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Abstract: Recent advances in deep learning have shown exciting promise in low-level artificial
intelligence tasks such as image classification, speech recognition, object detection, and semantic
segmentation, etc. Artificial intelligence has made an important contribution to autopilot, which is a
complex high-level intelligence task. However, the real autopilot scene is quite complicated. The first
accident of autopilot occurred in 2016. It resulted in a fatal crash where the white side of a vehicle
appeared similar to a brightly lit sky. The root of the problem is that the autopilot vision system
cannot identify the part of a vehicle when the part is similar to the background. A method called
DIDA was first proposed based on the deep learning network to see the hidden part. DIDA cascades
the following steps: object detection, scaling, image inpainting assuming a hidden part beside the
car, object re-detection from inpainted image, zooming back to the original size, and setting an alarm
region by comparing two detected regions. DIDA was tested in a similar scene and achieved exciting
results. This method solves the aforementioned problem only by using optical signals. Additionally,
the vehicle dataset captured in Xi’an, China can be used in subsequent research.

Keywords: driverless; autopilot; deep leaning; object detection; generative adversarial nets;
image inpainting

1. Introduction

A fatal crash occurred in a Tesla Model S on 5 July 2016. This was the first known fatality in
autopilot on an autonomous vehicle. Tesla noted that “the vehicle was on a divided highway with
Autopilot engaged when a tractor trailer drove across the highway perpendicular to the Model S.
Neither Autopilot nor the driver noticed the white side of the tractor trailer against a brightly lit
sky, so the brake was not applied.” [1]. There are three sensor systems in Tesla Autopilot. The first
one is the vision system named MobileEyeQ3 in the middle of the windshield. The second is the
millimeter-wave radar below the front bumper. The last one is twelve ultrasonic sensors around the
vehicle. All sensors unfortunately missed the back part during the unusual situation in which the
fatality occurred. The measuring distance of the ultrasonic radar was too short (2 m). It could not detect
obstructions at high speeds. The installed position of the millimeter-wave radar system was too low,
and its vertical angle was less than five degrees, thus this sensor missed the object. Optical detection
ideally emulates how human observes the world and therefore should be the most efficient method.
However, it is difficult for the camera to extract features of white objects from a large white background.
It cannot get enough feature information to input the MobiEyeQ3. This results in the MobiEyeQ3
missing the object. Essentially, the problem is caused by less redundancy of the image algorithm.

Electronics 2019, 8, 331; doi:10.3390/electronics8030331 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://www.mdpi.com/2079-9292/8/3/331?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8030331
http://www.mdpi.com/journal/electronics


Electronics 2019, 8, 331 2 of 16

In addition, if a large part of the vehicle is similar to blue sky, buildings, or trees, the computer vision
system of the self-driving car could miss detecting the part.

The left picture in the first row of Figure 1 was taken from a real scene. According to the
Tesla accident report [1], the extreme virtual environment was settled. In this virtual environment,
two virtual cars are shown in the middle and right of the first row. Let us postulate that the drivers
paint the back of the black car and the front of the white SUV in a color and style that match completely
with the background. Thus, the painted parts blend into the background and cannot be seen but exist
nonetheless. This type of vehicle is rare in the real world and looks ridiculous. However, they cannot
be excluded.
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Figure 1. The photos demonstrate that the stat of the art object detection algorithms cannot “see” the
hidden part of the vehicles.

In this particular case, almost all of the object detection algorithms would fail. The second and
third row respectively show the results processed by the latest object detection algorithms, Retina [2]
and TinyYOLO [3]. In Figure 1, the abbreviation “OD” stands for “object detection”. Both algorithms
failed to detect the entire vehicle in columns 2 and 3. Figure 1 demonstrates that the state of the art
object detection algorithms cannot detect the hidden part. If these special vehicles are encountered in
the real word, an aforementioned accident will still occur.

The research tries to solve the above problem by deep learning networks. Recently, with the
successful application of machine learning, deep learning is becoming more effective in various fields.
The researchers use deep neural networks for image classification [4–7], semantic segmentation [8,9],
object detection [2,3,10], image generation [11], etc. We propose a novel method to detect the hidden
part of a vehicle, thus helping to avoid traffic accidents. In other words, we learn to “see” the
hidden part.

Our proposed algorithm tried to correctly handle the situation in the extreme condition shown in
Figure 1. Firstly, the deep learning network model needed to be trained on an enormous number of
images to achieve satisfactory performance. We collected vehicle pictures by the camera in the busiest
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streets of the ancient city, Xi’an, China. In addition to our database, we prepared the other databases
described in detail in Section 4.1.

After the databases were prepared, an improved Retina object detection model was trained
for detecting the vehicles. In the unmanned vehicle scene, quickly identifying objects is necessary.
Recently, real-time object detection methods such as Retina network [2] and YOLO network [3,10]
have been proposed. To increase the performance of detecting speed and keep the safety level,
a detection model with high threshold value was created. This model is used in the first stage of
object detection. The proposed algorithm does not know whether or not the front vehicles have the
hidden part beforehand. There is no signal “telling” the algorithm whether or not the vehicle has
hidden parts. A reasonable assumption is made that all vehicles may have hidden parts. For reducing
the computational work, the main vehicles in the middle of the road are detected by this model.
The vehicles that occur further in the distance are not likely to cause accidents and can be ignored.
An image inpainting model for inpainting the vehicles was created. Assuming the detected vehicles
have hidden parts that cannot be seen by a general computer vision system, inpainting the right and
left area is applied separately. When the inpainting algorithm is applied to a complete vehicle without
any hidden part, inpainting does not add anything. Otherwise, the area of the inpainted vehicle
increases. Then, a second stage of object detection is immediately applied to the inpainted vehicle with
the same improved Retina model. The difference between the first and second stage of detected regions
is defined as an alarm box. This time, the hidden part can be “seen”. The alarm box is the existing
region that the normal visual system cannot detect. Vehicles should avoid the alarm box region.

The whole procedure is called the DIDA approach (object detection, inpainting, object re-detection,
setting alarm box). We show experimentally that the proposed DIDA can “see” the part that cannot be
detected by typical optical systems in Section 3.

Our contributions in this paper are summarized as follows: (1) we proposed the DIDA approach
to solve the problem of detecting the incomplete object in the autopilot scene; (2) we proposed the
DIDA approach to “see” the hidden part of the vehicle using the serial joint processing of object
detection and image inpainting, solving the aforementioned problem with only optical sensor signals
for the first time and offering a new method for insuring further security in the autopilot system; (3) we
collected the vehicle database in Xi’an, China, which can be used in subsequent research as well.

The rest of the paper is organized as follows. Related work on object detection and image
inpainting is proposed in Section 2. Methods such as the flow chart about seeing hidden parts of the
vehicle, the framework of the object detection model, and Generative Adversarial Nets (GANs) [12]
are shown in Section 3. Detailed experimental results are shown in Section 4. Several problems that
need to be further studied are addressed in Section 5. The conclusions are described in Section 6.

2. Related Work

This section provides an overview of research on object detection and image inpainting.
First of all, the research of object detection based on deep learning is reviewed. Each object

detection model has essentially two phases—an object localization phase to search for candidate
objects and a classification phase where the candidates are classified based on distinctive features.
In the Region-based-Convolutional-Neural-Network-features (R-CNN) model [13], the selective search
method (SS) [14] is used as an alternative to exhaustively searching for object localization. In particular,
about 2000 small region proposals are generated and then merged in a bottom-up manner to obtain
more accurate candidate regions. Different color-space features, saliency cues, and similarity metrics
are used to guide the merging procedure. Each proposed region is then resized to match the input
of the CNN model. The output of this model is a 4096-dimensional feature vector. To get the class
probabilities, this generated feature vector needs to be classified by multiple Support Vector Machine
(SVM) [15]. The R-CNN model has achieved a 62.4% mean Average Precision (mAP) score on the
PASCAL VOC 2012 [16] benchmark and a 31.4% mAP score on the 2013 ImageNet [17] benchmark in
the large scale visual recognition challenge (ILSVRC).
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The major limitation of this method is that it requires a long time to analyze the proposed regions.
For addressing the weakness of the time-consuming analysis process, R. Girshick introduced the
Fast Region-based Convolutional Network (Fast R-CNN) [18]. The Fast R-CNN method produces
output vectors that are further classified by a normalized exponential function (softmax) [19] classifier.
Experimental results proved that Fast R-CNNs were capable of achieving a mAP score of 70.0% and
68.4% on the 2007 and 2012 PASCAL VOC benchmarks, respectively.

To address the limitation of high computational overhead in the prior region based methods
using selective search, the Region Proposal Network (RPN) [20] were proposed, which produce
region proposals directly by determine bounding boxes and detecting objects. This method led
to the development of the Faster Region-based Convolutional Network (Faster R-CNN) [20] as a
combination of the RPN and the Fast R-CNN models. Experimental results of Faster R-CNN proved
an improvement by reporting the mAP scores of 78.8% and 75.9% on the 2007 and 2012 PASCAL VOC
benchmarks, respectively. The results of Faster R-CNN are computed 34 times faster than the original
Fast R-CNN.

The two models mentioned above involve detection of region proposals and finding an object
in the image. However, the Region-based Fully Convolutional Network (R-FCN) [21] uses only
convolutional back-propagation layers for learning and inference. The R-FCN reached an 83.6% mAP
score on the 2007 PASCAL VOC benchmark. For the 2015 COCO [22] challenge, this method reached a
53.2% score for an Intersection over Union (IoU) = 0.5 and a 31.5% score for the official mAP metric.
In terms of speed, the R-FCN is typically 2.5–20 times quicker than the Faster R-CNN.

The you-only-look-once (YOLO) model [3,10] was proposed for determining bounding boxes and
class probabilities directly with a network in one run. This method reported mAP scores of 63.7% and
57.9% on the 2007 and 2012 PASCAL VOC benchmarks, respectively. The Fast YOLO model [23] had a
lower score (52.7% mAP) in comparison to YOLO. However, it resulted in improved performance of
155 FPS in contrast to 45 FPS for YOLO in a real-time world.

As the YOLO model struggled with the detection of objects of small sizes and unusual aspect
ratios, the Single-Shot Detector (SSD) [24] was developed to predict both the bounding boxes and
the class probabilities with an end-to-end CNN architecture. The SSD model employs additional
differential feature layers (10 × 10, 5 × 5, and 3 × 3) with the aim of improving the number of relevant
bounding boxes in comparison to YOLO.

Recently, the two-stage and one-stage detectors based on deep learning started to dominate
modern object detection methods. The two-stage detectors include the first stage, generating a sparse
set of candidate proposals, and the second stage, classifying the proposed region into the classes
based on the background or foreground. The classic two-stage methods contain R-CNN [25], RPN,
Fast R-CNN, Faster R-CNN, Feature Pyramid (FPN) [26], etc. The one-stage detectors include the
OverFeat [27], SSD [24], and YOLO [3,10]. Generally, the latter have advantages in speed but less
accuracy. YOLO focuses on the trade-off between the speed and accuracy. Recently, the Focal Loss [2]
was proposed to train a sparse set of hard-detect samples and prevent the large number of easy-detect
samples from overwhelming the detector. The Retina Network detector [2] outperforms all previous
one-stage and two-stage detectors in both speed and accuracy except for YOLOv3 in speed.

In this work, seeing the hidden part can be considered a problem of detecting the insufficient and
incomplete object. This problem is a special case in object detection. Most object detection algorithms
are not specifically optimized for detecting the unusual object. The state of the art object detection
algorithms such as YOLO and Retina still cannot solve this problem.

The second aspect of related work is the image inpainting. It is another main difficulty to
overcome. The image inpainting can be considered as filling the missing parts in a picture. Existing
methods addressing this problem fall into two groups. The first uses the traditional diffusion-based
or patch-based methods. The second group is based on deep learning networks, such as CNN and
GAN [12]. Traditional inpainting approaches [28,29] normally use variational algorithms or patch
similarity to generate the hole information. These approaches work well for fixed textures. However,
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they are weak in repairing multi-class images with holes. Recently, GANs based on deep learning
have emerged as promising methods for image inpainting. Context Encoders [30] firstly train deep
neural networks for image inpainting. They are trained with both `2 reconstruction loss and generative
adversarial loss (combined adversarial losses function). However, the inpainted texture with Context
Encoders appears insufficient. Besides the combined adversarial losses function, both global and local
discriminators [31] are proposed for increasing receptive fields of output neurons. Considering the
high-resolution image, the Multi-Scale Neural Patch Synthesis [32] was proposed based on the joint
loss function, which contains three items—the holistic content constraint, the local texture constraint,
and the total variation loss term. This approach shows that promising results not only preserve
contextual structures but also generate high-frequency details. One downside of this method is that it
is relatively slow. Recently, the method with contextual attention was proposed in [33]. This method
uses the global and local WGANs [34] and spatially discounted reconstruction loss to improve the
training stability and speed.

3. The Approach

3.1. The Flow Chart of the Method

A typical computer vision system cannot detect a whole vehicle that has a large area of color
or texture similar to the background. To solve the problem, the DIDA method is proposed. Figure 2
explains the DIDA method in an abstract scenario. The four character “DIDA” comes from the four
important steps in the flow chart: object Detection (step 1), Inpainting (step 3), object re-Detection
(step 4), and setting Alarm box (step 6). The single object detection algorithm cannot detect the hidden
part, nor can the state of the art algorithms. After the first stage of object detection, the inpainting
operation is performed. If the vehicle has a hidden part, the inpainting operation will add a part. Then,
the second stage of object detection can detect the entire region including the hidden part.

Step 1 is the first stage of vehicle detection. In the optical system of an autopilot, 24–30 frames are
captured in one second. Recently, proposed object detection algorithms have been implemented in
real-time detection. To detect the hidden part of the vehicle in this work, the system does not need to
detect all vehicles. This is due to two reasons; one is that detecting many objects consumes a great
deal of computational resource, and the other is that the small vehicles in view far from the main
road do not affect the safe driving. In the top picture of Figure 2, two major vehicles are detected and
marked in rectangles. The left one is a complete vehicle. The right one is incomplete. The right part of
the incomplete vehicle cannot be seen because it has the same color as the background. In order to
describe the situation visually, the right half of the vehicle merges in the background.

The second step is padding and image scaling. If the shape of the input data is square,
the subsequent convolution network should have high performance. For high performance and
retaining certain background information, the detected vehicle image is padded from side, upper,
and down directions. Padding is detailed in the experiments section. Additionally, high-resolution
image inpainting [32] was proposed, but it uses too many resources. The DIDA focuses on hidden parts
and does not need to generate the texture of the original high-resolution image. Therefore, the second
step of DIDA reduces the image size after the first stage of object detection. This significantly increases
the performance. The scaling operation is both reasonable and necessary.

The third step is image inpainting. The traditional image inpainting methods rely on blurring or
copying patches from the side region. It cannot conduct the task of repairing the image to a satisfactory
level of completeness. It can only fill the patched holes with part of the background, such as the
building, trees, blue sky, white cloud, the road, etc. As of late, image inpainting algorithms based
on deep learning have been able to inpaint the hole in a meaningful way. For example, if one eye is
covered, the traditional method would fill the covered part with the texture of the skin. The deep
learning method, however, would inpaint the covered part with a virtual eye. In the above steps,
two major vehicles are detected. One vehicle is complete, while the other only shows half. The latter is
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dangerous. Autopilot systems cannot judge the actual size of the vehicles only by an optical system.
In the DIDA system, all detected vehicles are supposed to be uncompleted. Therefore, the holes that
need to be patched are added to the left and right of the object. If the vehicle is complete, the inpainted
image fragment should not be part of the vehicle but the background of the scene. In the other case,
the inpainted image fragment of the hole should be a part of the vehicle. The inpainting result is
shown as the dotted box tagged as “Added part” in step 3 of Figure 2.

Electronics 2019, 8, x FOR PEER REVIEW 6 of 16 

 

uncompleted. Therefore, the holes that need to be patched are added to the left and right of the 
object. If the vehicle is complete, the inpainted image fragment should not be part of the vehicle but 
the background of the scene. In the other case, the inpainted image fragment of the hole should be a 
part of the vehicle. The inpainting result is shown as the dotted box tagged as “Added part” in step 3 
of Figure 2. 

 
Figure 2. The flow chart demonstrates how to fill in a missing part. 

The fourth step is the second stage of object detection. The inpainted images may be the same as 
the original image or an additional part of the vehicle added to the image. If the detected vehicle 
image becomes larger than the image before inpainting, this step should find the larger object box. 
Then, this step outputs a flag that indicates whether or not there is an alarm region. 

The fifth step is re-scaling the image to the size of the original image and projecting it to the 
initial location. 

The sixth step is setting the alarm region. If the flag in step 4 is true, we can calculate the alarm 
region to prevent the vehicle from getting through it. 

3.2. The Object Detection about Vehicle 

Vehicle detection plays an important role in intelligent transportation and autopilot. 
Considering the speed and accuracy, we adopt the improved Retina network for object detection. 
The original Retina Network is a unified network composed of a primary backbone network and 
two task-specific subnetworks [2]. 

the Main Vichicles 
Detection 

Add the Left 
Hole

Add the Right 
Hole

Inpaint 
using GAN

Inpaint 
using GAN

Object Re-detection

Pad and Scale to Small 
Size

Set Alarm Region
(compared to the 
original object)

Re-scale and Project to 
the Original Image Alarm region

Added part

Step 1:
the firt stage of 
object detection

Step 2:
padding and scaling

Step 3:
image inpainting

Step 4:
the second stage of
object re-detection

Step 5:
Re-scaling 
and projecting

Step 6:
setting alarm region

Figure 2. The flow chart demonstrates how to fill in a missing part.

The fourth step is the second stage of object detection. The inpainted images may be the same
as the original image or an additional part of the vehicle added to the image. If the detected vehicle
image becomes larger than the image before inpainting, this step should find the larger object box.
Then, this step outputs a flag that indicates whether or not there is an alarm region.

The fifth step is re-scaling the image to the size of the original image and projecting it to the
initial location.

The sixth step is setting the alarm region. If the flag in step 4 is true, we can calculate the alarm
region to prevent the vehicle from getting through it.

3.2. The Object Detection about Vehicle

Vehicle detection plays an important role in intelligent transportation and autopilot. Considering
the speed and accuracy, we adopt the improved Retina network for object detection. The original
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Retina Network is a unified network composed of a primary backbone network and two task-specific
subnetworks [2].

The backbone network is utilized to compute a convolutional feature map over an input image.
The primary network is based on the Feature Pyramid network [26] built on the ResNet network [7].

The first classification subnet predicts the presence probability of an object at each spatial position
for each of the anchors and K object classes (K equals 1 here because there is only one vehicle object).
It takes an input feature map from the previous primary network’s output. The subnet applies four
3 × 3 convolutional layers, each layer followed by ReLU activations. Finally. sigmoid activations are
attached to the outputs. Focal loss is adopted as the loss function.

The second subnet performs bounding box regression. It is similar to the classification network,
but the parameters are not shared. This subnet outputs the object’s location as opposed to the anchor
box if an object exists. The smooth_L1_loss with sigma that equals three is applied as the loss function
to this sub-network.

The focal loss [2] is designed to address the detection scenario in which there is an imbalance
between foreground and background classes. The focal loss is shown as follows:

FL(pt) = −αt(1− pt)
γ log(pt) (1)

In Equation (1), gamma is the focusing parameter and alpha is the balancing parameter. The focal
loss adds less weight to well classified examples and greater weight to misclassified examples.

To improve the detecting quality and speed, the following adjustments are used. First of all,
more training data are added to improve the quality of detection. More vehicle images are extracted
from the CompCars dataset [35], the Stanford Cars dataset [36], and the pictures captured by our team.
It is described in detail in Section 4. Secondly, the detection threshold is set to 0.8. Thirdly, the class of
the detecting object is set to one. Finally, because FPN makes multi-scale predictions, it is not required
to detect small objects in this solution. The two minimum layers in the FPN [26] are deleted.

3.3. Generate Adversarial Network

Recently, the GAN [11] has been used to generate virtual images. GAN contains two sub-models,
the generator model (abbreviated as G) and the discriminator model (abbreviated as D). G generates
virtual pictures, which will look like real data. Based on experience, random white noise variable z
is defined as the input of G. Then, function G(z;θg) maps the noise variables to the data space. It is
represented by a multilayer perceptron with parameters θg. The sub-model D is also a multilayer
perceptron. D(x) represents the probability that the picture x comes from the true data rather than the
virtually generated data. The framework of G and D is indicated by Figure 3.

The model D outputs a Boolean value of one or zero, which respectively indicates real data
or virtually generated data if the output data trick the discriminator into thinking the data are real.
GAN trains D to maximize the probability of assigning the correct label to both the true and the virtual
data. GAN concurrently trains G to minimize the same probability. In other words, GANs follow a
two-player mini-max optimization process written as formula min

G
max

D
(D(x)− D(G(z))). In order to

make the calculation easy, the log function is added to D. Because the input number for log function
must be greater than zero, the improved formula of GAN is changed, as shown in Equation (2):

max
θD

V(D, G) = min
G

max
D
{Ex∼pD[log D(x)] + Ex∼pG[log(1− D(G(z)))]}. (2)

Minibatch stochastic gradient descent [37] is used in the training stage of GAN. The hyper
parameter k is set as two. The k defines the times of the D for each G. The algorithm of minibatch
stochastic gradient descent in the experiment is shown as Figure 4.
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Figure 4. The algorithm of minibatch stochastic gradient descent.

The pseudo-code surrounded by the dotted rectangle achieves the optimization of the D. All of
the code completes synchronal optimization of the G and D. If the various pictures are all trained at the
same time, the diversity of the image class results in chaotic and meaningless virtual images. If there
are numerous kinds of images, the generating process should be done category by category. In this
case, only one image category (vehicle) is used.

3.4. The Framework of Image Inpainting

The architecture of the image inpainting to predict missing parts from their surroundings is
shown in Figure 5.

Figure 5 shows the process of inpainting the right predicting region in the white box. The upper
half of the figure describes the process of generating the virtue image using the auto-encoding
structure [38]. The rest of the figure describes the decision process by the discriminator of GAN.
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Encoder: The encoder is derived from the AlexNet architecture [4]. Given an input image with
a size of 128 × 128, we use five convolutional layers ([64,4,4], [64,4,4], [128,4,4], [256,4,4], [512,4,4])
and the following pooling layer to compute an abstract [512,4,4] dimensional feature representation.
In contrast to AlexNet, our model is not trained for ImageNet classification but for predicting the
missing hole.

The layer between the encoder and the decoder is a channel-wise fully-connected layer [30].
This layer is designed to propagate information within each feature map. If the dimension of the input
layer is [m, n, n], this layer outputs the same size feature maps.

Decoder: The decoder generates the virtue image with the missing region using the features
of the encoder output. The decoder contains a series of up-convolutional layers ([512,4,4], [256,4,4],
[128,4,4], [64,4,4], [64,4,4]) [8,39,40] and ELUs activation function [41]. An up-convolutional is utilized
to result in a higher resolution image. The idea behind the decoder is that the series of up-convolutions
and nonlinear activation function comprises a non-linear up-sampling of the feature produced by
the encoder.

Joint Loss Function: The reconstruction loss function is set as the following joint loss function:

Lrec(x) = ‖h(x, R)− h(xi, R)‖2
2 + αγ(x). (3)

Given the input image x0, we would like to find the unknown output image x. R is used to denote
the missing hole region in x. The function h(·) defines the operation of extracting a sub-image or
sub-feature-map in a rectangular region, i.e., h(x, R) returns the color content of x in R. The term Υ(x)
represents the total variation regularization to smooth the image:

Υ(x) = ∑
i,j

((xi,j+1 − xi,j)
2
+ (xi+1,j − xi,j)

2). (4)

Empirically, α is set as 5 × 10−6 to balance the two losses. In this loss Equation (4), the texture
loss is not adopted because each texture process should consume more than eight seconds [32].

Discriminator: The structure of the discriminator is the same as in Figure 2. It decides whether
an image is true or not.

4. Experiments and Results

This section first presents the datasets, then real world vehicle detection and inpainting are
demonstrated to show the hidden part of a vehicle.

4.1. Datasets

One of the reasons for the great progress in deep learning is big data. The proposed approach
is based on deep learning, thus sufficient valid data are also essential for this approach to function
correctly. We prepared the following datasets.

The Comprehensive Cars (CompCars) dataset [35] contains data from two scenarios, web-based
and surveillance-based. The web-based data contain 136,726 images capturing entire car sets and
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images capturing the car parts. The surveillance-based data contain car images captured in the
front view. In this work, only cars from the web-based set are used. The Stanford Cars dataset [36]
contains 16,185 images of 196 classes of cars. The data are divided into 8144 training images and
8041 testing images. This work uses both training and testing images as training data. However,
the aforementioned car datasets do not have enough vehicle images captured from the sides. Therefore,
our team took about 50,000 vehicle pictures. These pictures were collected from the sides of the cars
beside the busiest crossroad, the ancient Bell Town and Drum Town, in Xi’an, China. The new dataset
was created and called the Complex Traffic Environment (CTE-Cars). The training dataset used in this
work is a combination of the CompCars dataset, the Stanford Cars dataset, and CTE-Cars.

4.2. The First Stage of Object Detection (Step 1)

The test dataset contains pictures taken in a new scene. They do not belong to the training dataset.
In this way, the set of the experiments ensures the validity of the test results and avoids overfitting.

The focal loss [2] is applied to all anchors [19] in each picture during the training process. The total
focal loss of a picture is calculated as the sum of the focal loss over all anchors. It is normalized by
the amount of anchors assigned to a ground-truth box. In general, alpha should be decreased slightly
while gamma is increased in Equation (1). In the experiment, the experimental parameters gamma:
2 and alpha: 0.25 work best. The primary network of the model is ResNet-50 [7]. In the model, weight
decay is set to 0.0001, momentum is set to 0.9, and initial learning rate is set to 0.01 during the first
60,000 iterations. Learning rate is reduced by 10% after every 60,000 iterations.

The next step is padding and scaling the picture size.
The orange box is the region of the detected vehicle. A right padding is to extend the right part

and form a square image, as shown in the left sub-graph of Figure 6. A left padding is to extend the left
part and form a square image, as shown in the right sub-graph of Figure 6. At this stage, the images
are padded to form the complete image.Electronics 2019, 8, x FOR PEER REVIEW 11 of 16 
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The purpose of the paper is to obtain information about a certain dangerous area to avoid accidents,
not to precisely repair the appearance of the vehicle. To speed up the calculation, the detection image
is scaled down to a square of 128 × 128 pixels. Then, the small images are imported to the network.

4.3. Image Inpainting and Re-Detection (Step 3 and Step 4)

Table 1 shows the flow chart from the padding to re-detection. Because the state of the art object
detection algorithms cannot detect the vehicle with hidden parts, as shown in Figure 1, we do not
compare with other object detection algorithms in this section. Pictures in the first row are the padded
images, which are very clear. However, the pictures in the second row are blurrier than the pictures in
the first line because they are scaled down to 128× 128 pixels. Row 3 shows the images after inpainting.
The left and right inpainting are mandatory whether there are hidden parts or not. Object re-detection
is shown in row 4. This is the fourth step of DIDA. If a vehicle has a hidden part, the detected region
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in the second stage of object detection should be bigger than the region of the first stage of detection.
This is shown in the orange box in column 3 of rows 4 and 2. Otherwise, the two regions should be
same, as shown in column 4 of rows 4 and 2.

Table 1. The result of the inpainting and the re-detection.

Row Number Describe Vehicle with the Large
Area Hidden Part

Vehicle without the
Hidden Part

1 The image after padding
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The images from the rows 5 to 8 show the inpainting results of the traditional methods.
The methods are the texture synthesis method based on the algorithm [42] (row 5), Absolute
Minimizing Lipschitz Extension (AMLE) [43] (row 6), Mumford-Shah Inpainting with Ambrosio-
Tortorelli approximation [44] (row 7), and Transport Inpainting [45]. None of the traditional methods
could handle the large region inpainting.

In the test phase, we randomly select 200 vehicle pictures to be used. The test dataset includes
two types of pictures with and without hidden parts. In the real world, it is difficult to find the vehicle
picture with a hidden part to verify the correctness of this algorithm. The test picture with a hidden
part is a virtual picture created by Photoshop. No test pictures are seen by the train model. They are
divided into two categories, each of which has 100 pictures. In the first category of the test dataset,
the test pictures have a one quarter hidden region. In the second category of the test dataset, the test
pictures have a half hidden region.

There are four different qualitative results of the algorithm—adding a part to the complete vehicle
(wrong), adding a part to the incomplete vehicle (right), adding nothing to the complete one (right),
and adding nothing to the incomplete one (wrong). In the research, we quantitatively define a correct
result if the difference of the area between the predicted vehicle and the grand-truth is less than 10%.
The precision results of the two test datasets were 91% and 82%, respectively.

4.4. Re-Scaling, Projecting (Step 5), and Setting Alarm Region (Step 6)

The left orange box in the top of Figure 7 shows the detected region of the vehicle before inpainting.
The right orange box is the re-detected vehicle region after inpainting. The latter is bigger than the
former. The difference between the two boxes is the hidden part. The vehicles are projected to the
original image. The red box, the projected difference region, is defined as the alarm region (alarm
box). Although the alarm area cannot be recognized as a part of the vehicle by a general vision system,
this area is still dangerous. Figure 7 omits the procedure of the black car. The bottom picture is the
ground-truth image.
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This algorithm does not lead to any risk. The DIDA algorithm performs an “adding” action based
on the original vehicle image, not a “deleting” action. The worst scenario is that a part is added to a
complete vehicle, which only reduces traffic efficiency.

5. Discussion

In uncommon situations, the color of a part of a vehicle is similar to the background color,
which results in an error of optical object detection and consequently causes a failure of autopilot.
The error can even cause a traffic accident. The proposed DIDA method solves this problem. As far
as we know, the work is the first attempt to solve the problem by combining the object detection and
image inpainting. However, the method has many steps, and the speed of the whole process needs
improvement in the future. YOLOv3 [46] should be tested to improve the speed in the future.

In addition, the repaired parts are not perfect, such as the lack of tires. Although this does not
affect the task, the improved GAN algorithm can be used in the future to generate the hidden part
more accurately.

The category of the test pictures is not enough. In this research, only the normal condition of
the test environment is considered. In the future, test pictures with sufficiently high numbers of
vehicle categories should be added, such as different distances, different lighting conditions, angles of
sunshine, shadows and background, etc.

In this work, we demonstrate an imaginative inpainting of a vehicle. It embodies a higher level
artificial intelligence, such as prediction and imagination. The idea and method can be extended to
other areas, such as underwater detection, intelligent transportation, robotics, etc.

Moreover, we share the CTE-Cars dataset that can be used for other future research of autopilot.

6. Conclusions

Vehicle detecting is very important in the autopilot field. If it fails to accurately detect vehicles,
autopilot is dangerous. The optical detection method is ineffective in special cases where the color
and texture of the parts appear similar to the background. The proposed DIDA method is a simple
and effective approach to solving the problem. It is based on the deep learning network and only
uses optical signals to detect the hidden part of a vehicle. The procedure includes vehicle detection
by improved Retina network, scaling, image inpainting, the second stage of vehicle detection on
the inpainted vehicle, zooming back to the original size, and setting an alarm region. From a
scientific aspect, DIDA gives a new approach to detecting an insufficient object. From the point
of engineering applications, DIDA offers a new method to insuring further security in motor vehicle
auto driving systems.
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