided as in the following way: Section 2 presents the related works,
while Section 3 presents the proposed inference based scheduling mechanism. In Section 4, we provide
the simulation of the proposed system. Simulation visualization is presented in Section 5, performance
analysis is presented in Section 6 while Section 7 concludes the paper with discussions.

2. Related Work

Smart cars have been a hot topic in the past decade; we can observe that many researchers either
from academia or from industry have been focusing their research efforts on smart cars. Inference
engines, a primary and core measure of smart cars systems, are also being part of researcher efforts.
In reference [2], an inference engine is being proposed that works for rule based expert systems.
This inference engine is proved to be producing ideal, accurate and general rules according to time.
The reasons for its accurate results are: the engine is being invoked when there is a change in any
feature, conditions or rules are tested when values are assigned to features, every time a condition is
altered, and the corresponding rule is examined, and actions will be performed once its rule is invoked.
The predominant reason for producing optimal results is it does only the tasks which it is asked to
perform, it does not do stuff which is not required. This means until and unless a features value is
changed, and the rules are observed only if the corresponding conditions meet the criteria. Smart cars
follow a complex mechanism, there might occur many complications and challenges if there happens
to be malfunction or any failure; implying that inference engines must be capable of dealing with such
failures. Some researchers have also focused on this area for proposing different tools or applications
that can help avoid such circumstances.

In another study [3], guiding a vehicle on the limited access highways, is explored and the
applicability of expert or inference systems is studied. The vehicle considered here is a smart car that
takes input form sensors that are able to detect the surrounding traffic situations, signs, and road
conditions etc. It has a control system and actuators. The proposed system is rule based and implements
backward chaining inference engine for rules inference, and these inferred rules are then processed by
a knowledge based compiler that performs reasoning. A simulator is also implemented to simulate a
vehicle’s behavior on limited access highways.

Researchers in reference [4] proposed Automated Car Failure Diagnosis Assistance (ACFDA);
an agent-based inference engine for cars failure diagnosis expert system. The agent here tries to
maximize the productivity and competence of the complete routine of the ACFDA system by
completing a number of inferencing tasks and by tweaking the inferencing logical flow. This system or
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toolkit focuses on finding the reason for the failure. This helps the driver to know the exact source of
the failure and act accordingly.

A smart car is a comprehensive integration of many different sensors, control modules, actuators,
and so on. Many systems to support the purpose of smart cars were proposed e.g., a driver assistant
system from BMW that assists in lane change warnings and parking [5], an intelligent driver’s
system proposed by Mercedes-Benz to monitor the car’s surroundings using stereo cameras and
radar sensors [6], a driver’s assistant system based on traffic situation and conditions is proposed
in reference [7], and a system focusing on progressive safety expertise with installations of a
pre-collision system, dynamic driving, automated brake assistance and parking assistance is proposed
in reference [8].

A general view of smart cars is presented in reference [9], focusing on context awareness; as a
model focusing on the complex environment of driving is proposed that can learn the context in a
hierarchal manner. In order to ensure safe driving, many studies have been done on the driver’s
distraction. The term driver’s distraction can be defined as diversion of the driver’s attention towards
non-driving activities [10]. The distractions can be classified into four categories: visual distraction,
auditory distraction, biochemical distraction and cognitive distraction [11]. The literature work from
references [12–21] present driver’s distraction detection systems based on different measures such as
driving behavior, driver’s physiological or the hybrid of both approaches.

The work in reference [22] surveys a cyber-physical vehicle system (CPVS) for cyber and physical
schemes for resource consumption, time varying patterns, scheduling, vehicle control and task and
motion planning. In reference [23], the safety level of roundabouts is evaluated for autonomous
vehicles by simulating the roundabouts win combination to the conventional vehicles. The simulation
highlights the differences in traffic parameters as queue length, average speed and delay in stopping.
Safety is analyzed based on the potential conflicts at the roundabouts. A platform for safe autonomous
driving is proposed in reference [24], with flexible architecture capable of integrating a wide variety of
actuators and sensors for testing purposes. The work provides a complete navigation system for test
scenario and two flexible routing algorithms are also proposed. The research work in reference [25]
aims to solve the speed planning problems for autonomous vehicles. After summarizing the existing
constraints in the speed planning, the work proposes a mathematical model for a general speed
planning of autonomous vehicles based on the summarized constraints.

3. Inference based Scheduling Mechanism

In this section, we present our proposed inference based scheduling mechanism for the
autonomous control of smart cars. Figure 2 below shows the conceptual model of the inference
based scheduling mechanism in an optimal scheduling inference system for smart control of EVs.
The main components of the model are a smart car sensing data unit, task modeling unit, scheduling
unit, inference system unit, control system unit, and optimal output.

The smart car sensing data unit collects the input data from the smart car sensing environment.
This data can be various kinds, e.g., environmental data, road state data, traffic state data, driver health
state data, smart car physical self-state data etc. Task modeling unit models the smart car input data
into periodic, event and complex nature tasks along with scheduling required parameters such as
arrival time, execution time, deadline, priority and periodic/event tags. Scheduling unit implements a
scheduling policy as per which the arrived tasks are to be executed at the CPU. The inference system
unit implements the inference engine, where all the rules are to be followed according to different
scenarios and threshold values are defined. The control system unit implements the control functions
for the smart vehicle; which are triggered after firing the rules at inference engine. Optimal output
generates the list of activated control output tasks and notifications/alert output tasks.

Our proposed hybrid inference based scheduling mechanism aims to meet all possible scenarios
in a smart car environment with safety measures taken into account too. The proposed system satisfies
the basic requirements of ISO26262, which is an international standard for functional safety of road
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vehicles [26], as explained in sub-sections below. In Section 3.1, the task model is given for the smart
cars’ task classification based on severity of the task or event. In Section 3.2, we give the scheduling
policies, where we propose a custom made scheduler to best meet the scheduling of different priority
tasks of different scenarios, ensuring that no chance is taken in critical scenarios in order to implement
safe driving. In Section 3.3, we propose our inference engine’s design, which defines the driving
rules for controlling smart cars, along with exceptions to deal with unexpected events in best possible
way. In Section 3.4, we present our hybrid agent which bridges the scheduling module with inference
engine module.
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3.1. Task Model

There are two main types of tasks as periodic tasks and event-driven tasks. Each task must have a
start time, execution time, deadline, priority/urgency value and period (if periodic task).

A periodic task and its nth periodic execution are denoted by PTi (AT, ET, D, P, PB) and PTin,
respectively. An event driven task and its nth execution are denoted by ETi (e, AT, ET, D, U) and ETin,
respectively. Table 1 below presents the task set parameters for periodic and event driven tasks.

Table 1. Task set parameters for periodic and event driven tasks.

Parameters Detail

i Identifier of a task.

AT Arrival time of a task.

ET Execution time of a task.

D Deadline of a task.

P Period of a periodic task.

PB
Priority bit for a periodic task.

- PB = 1 indicates task has priority over other periodic task with PB = 0
- PB = 0 indicates task is a normal periodic task

e The event that triggers an event driven task.

U
Urgency factor of an event driven task

- U = 1 indicates task is urgent and should be executed ASAP
- U = 0 indicates non-urgent event driven tasks
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3.2. Scheduling Model

In this sub-section, we elaborate the scheduling model for smart car safety driving (Figure 3).
The scheduling model has sensor tasks, system tasks and actuator tasks as input. Sensor tasks are the
tasks received from the sensor with sensing data readings, system tasks are the tasks in the inference
engine to generate action commands in response, and actuator tasks are the response tasks which are
generated at the inference engine in order to control the smart car. The tasks are either periodic tasks
or event driven tasks. In our scheduling model design with efficient task execution for smart cars,
we aim to add three scheduling algorithms: fair emergency first, fixed priority preemptive and earliest
deadline first scheduling.
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3.2.1. Fair Emergency First Scheduling Policy

We have designed a customized scheduling algorithm for our rule based smart control inference
system for smart cars. We have improvised the priority based scheduling algorithm with the basic
design goal to run high priority tasks (emergency tasks) first, and additional design goals being to
minimize the task starvation rate and fair allocation of CPU resources.

The tasks in fair emergency first scheduling policy are classified into four categories: high urgency
event driven tasks, normal event driven tasks, high priority periodic tasks and normal periodic tasks.
A default high priority is given to the event driven tasks over the periodic tasks. Urgent event driven
tasks have priority over normal event driven tasks and priority periodic tasks have priority over
normal periodic tasks.

The designed priority policy aims to run the high priority and urgent tasks first while making
sure that no other tasks are starved unnecessarily, consuming the CPU time as efficiently as possible
in the given input scenarios. The task starvation is addressed by consuming the free CPU slots for
starving tasks, and by pushing the execution of normal event driven tasks and periodic tasks to make
room for possibly missed tasks without compromising the performance of the system.

3.2.2. Priority Based Scheduling Policy

Priority based scheduling is a scheduling system commonly used in real-time systems. With a
priority associated with all given task, the scheduler ensures that at any given time, the processor
executes the highest priority task of all those tasks that are currently ready to execute. Since priority is
given to higher-priority tasks, the lower-priority tasks could wait an indefinite amount of time before
being implemented, leading to a higher starvation rate [27].

3.2.3. Earliest Deadline First Scheduling Policy

Earliest deadline first (EDF) or least time to go is a dynamic priority scheduling algorithm used
in real-time operating systems to place processes in a priority queue. Whenever a scheduling event
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occurs (task finishes, new task released, etc.) the queue will be searched for the process closest to its
deadline. This process is the next one to be scheduled for execution [28].

3.3. Inference Engine Model for Safe Driving

In this sub-section, we present an inference model for safe driving in a smart car. The inference
engine model has the inference engine and the control unit.

The inference engine is the component where rules are defined for the autonomous control of
smart cars. The inference engine is where all the safe driving rules are listed along with the thresholds
and if-else conditionings. A rule is based on three elements: arriving task type, condition associated
with the task and the contextual scenario of the task (Figure 4). In the task type we have four task
types: urgent event, normal event, priority periodic and normal periodic type tasks. Each condition
associated with a task to fire rule will have threshold and value ranges to be met. Each scenario will
have some associated dependencies and described relations.
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In case of an inference engine, contexts and scenarios are considered to follow rules and generate
further tasks. The combination of different sensor readings makes a context for smart vehicle scenarios.
In the case of an event, different contexts data can be combined in order to make more sense of the
situation and scenario to make better control decisions for the smart cars.

A contextual scenario is based on contextual data and events are generated from the scenario
context and the data available. For example from the context scenario such as the driver being
detected will have input contextual data dependency on factors such as camera and the pressure
sensor. In response, it will have an event control task “perform seat adjustment” generated to adjust
the car’s performance according to the driver’s requirements. Similarly other context scenarios can
be pedestrian detected, heavy rainfall, strong wind, speed jump detected etc. with each depending
on different contextual data collection and generating different tasks in response of firing rules.
The inference engine model also considers a set of exceptions for the decision making and rule firing
process depending on the scenarios for better provision of safe driving for smart cars. Exceptions are
listed and mapped when such scenarios occur where a special step needs to be taken (Figure 5).

In order to make safe driving inference engine system for smart cars, we have to design scenarios
against each input sensing data values. In our case, we have six input environment sensors, one human
data input sensor, and four smart car data input sensors. In environment sensors we have rainfall
sensor, noise sensor, wind sensor, blurriness sensor and temperature sensor. In human data sensor,
we have cameras. In smart car sensors, we have tire check, speed check, brake check and distance
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from nearby cars as input sensing data. Table 2 below explains the environment sensing data scenario
classifications, Table 3 explains the human sensing data scenario classifications and Table 4 explains
the sensing data scenario.Electronics 2019, 8, x FOR PEER REVIEW 8 of 23 

 

 
Figure 5. Event building from context in inference engine. 

In order to make safe driving inference engine system for smart cars, we have to design scenarios 
against each input sensing data values. In our case, we have six input environment sensors, one 
human data input sensor, and four smart car data input sensors. In environment sensors we have 
rainfall sensor, noise sensor, wind sensor, blurriness sensor and temperature sensor. In human data 
sensor, we have cameras. In smart car sensors, we have tire check, speed check, brake check and 
distance from nearby cars as input sensing data. Table 2 below explains the environment sensing data 
scenario classifications, Table 3 explains the human sensing data scenario classifications and Table 4 
explains the sensing data scenario. 

Table 2. Environment sensing data scenario classification for building rules. 

Sensing Data Scenarios 

Rainfall 
Light Showers 

Medium Showers 
Heavy Showers 

Noise 
Low Noise 

Medium Noise 
Loud Noise 

Wind 

No wind 
Light wind 

Medium wind 
Heavy wind 

Blurriness 

No Blurriness 
Light Blurriness 

Medium Blurriness 
Heavy Blurriness 

Temperature 
Low Temperature 

Medium Temperature 
High Temperature 

Light 
Low Light 

Medium Light 

Figure 5. Event building from context in inference engine.

Table 2. Environment sensing data scenario classification for building rules.

Sensing Data Scenarios

Rainfall
Light Showers

Medium Showers

Heavy Showers

Noise
Low Noise

Medium Noise

Loud Noise

Wind

No wind

Light wind

Medium wind

Heavy wind

Blurriness

No Blurriness

Light Blurriness

Medium Blurriness

Heavy Blurriness

Temperature
Low Temperature

Medium Temperature

High Temperature

Light
Low Light

Medium Light

Sharp Light
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Table 3. Human sensing data scenario classification for building rules.

Sensing Data Scenarios

Camera
Looking Right

Looking Left

Looking Straight

Table 4. Smart car sensing data scenario classification for building rules.

Sensing Data Scenarios

Tire Check
Safe

Warning

High Alert

Speed Check
Safe

Warning

High Alert

Brake Check
Safe

Warning

High Alert

Car Distance
Safe

Warning

High Alert

In order to ensure safe driving conditions and environments, we define rules for each sensing
value. The rules are built by first classifying the sensor value into some range, setting thresholds and
determining an action opposite to each class range being true or false. As described in Tables 2–4
above, each sensing data has its own scenario classes corresponding to the sensor value readings.
After classifying the incoming data based on threshold values, the next step for an inference engine is
to determine the actions against the thresholds and fire rules accordingly (Figure 6).

The control unit has all the control tasks’ logic for the smart vehicle’s autonomous control.
The actions to be performed in safe driving case fall into two types. First are the control functions
to keep the car controlled in every scenario and maintain the safe driving environment. Second is to
generate appropriate notifications and warnings for the user and system. Figure 7 below elaborates
the control functions involved in the safe driving of a smart car. The smart car controller functionality
includes window control, radio control, wipers control, lights control, distance control, brakes control,
speed control, steering control, fan control and temperature control.
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3.4. Hybrid Agent

The hybrid agent provides a flexible and robust interaction platform between the scheduler and
the inference engine in order to have a more reliable system which executes the tasks of the overall
system more efficiently with minimum resources being used.
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Figure 8 shows the detailed system modules interaction with inclusion of the hybrid agent.
The hybrid agent sends and receives the messages containing tasks data between scheduling module,
inference engine module and the control module. It performs the configurations for the arriving tasks,
depending on their types, scenario dependencies and priority tags. It parses the message in order to
apply specific configurations and resource management actions. The hybrid agent maintains online
information of the complete tasks flow among all system modules to manage the resources and keep
the resources available for any high priority tasks.Electronics 2019, 8, x FOR PEER REVIEW 11 of 23 
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The sensing input data, after modeling into task format and task type, is passed onto the scheduler.
At scheduler, upon receiving the list of tasks, the scheduling policy is applied to schedule the execution
order of the tasks. For extracting the execution rules attached with each/any task, the tasks are
forwarded to the inference engine via hybrid agent. The task ID mappings to match the rules are done.
After mappings, the rule is extracted from the inference engine and sent to the control unit, where the
control task opposite to the fired rule is generated. The control task is modeled along with its start
time, execution time, deadline and other parameters and sent back to the scheduler via hybrid agent.
The scheduler then executes the control task along with other running tasks based on its selected
scheduling policy.

The hybrid agent has the vital role, as it bridges between the sub-modules in the system and also
copes with the resource management based on the tasks load.

4. Simulation of Inference based Scheduling Mechanism for Safe Driving in Smart Cars

In this section we present our data set of smart cars and the simulation setup.

4.1. Task Data

We have used smart cars data collected after intervals of 0.1 s, 0.5 s, 1 s, 5 s and 10 s. The collected
data is divided into three input task categories as environmental data, vehicular data and human data
(Figure 9).
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Figure 9. Tasks data.

The environment sensing data tasks have light, rain, temperature, location, blurriness, wind and
noise sensing data. The human sensing data task has camera angle for the driver‘s head angle.
The vehicular sensing data has car tire, car brake, and car speed and car distance sensing data.
Data pre-processing is performed in order to remove any noise from the collected data and make the
data understandable for the system.

4.2. Implementation Environment

We have used Python for implementing the core programming logic of the task scheduling
algorithms. Python is a very popular general purpose programming language that is widely used
for developing desktop based and web based applications. In order to develop our inference engine,
we have used Drools libraries. Drools is a Business Rules Management System (BRMS) solution.
It provides a core Business Rules Engine (BRE). The development environment for the system is shown
in Table 5 below and in the simulation and testing phase; we have tested our built task scheduler on an
embedded IoT testbed (Table 6). Raspberry-pi is used in simulation and testing scenarios as it best
suited our system requirements.
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Table 5. Development environment.

System Component Value

Operating System Windows (10.0.17134 Build 17134, Microsoft, Redmond, WA, USA)
CPU Intel® Core™ i5-4570 CPU at 3.20 GHz (Santa Clara, CA, USA)

Primary Memory 8 GB
Platform Eclipse Java Photon
Libraries Drools

Programming Language (Scheduler) Python 3

Table 6. Simulation and testing environment.

System Component Value

Hardware Raspberry Pi 3 Model B (Raspberry Pi Foundation, UK)

Operating System Raspbian (November 2018, Raspberry Pi Foundation, UK)

Memory 1 GB

Server Flask Webserver (Pallets, USA)

Libraries GPIO (Version 0.6.5), CSVReader, Jinja Template (Pocoo),
Bootstrap (Version 3), HTML 5/CSS3 (W3C)

4.3. Hybrid Scheduling and Inference Engine Model

In this sub-section we present the implementation of our hybrid approach of task scheduler and
inference engine. Sensing input tasks as explained above in Section 4.1 are given input to the scheduler.

Initially a set of sensing input tasks arrive at the scheduling model, which has scheduling logic
implemented at one end with different scheduling algorithms and hybrid agent interactions at the other
end. The input tasks are periodic sensor readings, collected after a set interval of time. The sensing
tasks are initially scheduled and forwarded to the hybrid agent accordingly; the hybrid agent then
passes them onto the inference engine based on the priorities and levels of urgency. The process tasks
are executed at the inference engine, resulting into generation of output tasks which are smart control
tasks or the notifications/alerts for the smart car. Hybrid agent gets the output tasks and manages
the execution depending on the existing resources and priority orders. Our inference engine is drools
based, and a set of rules to be fired is defined in a drl file, in accordance with all input data scenarios
and smart car’s safety control functionality (Figure 10).

In Table 7 below, we consider an example scenario for smart car input data as rainfall, noise and
temperature. The table explains the total number of tasks to be executed along with each task’s name,
its required CPU consumption demand and the priority of the task at the scheduler.

The simulation system in this example scenario will have rainfall sensing data, noise sensing data
and temperature sensing data as periodic sensing data input tasks. The system task involved will be
rule firing task, for each time a rule goal is matched and a rule is followed. The actuator tasks involved
in the given scenario are window control task, wiper control task, radio control task, temperature
control task, speed control task and steering control task.

The Figure 11 above shows the simulation execution flow from the input sensor readings to the
scheduler. At the scheduler, the sensing tasks are executed based on priorities and sent to the hybrid
agent for further processing. The hybrid agent based on the incoming tasks, sets the configurations
and forwards the parsed content to the inference engine. The inference engine classifies the incoming
data sensing values, matches the rules and follows the rules when the goal is met. The followed rules
contain the response control tasks to be executed for the safe driving of a smart car. The fired control
tasks are lined at control unit and communicated back to scheduler via hybrid agent and executed at
control unit when scheduled to execute.
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Table 7. Example derived scenario for rainfall, noise and temperature.

Task CPU Required Priority

Sensing Tasks

Sensing Rainfall Data 20 ms Normal Periodic Task

Sensing Noise Data 20 ms Normal Periodic Task

Sensing Temperature Data 20 ms Normal Periodic Task

System Tasks

Fire Rule 300 ms Priority Periodic Task

Actuator Tasks

Window Control Task 520 ms Normal Event Driven

Wiper Control Task 520 ms Urgent Event Driven

Radio Control Task 520 ms Normal Event Driven

Temp Control Task 520 ms Normal Event Driven

Speed Control Task 520 ms Urgent Event Driven

Steering Control Task 520 ms Urgent Event Driven
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5. Simulation Visualization

We have developed a web-based task simulation visualization tool using flask, which is an
MVC based framework. As part of visualization we implemented FEF, Priority based and EDF
scheduling policies for all different scenarios and presented several interfaces in a very neat and clear
way. Similarly to all other algorithms, we have certain tabs like General Summary, Tasks Timeline,
Performance Visualization, Overall Metrics Visualization and CPU Timeline.

The Figure 12 below shows the CPU timeline of scheduled tasks. Various color codes represent
various categories of the tasks. For instance, Task 1 with pink color is normal periodic task which is
received at time 0. At this particular moment, no other high priority task has arrived yet, so it gets
CPU eventually. For next couple of cycles the CPU is free, which is indicated by dark green color.
Clock cycle 3 to 9 is assigned to event-driven task 1.1 and this goes on till the hyper period amount of
time. After this the same pattern gets executed.
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6. Performance Analysis

In this section we present a performance analysis of our proposed rule based scheduling for
smart cars autonomous control. In Section 6.1, we perform comparisons analysis of our proposed
system with non-hybrid rule engine and basic rule engine. In Section 6.2, we perform the implemented
scheduling schemes comparisons at the proposed system.

For the purpose of performance evaluations, we have considered 9 scenarios compromising
of different input data combinations. The Table 8 below shows the list of our considered input
data combinations’ scenarios. Each scenario is a combination of many sub-tasks based on the
scenario dependencies.

Table 8. Input data scenarios.

Scenarios Input Data Combination

Scenario 1 Rainfall + Noise + Temperature

Scenario 2 Blurriness + Light + Rainfall

Scenario 3 Camera Angle + Speed Check + Brake Check

Scenario 4 Light + Blurriness + Wind

Scenario 5 Location + Rainfall

Scenario 6 Noise + Wind + Rainfall

Scenario 7 Rainfall +Tire Check + Brake Check

Scenario 8 Blurriness + Speed Check + Distance

Scenario 9 Camera Angle + Speed Check + Distance

6.1. Comparison Analysis between Hybrid, Non-Hybrid and Basic Rule Engine Approaches

In this sub-section, we present the performance analysis comparisons for the proposed hybrid
system of inference engine based scheduling mechanism with a non-hybrid system and a basic rule
engine. We have simulated the non-hybrid approach with the same environment constraints as our
proposed hybrid approach. The non-hybrid system does not have the implementation features of
the hybrid agent, which in a hybrid approach system are better resource management and a robust
execution of tasks execution. We have also simulated a basic rule engine with FIFO scheduling and
priority rule firing for detailed comparison purposes. In the comparisons and graphs, for the sake of
ease, we will refer to our proposed inference engine based scheduling mechanism as a hybrid system.

6.1.1. CPU Time Utilization

CPU time utilization (or process time) is the amount of time for which a central processing unit
(CPU) was used for processing the tasks on its core/cores. In this context, we refer to CPU time
Utilization as usage of CPU time slots in the most efficient manner; high CPU utilization translates
into more tasks being handled and less CPU slots being wasted.

Figure 13 above shows the average CPU time utilization for the smart car’s tasks set at y-axis
with varying sampling intervals on x-axis. The proposed hybrid system performs better than the
non-hybrid system and basic inference engine as the hybrid system target to utilize the free CPU slots
by priority shifting in order to increase throughput. The non-hybrid system though lacks the efficient
resource allocation and thus results in more free slots, which would eventually result in a high tasks’
missing rate. The basic inference engine has the minimum CPU slots consumption as it follows the
FIFO scheme with single queue and basic priority scheme in comparison to the non-hybrid system
which has a fully featured multi-priority scheduling end implemented.
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6.1.2. Missing Rate (Percentage)

Missing rate is the percentage of tasks which missed their deadline and are executed after their
deadline. As in Section 6.1.1, we have observed that more free CPU slots are utilized by a hybrid
system in comparison to a non-hybrid system and basic inference engine system. An efficient and
optimized usage of free CPU slots would definitely result into a higher throughput and lower missing
rate for the tasks. Hence the average missing rate is lowest for the hybrid system, followed by the
non-hybrid system and basic inference engine having the maximum tasks’ missing rate. The missing
rate for the tasks increases with the decrease in the sampling interval, as the tasks load on the system
increase in smaller sampling intervals. In the case of a hybrid approach, the tasks’ missing rate is 0%
for sampling interval of 10 and 5 but it increases to around 7%, 13% and 19% for the sampling intervals
1, 0.5 and 0.1 s respectively (Figure 14).
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An essential concern in the Figure 14 above is whether the inevitable missing tasks with the high
task load are of a critical nature or a non-critical nature. In the scenarios where the total tasks load
becomes higher than the total available capacity, the hybrid agent in the proposed system manages
an efficient trade-off between the critical tasks and non-critical tasks. The Figure 15 below shows
the missing tasks rate for varying load in a basic inference engine system while Figure 16 shows the
missing tasks rate for varying load in hybrid system. By comparing Figures 15 and 16, we can conclude
that the non-hybrid system might miss a higher number of critical tasks as compared to the hybrid
system. The combination of hybrid agent and FEF scheduling mechanism modifications allows the
hybrid system to reduce the tasks starvation rate. In this way, the only critical tasks missing at the
hybrid system would be those which fall into the lower priority at the ongoing CPU time slots and
running those would mean causing bigger damage to the system eventually.Electronics 2019, 8, x FOR PEER REVIEW 18 of 23 
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Figure 16. Hybrid inference engine.

6.1.3. Response Time

The response time is the time taken from the release of a task to its first execution. In this context
we refer to the response time as the first sub-task execution return of a larger task scenario (Table 7).
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In the Figure 17 below, average response time for varying sampling intervals is shown.
The non-hybrid system has a slightly better response time than the basic inference engine system
whereas the hybrid approach significantly improves the response time. The main difference between
the hybrid and non-hybrid systems is the implementation layer for the hybrid agent with better
resource allocation, fast tasks processing, minimizing delay and avoiding unnecessary system tasks.Electronics 2019, 8, x FOR PEER REVIEW 19 of 23 
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6.2. Comparisons between FEF, EDF and Priority based Scheduling Algorithms

In this sub-section we provide the comparisons between the implementation of hybrid system
with three different scheduling policies: FEF (Fair Emergency First) scheduling algorithm, EDF (Earliest
Deadline First) scheduling algorithm and Priority based scheduling algorithm.

In EDF the task scheduler directly executes the task with nearest deadline first while in the Priority
based scheduling algorithm, the task scheduler executes the tasks based on their priority (i.e. highest
priority first). The FEF scheduling algorithm takes into account the system and user priorities and
also other factors such as current missing rate and delay rates along with the total tasks load on the
system. Hence the hybrid system with FEF scheduler implementation shows more promising results
in comparison to the priority based on EDF based implementation.

Figure 18 above shows the response time comparison of the three scheduling algorithms and
their implementation of the proposed hybrid system for the nine scenarios tasks set. The figure
clearly indicates that hybrid FEF implementation outperforms the priority based and EDF
based implementations.

Now, we consider other crucial scenarios in the real-time scheduling, e.g., over flow of tasks
at the scheduler, low-priority tasks not being able to get executed due to high flow of high priority
tasks and large number of unexpected interrupts. Our tailored FEF algorithm makes best use of its
resources and capacity to deal with such scenarios. The urgency and PB factors, introduced in task
modeling (Section 3.1), help the scheduler to take the best scheduling decision. The PB factor is ideally
introduced to invert the priority to the low priority tasks when their executed can no longer be delayed.
Figure 19 below elaborates a scenario where the real-time system is overflown with its tasks load, and
a low priority task has to wait forever for its turn. In such cases the PB for a low priority task is set to 1
if it’s obligatory to run the low priority task after a definite time period, otherwise it might cause a
superior loss to the system.
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7. Discussions

In this work, we have studied the importance of safe driving in smart cars and the importance of
a robust inference engine for smart cars’ control. Owing to advances in transportation industry and
IoT, smart cars have become intelligent enough to deliver numerous expedient functions for drivers.
With convenience, there comes complexity as a side effect; smart cars are embedded with smart
modules performing complex tasks. These complex functions have led to an increase in the complexity
of controls. For the smart cars to be more accurate and situation aware, it requires a task scheduler
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for the controller. Previously, smart cars were using a separate task scheduler which prioritizes the
tasks for the controller; and brings an additional level of complexity in the system. In order for
the smart cars to be more efficient, safe and lightweight, complexity needs to be reduced. Thus in
this paper, we introduced a hybrid module which combines the task scheduler with the inference
engine via hybrid agent. The hybrid agent aims to facilitate the real-time task management and the
resource management for provision of an efficient inference engine for smart cars. An improvised
version of a priority based scheduler is introduced to be installed at task scheduler level named
as an FEF scheduler. For the purpose of performance analysis, a non-hybrid version of the system
with priority scheduling is simulated and a basic inference engine with priority rule firing and FIFO
scheduler is also implemented. The comparisons are made between the three implementation based
on performance metrics of CPU Usage, Tasks’ Missing Rate and Response Time. At the scheduler
level for the proposed hybrid system, three scheduling techniques as FEF, Priority based and EDF are
implemented to draw the performance comparisons between them. All three scheduling techniques
(FEF, Fixed priority and EDF) come under the definition of preemptive scheduling in OSEK/VDX
task scheduling. In OSEK/VDX preemptive scheduling, the running task might be rescheduled at
the occurrence of any pre-set event or condition [29]. In FEF, pre-set conditions are based on task
urgencies and PB conditions. In EDF the pre-set condition is based on another task arriving with an
earlier deadline than the currently running task and in fixed priority the pre-set condition would be if
another task arrives with a higher priority than the currently running task.

It can be clearly observed from the results that our proposed hybrid approach outperformed
the non-hybrid and basic inference engine systems. We observed a significant reduction of 25% to
75% in the number of task instances missed and the number of high priority tasks missed. As the
combination of better resource management at hybrid agent and improvised FEF scheduler results
in a significant reduction in the task starvation rate and maximum CPU time slots utilization; as low
priority tasks are saved from unnecessary starvation and CPU unit times are used wisely. To the
best of our knowledge, our proposed hybrid system is first of its kind. Hence, our proposed hybrid
inference based scheduling mechanism is recommended for smart cars in safe driving environments;
where constraints and requirements vary depending on the scenarios. This is because it is flexible,
adaptive and allows setting system constraints based on independent priorities when the input is of a
diverse nature.
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