
electronics

Article

Remote Sensing Image Fusion Based on Sparse
Representation and Guided Filtering

Xiaole Ma 1,2 , Shaohai Hu 1,2,*, Shuaiqi Liu 3,* , Jing Fang 1,2 and Shuwen Xu 4

1 Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China;
maxiaole@bjtu.edu.cn (X.M.); fangjing@sdnu.edu.cn (J.F.)

2 Beijing Key Laboratory of Advanced Information Science and Network Technology,
Beijing Jiaotong University, Beijing 100044, China

3 College of Electronic and Information Engineering, Hebei University, Baoding 071002, China
4 Research Institute of TV and Electro-Acoustics, Beijing 100015, China; xu_sw@263.com
* Correspondence: shhu@bjtu.edu.cn (S.H.); shdkj-1918@163.com (S.L.); Tel.: +86-010-5168-8646 (S.H.)

Received: 18 January 2019; Accepted: 5 March 2019; Published: 8 March 2019
����������
�������

Abstract: In this paper, a remote sensing image fusion method is presented since sparse representation
(SR) has been widely used in image processing, especially for image fusion. Firstly, we used source
images to learn the adaptive dictionary, and sparse coefficients were obtained by sparsely coding
the source images with the adaptive dictionary. Then, with the help of improved hyperbolic tangent
function (tanh) and l0 −max, we fused these sparse coefficients together. The initial fused image can
be obtained by the image fusion method based on SR. To take full advantage of the spatial information
of the source images, the fused image based on the spatial domain (SF) was obtained at the same time.
Lastly, the final fused image could be reconstructed by guided filtering of the fused image based on
SR and SF. Experimental results show that the proposed method outperforms some state-of-the-art
methods on visual and quantitative evaluations.
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1. Introduction

By making full use of the complementary information of the remote sensing images and other
source images of the same scene, image fusion can be defined as the processing method for integrating
this information together to obtain a fused image, which is more suitable for the human visual
system [1]. Through image fusion, we can obtain one composite image, which contains more
special features, and can provide more useful information. As a powerful tool for image processing,
image fusion covers broad range of areas [2,3], such as computer vision, remote sensing, and so on [4].

Diversiform remote sensing image fusion methods have been proposed in recent years, which can
be divided into three categories: Pixel-level fusion, feature-level fusion, and decision-level fusion [5].
Feature-level fusion mainly deals with the features of the source images, while decision-level
fusion makes the decision after judging the information of the source images. Compared with the
aforementioned levels, pixel-level fusion can serve more useful original information, although it has
some shortcomings such as being time consuming. Despite complex computation, most researchers
conduct image fusion based on pixel-fusion [6,7], such as the image fusion method based on the spatial
domain, and the image fusion method based on the transform domain.

Recently, mainstream methods of image fusion have been based on the multi-scale transforms [8,9],
such as image fusion based on object region detection and non-subsampled contourlet transform [10]
and image fusion based on the complex shearlet transform with guided filtering [11]. For the image
fusion method based on multi-scale transforms, the source images are represented by the fixed
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orthogonal basis functions, and the fused image can be obtained by fusing the coefficients of different
sub-bands together in the transform domain. Although the multi-scale geometric transform can
represent most features of the image, which are always complex and diverse, there are some features
that cannot be represented sparsely. Thus, it cannot represent all the useful features accurately by
limited fixed transforms.

The rapidly developing sparse representation methods can not only more sparsely represent the
source images, but also effectively extract the potential information hidden in the source images and
produce more accurate fused images, compared with the multi-scale transforms [12–14]. Based on these
findings, scholars apply sparse representation to image fusion. Mitianoudis [13] and Yang [14] laid
the foundation for image fusion based on SR. Yu [15] applied sparse representation with K-singular
value decomposition (K-SVD) to medical image fusion, Yang [16] applied sparse representation
and multi-scale decomposition to remote sensing image fusion, and Yin [17] applied a novel
sparse-representation-based method to multi-focus image fusion.

In the sparse model, the generation of the dictionary and sparse coding is crucial for the image
fusion [18]. Although the fixed over-complete dictionary can realize good fusion results, it usually takes
a lot of time to obtain the sparse coefficients, resulting in inefficiency. In this paper, adaptive dictionary
learning [19,20] is adopted for its simplicity and convenience. Motivated by the multi-strategy fusion
rule based sigmoid function in reference [21] and the characteristics of the hyperbolic tangent function,
the multifarious rule based on tanh and l0 −max is proposed to fuse the sparse coefficients. Finally,
by sparse reconstruction, the fused image based on SR is obtained, which is more suitable for the
human visual system and subsequent image processing. However, there is more detailed information
in the remote sensing images than other kinds of images. When performing image fusion by the
method based on SR, it may lose some discontinuous edge features [22], which leads to the loss of some
useful information of fused images. In addition, image fusion based on SR also ignores the spatial
information, which can reflect the image structure more directly and accurately. As a result, we can
simultaneously fuse the source remote sensing images by the method based on SR and SF, and obtain
two different fused images, namely the fused image based on SR and the fused image based on SF.
In this paper the two fused images above are processed by a guided filter to obtain the final image
since a guided filter has good performance with edge preserving [23]. The main contributions of this
paper can be summarized as follows.

(1) The learning of the dictionary is vital for sparse representation, and the adaptive dictionary of
each source image can be generated in every step of dictionary learning. The final dictionary can be
obtained by gathering together the sub-dictionaries. As a result, this work enriches the dictionary and
can make the coefficients more sparsely.

(2) As is well known, the information in each source image is complementary and redundant.
When fusing images to obtain the fused image, we need to consider the relationship between different
source images. For the redundant information of the source images, the weighted rule would be better;
on the other hand, the choose-max rule would result in a fused image with less block effect. Based on
the above considerations and the characteristics of hyperbolic tangent function, the fusion rule based
on tanh and l0 −max is proposed in this paper.

(3) The image fusion methods based on SR can obtain the fused image by sparsely coding the
source images and fusing the sparse coefficients. However, it ignores the correlation of the image
information in the spatial domain and loses some important detailed information of the source images.
In this paper, we adopt the image fusion method based on SF and filter the fused image based on
SR and SF by the guided filter. By making full use of the information in the spatial and the sparse
representation domain, the fused image can reserve more information of the source images.

The rest of this paper is organized as follows. The theory of the sparse representation is introduced
briefly in Section 2. Adaptive dictionary learning is presented in Section 2.1, and the proposed fusion
rule is given in Section 2.2. The flow chart of the remote sensing image fusion method based on SR
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and guided filtering is drawn in Section 3. In Section 4, some experiments and result analysis are done.
Finally, conclusions are made in Section 5.

2. Sparse Representation

SR has been widely used in image processing, as one of the most powerful tools to represent
signals especially image signals, such as image de-noising [24], image coding [25], object tracking [26],
and image super resolution [27], etc.

In the SR model, the image is sparse and can be represented, or approximately represented, by one
linear combination of a few atoms from the dictionary [14,28,29]. Suppose that the source image is I,
and the over-complete dictionary is D ∈ RM×k, the sparse representation model can be formulated as
follows [16,22].

α̂ = argmin
α
‖α‖0s.t.‖I−Dα‖2

2 ≤ ε (1)

where α denotes the sparse coefficients of the image and ‖•‖0 denotes the l0 − norm, respectively,
which indicate the number of non-zero elements in the corresponding vector. Usually, ‖α‖0 ≤ L << M,
and L is the maximal sparsity. ε indicates the limiting error.

For the image fusion method based on SR, there are two important steps: dictionary learning
and sparse coding. Dictionary learning will be discussed in detail in Section 2.1. When performing
sparse coding by orthogonal matching pursuit (OMP) [30] in this paper, Equation (1) can be replaced
by Equation (2).

α̂ = argmin
α
‖I−Dα‖2

2 + µ‖α‖0 (2)

where, µ is the penalty factor.

2.1. Adaptive Dictionary Learning

When fuse the source images by the methods based on SR, dictionary learning is one of important
processes. To make full use of the image information, we generate a dictionary based on the source
images themselves. And the generation of the adaptive dictionary can be changed into the iteration of
the dictionary atoms. By the iteration process, it can realize dictionary learning with the over-complete
dictionary based on the source images.

Since dictionary learning is more efficient for small image blocks, if the dictionary updating
step is processed by the original source images directly, the sparsity would be seriously influenced.
Thus optimal sparse coefficients cannot be obtained [29]. In order to solve this problem, we divided the
source images into image blocks, which can replace the dictionary atoms for better dictionary learning.
The improved dictionary generation method can not only obtain the optimal sparse representation but
also accelerates the efficiency and accuracy of the SR algorithm. However, since we perform dictionary
learning on the image block rather than the whole image, the reshaped vector on every atom is not
very large and it reduces the computation cost.

K-singular value decomposition (K-SVD) [31] is one of the most used image fusion methods based
on SR. Here, we adopt the K-SVD model on the sub-dictionary of the image block by the following
iteration process:

D̂M
ij = arg min

D̂M
ij ,αM

ij

∑
i,j

∥∥∥PM
ij − D̂M

ij αM
ij

∥∥∥2

2
+ µM

ij

∥∥∥αM
ij

∥∥∥
0

(3)

where ij denotes the position (i, j) in the image M and PM
ij denotes the image block with the center

pixel at the corresponding position (i, j).
Then, we can obtain the adaptive dictionary of the source image M shown in Equation (4).

D̂M
=
{

D̂M
ij

}
(4)
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At last, we can gather all the dictionaries of different source images by Equation (5), where n
denotes the total number of the source images.

D = [D1, D2, . . . , Dn] (5)

2.2. Fusion Rule Based on tanh and l0 −max

As we all know, the fusion rules are vital for the final fusion results and for the sparse coefficients.
In most cases, we always take the l1 −max rule to obtain the fused block vectors [7], where l1 means
the sum of absolute values of the vector elements. However, when there are noises or some unwanted
pixels in the flat area of the source images, the unwanted portion will be included and lead to incorrect
fusion [17]. The information in the source images is redundant and complementary for the image
fusion shown in Figure 1. Figure 1a,b are one set of medical images, which contain complementary
information, while Figure 1c,d are one set of multi-focus images, which contain redundant information.
When the relationship of the image information is redundant, the weighted fusion rule is chosen,
and the max fusion rule should be chosen for the complementary sparse coefficients [21]. The fused
information would be lost and incomplete if the complementary information is multiplicative by the
weighted factor. Based on these considerations, we proposed one new sparse coefficient fusion rule
based on tanh and l0 −max. We can obtain the fused coefficients by calculating l0 − norm and the
weighting factor based on tanh.

Electronics 2019, 8, x FOR PEER REVIEW 4 of 17 

 

 M M

ij
ˆ ˆD D  (4) 

At last, we can gather all the dictionaries of different source images by Equation (5), where n  

denotes the total number of the source images. 

1 2[ , ,..., ]nD D D D  (5) 

2.2. Fusion Rule Based on tanh and 0 maxl   

As we all know, the fusion rules are vital for the final fusion results and for the sparse 

coefficients. In most cases, we always take the 1 maxl   rule to obtain the fused block vectors [7], 

where 1l  means the sum of absolute values of the vector elements. However, when there are 

noises or some unwanted pixels in the flat area of the source images, the unwanted portion will be 

included and lead to incorrect fusion [17]. The information in the source images is redundant and 

complementary for the image fusion shown in Figure 1. Figure 1a,b are one set of medical images, 

which contain complementary information, while Figure 1c,d are one set of multi-focus images, 

which contain redundant information. When the relationship of the image information is redundant, 

the weighted fusion rule is chosen, and the max fusion rule should be chosen for the 

complementary sparse coefficients [21]. The fused information would be lost and incomplete if the 

complementary information is multiplicative by the weighted factor. Based on these considerations, 

we proposed one new sparse coefficient fusion rule based on tanh and 0 maxl  . We can obtain 

the fused coefficients by calculating 0l norm  and the weighting factor based on tanh. 

    
(a) (b) (c) (d) 

Figure 1. Images with different information: (a) CT image; (b) MRI image; (c) left-focus image; (d) 

right-focus image. 

The hyperbolic tangent function is one of the hyperbolic functions, and derives from 

hyperbolic sine function and hyperbolic cosine function [32]. It can be calculated as follows: 

sinh( )
tanh( )

cosh( )

x x

x x

x e e
x

x e e






 


 (6) 

where the hyperbolic sine function and hyperbolic cosine function can be defined as Equations (7) 

and (8), respectively. 

sinh( )
2

x xe e
x


  (7) 

cosh( )
2

x xe e
x




 

(8) 

Figure 2 shows the different hyperbolic functions. From Figure 2a,b we can see that tanh is 

symmetrical around the origin point. As x  increases, the difference between the value of the 
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(d) right-focus image.

The hyperbolic tangent function is one of the hyperbolic functions, and derives from hyperbolic
sine function and hyperbolic cosine function [32]. It can be calculated as follows:

tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x (6)

where the hyperbolic sine function and hyperbolic cosine function can be defined as Equations (7)
and (8), respectively.

sinh(x) =
ex − e−x

2
(7)

cosh(x) =
ex + e−x

2
(8)

Figure 2 shows the different hyperbolic functions. From Figure 2a,b we can see that tanh is
symmetrical around the origin point. As x increases, the difference between the value of the hyperbolic
sine function and the hyperbolic cosine function narrows, and the value of tanh(x) changes from −1
to 1. When there is redundant information in different source images and the weighted fusion rule
is chosen, it would be better if different degrees of redundancy corresponded to different weights.
Based on the aforementioned factors, we improve tanh shown in Figure 2c to obtain the weighted
factor for fusing the sparse coefficients, and the corresponding equation is listed as Equation (9).
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wij =
1
2
∗ [tanh(a ∗ (sij − 1)) + 1] (9)

where sij denotes the sparse coefficient at the position (i, j) and wij denotes the corresponding weighted
factor when adopting the fusion rule based on tanh. a denotes the sensitivity between the sparse
coefficient and the weighted factor. According to the experiments on different image groups and
values of the parameter a, we found that 3 is the best.

Compared with Figure 2b, the curve has a steeper slope in Figure 2c when sij is closer to 1,
which means that the weighted factor is very sensitive to the sparse coefficients. When sij is near
0 or too large, the weighted factor wij is near 0 or 1, which means that the source images have
complementary information, where the fusion rule based on l0 −max is adopted.
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Finally, we can obtain the fused sparse coefficients αFij at the position (i, j) by Equation (10).

αFij =

{
wij ∗ αAij + (1− wij) ∗ αBij i f αAij &αBij 6= 0
max(αAij , αBij) else

(10)

where αAij and αBij denotes the sparse coefficients in the source image A and B. αAij &αBij 6= 0 means
that both αAij and αBij are not zero. And wij can be calculated by Equation (9), where sij = αAij .

3. The Proposed Image Fusion Method

An interesting remote sensing fusion method based on sparse representation and guided filtering
is presented in this paper, and the framework can be seen in Figure 3. It mainly includes three image
processing elements: image fusion based on SR, image fusion based on SF, and guided filtering.
The adaptive dictionary was learned by the source images themselves, and the fused sparse coefficients
was obtained by the dictionary and proposed fusion rule. Then, the fused image based on SR was
reconstructed by the obtained adaptive dictionary and fused sparse coefficients. At the same time,
we fused the source images obtained by the image fusion method based on SF such as the gradient
fusion. As shown in Figure 3, the guided filter was finally adopted to guide the fused images based on
SR and SF. Since there was more detailed information in the fused image based on SF, in the last part
of the proposed method, we made the fused image based on SF as the guidance image, and the other
fused image served as the input image.



Electronics 2019, 8, 303 6 of 17

Electronics 2019, 8, x FOR PEER REVIEW 6 of 17 

 

At the same time, we fused the source images obtained by the image fusion method based on SF 

such as the gradient fusion. As shown in Figure 3, the guided filter was finally adopted to guide the 

fused images based on SR and SF. Since there was more detailed information in the fused image 

based on SF, in the last part of the proposed method, we made the fused image based on SF as the 

guidance image, and the other fused image served as the input image. 

adaptive dictionary 

learnling

sparse coefficients fusion 

based on tanh and l0-max

guided filteringimage fusion based on spatial domain

final fused image

fused image based on SR

fused image based on SF

final dictionary

source image A

source image B

 

Figure 3. The framework of the proposed method. 

4. The Experiments and Result Analysis 

To testify the superiority of the proposed method, a series of experiments on the remote sensing 

and other source images were conducted in this section. We compared our method with some 

classical image fusion methods, including the multi-scale weighted gradient-based fusion (MWGF) 

[33], the image fusion with guided filtering (GuF) [34], image fusion based on Laplace 

transformation (LP) [35], multiresolution DCT decomposition for image fusion (DCT) [36], the image 

fusion algorithm in the nonsubsampled contourlet transform domain (NSCT) [37], image fusion 

with the joint sparsity model (SR) [1], and image fusion based on multi-scale and sparse 

representation(MST-SR) [8]. With adaptive dictionary learning, the size of every image block was 

8 8 . Experiments conducted on dictionary learning of different source images showed that when 

the number of iterations was 3, it guaranteed the convergence and stability of the coefficients. In 

addition, the experiments in this paper were carried out by Matlab code on an Intel Core i5-2450M 

(Acer, Beijing, China) 2.50 GHz with 6 GB RAM. 

4.1. Objective Valuation Indexes 

To evaluate the experimental results more objectively, we adopted some objective valuation 

indexes [37] to evaluate the fused images by different image fusion methods, which included 

entropy (EN), spatial frequency (SF), QAB/F, and structural similarity (SSIM). 

When we want to balance the wealth of information in one image, EN is a wonderful choice. 

The larger the value of EN in the fused image is, the more information does the image contain, 

which means better image fusion result. And EN can be summarized as Equation (11). 

1

2

0

log
L

i i

i

EN p p




    (11) 

where L  denotes the total number of pixels included in the image and ip  denotes the 

probability distribution of pixels for each gray level. 

SF can detect the total active of the fused image in the spatial domain and it denotes the 

expression ability of one image for minor detail contrast. The equation of SF is shown as follows: 

2 2( , ) ( ) ( )SF i j RF CF   (12) 

Figure 3. The framework of the proposed method.

4. The Experiments and Result Analysis

To testify the superiority of the proposed method, a series of experiments on the remote sensing
and other source images were conducted in this section. We compared our method with some
classical image fusion methods, including the multi-scale weighted gradient-based fusion (MWGF) [33],
the image fusion with guided filtering (GuF) [34], image fusion based on Laplace transformation
(LP) [35], multiresolution DCT decomposition for image fusion (DCT) [36], the image fusion algorithm
in the nonsubsampled contourlet transform domain (NSCT) [37], image fusion with the joint sparsity
model (SR) [1], and image fusion based on multi-scale and sparse representation(MST-SR) [8].
With adaptive dictionary learning, the size of every image block was 8× 8. Experiments conducted
on dictionary learning of different source images showed that when the number of iterations was 3,
it guaranteed the convergence and stability of the coefficients. In addition, the experiments in this
paper were carried out by Matlab code on an Intel Core i5-2450M (Acer, Beijing, China) 2.50 GHz with
6 GB RAM.

4.1. Objective Valuation Indexes

To evaluate the experimental results more objectively, we adopted some objective valuation
indexes [37] to evaluate the fused images by different image fusion methods, which included entropy
(EN), spatial frequency (SF), QAB/F, and structural similarity (SSIM).

When we want to balance the wealth of information in one image, EN is a wonderful choice.
The larger the value of EN in the fused image is, the more information does the image contain,
which means better image fusion result. And EN can be summarized as Equation (11).

EN = −
L−1

∑
i=0

pi × log2 pi (11)

where L denotes the total number of pixels included in the image and pi denotes the probability
distribution of pixels for each gray level.

SF can detect the total active of the fused image in the spatial domain and it denotes the expression
ability of one image for minor detail contrast. The equation of SF is shown as follows:

SF(i, j) =
√
(RF)2 + (CF)2 (12)

where RF stands for the horizontal frequency while CF stands for the vertical frequency. And they can
be calculated by Equations (13) and (14).

RF =

√√√√ 1
M× N

M

∑
x=1

N

∑
y=2

[F(x, y)− F(x, y− 1)]2 (13)
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CF =

√√√√ 1
M× N

M

∑
x=2

N

∑
y=1

[F(x, y)− F(x− 1, y)]2 (14)

where F denotes the fused image with the size of M× N.
While QAB/F can balance how much the edge information of the source images A and B does the

fused image contain by Sobel operator. It can be defined as Equation (15).

QAB/F =
∑∀n,m (QAF

n,mwA
n,m + QBF

n,mwB
n,m)

∑∀n,m (wA
n,m + wB

n,m)
(15)

where wA
n,m = [gA(n, m)]L, wB

n,m = [gB(n, m)]L. Normally, L is one constant and the value is 1.
Taking the source image A as an example, edge information retention value QAF

n,m and edge strength
information gA(n, m) can be calculated by Equations (16) and (17).

QAF
n,m = ΓgΓα[1 + eKg(GAF

n,m−σg)]
−1

[1 + eKα(AAF
n,m−σα)]

−1
(16)

gA(n, m) =
√

sx
A(n, m)2 + sy

A(n, m)2 (17)

where Γg, Kg, σg, Γα, Kα, σα are constant and they affect the sigmoid function together. (GAF
n,m, AAF

n,m) =

[(
gF

n,m
gA

n,m
)

M
, 1− |αA(n,m)−αF(n,m)|

π/2 ] and M =

{
−1 i f gA(n, m) ≤ gF(n, m)

1 otherwise
. αA(n, m) = tan−1[

sy
A(n,m)

sx
A(n,m)

]

and sx
A(n, m), sy

A(n, m) denote the convolution results of Sobel model with the center pixel at the
position (n, m) in the horizontal and vertical directions with the source image A.

SSIM is the structural similarity between the source images and the fused image. And the equation
of SSIM is as follows:

SSIM(A, B, F) =
1
2
(SSIM(A, F) + SSIM(B, F)) (18)

where SSIM(A, F) denotes SSIM of the source image A and fused image F, and so is SSIM(B, F).
More detail of their calculation is shown in Equations (19) and (20).

SSIM(A, F) =
(2µAµF + C1)·(2σAF + C2)

(µ2
A + µ2

F + C1)(σ
2
A + σ2

F + C2)
(19)

SSIM(B, F) =
(2µBµF + C1)·(2σBF + C2)

(µ2
B + µ2

F + C1)(σ
2
B + σ2

F + C2)
(20)

where µA, µB, µF denote the average of pixels of the image A, B and F, respectively. σ2
A, σ2

B, σ2
F denote

the variance and σAF, σBF denote the joint variance. For the convenience of calculation, we make
C1 = C2 = 0.

The larger all the indexes above are, the better the fused image is. What’s more, when obtaining
the adaptive dictionary by the proposed method, there is slight deviation of the final results. We adopt
the mean of the evaluation values in three times.

4.2. Large Scale Image Fusion of Optical and Radar Images

Figure 4 shows one SAR image of the harbor around Oslo with a size of 1131× 942 and the
registered optical image on a large scale for the whole scenery [38]. Due to the use of the high-resolution
digital elevation model (DEM), the optical image fits onto the signatures of the buildings very well.
Figure 4c,d are partially enlarged details of Figure 4a,b at the position of the red rectangle in Figure 4a.
Figures 5 and 6 are the corresponding fused images obtained by the methods above, and partially
enlarged views.
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Since the optical image in Figure 4b is colorful, we processed the image fusion in the RGB
dimension separately. Although the visual effect of Figure 6a is better, there was a greater color
contrast in Figure 5a, which introduced some incorrect information in the left corner. In Figure 6,
the partially enlarged detail images of Figure 5d by DCT and Figure 5f by SR are very blurred which
seriously affects the fused images. Compared with Figure 6g, the left corner in Figure 6h contains more
information of the remote sensing image in Figure 5c, which indicates that the fused image by our
method is better.
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Table 1 shows the corresponding index values of the fused images in Figure 5 and the best values
are in bold. From Table 1, we can see the image fusion methods based on the spatial domain such
as MWGF and GuF have big ability to preserve the spatial frequency, and MWGF has a better value
of QAB/F. However, the visual result of MWGF is the worst. QAB/F of the proposed method ranks
third among the compared methods, which is worse than the methods based on the spatial domain.
This explains why we adopt the image fusion method based on the spatial domain and guide it with
the fused image-based SR in this paper. The values of EN, SF, and SSIM of the fused image obtained
by the proposed method are better, which indicates that the proposed method has a better ability to
fuse the remote sensing image.

Table 1. The evaluation index values of fused images in Figure 5.

Indexes
Methods

MWGF GuF LP DCT NSCT SR MST-SR The Proposed

EN 7.3411 7.2547 7.2606 7.2158 7.1843 7.2711 7.3742 7.5879
SF 31.1834 30.1662 32.4682 30.1223 31.5884 30.2674 32.4878 33.9360

QAB/F 0.6313 0.6111 0.5753 0.3754 0.5453 0.5705 0.5767 0.5794
SSIM 0.5798 0.5981 0.5990 0.5410 0.5910 0.5829 0.5966 0.6246

4.3. Image Fusion of Remote Sensing Images

To testify the effectiveness and universality of the proposed method, the classical image pairs
shared by Durga Prasad Bavirisetti (https://sites.google.com/view/durgaprasadbavirisetti/datasets)
are used to test the performance of the fused algorithms. The dataset contains rich remote sensing
images and we conduct our experiments on different kinds of image pairs, which contain the forest
with greater high-frequency information, rivers with low-frequency information, and so on. To save
space, we only show the four groups and the results analysis. The four groups include rich information
with different types and are representative in the dataset, shown in Figure 7. Figures 8–11 are the fused
images obtained by the diverse compared methods of the different source images.

https://sites.google.com/view/durgaprasadbavirisetti/datasets
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Figure 7. The source remote sensing images: (a) Group 1; (b) Group 2; (c) Group 3; (d) Group 4.

Figure 7a,b are forests and rural areas with fewer buildings, of which the top view is sharper and
has richer detailed information. From Figure 8, we can see that the trees in Figure 8a–e is more darker
than Figure 8f–g and has less information in the second line of Group 1 in Figure 7, which indicates
that the image fusion based on SR is more powerful than the methods based on the spatial domain and
transform domain. And there are some artificial textures in the roof of Figure 8f. Above all, the fused
image of Figure 8h obtained by the proposed has better visual effect.
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Figure 8. The fused images of Group 1: (a) MWGF; (b) GuF; (c) LP; (d) DCT; (e) NSCT; (f) SR;
(g) MST-SR; (h) the proposed.

Compared with Group 2, there are some suburbs next to the forests in Group 1. And the contrast
in Figure 9c,e,h looks better. From the roofs in the fused images shown in Figure 9, the flat area and
edges in Figure 9h obtained by the proposed method look more comfortable and are more suitable
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for we human visual system, which indicates that the proposed method has powerful ability to fuse
remote sensing images.
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Figure 9. The fused images of Group 2: (a) MWGF; (b) GuF; (c) LP; (d) DCT; (e) NSCT; (f) SR;
(g) MST-SR; (h) the proposed.

There are some river and coastal area in Group 3. And by comparing the fused images in Figure 10,
the center in Figure 10a looks very bad and some areas in Figure 10g are too bright, which have the
strong exposure. From these figures, we can see that there is less artificial texture in Figure 10h,
which means the fused image obtained by the proposed method have better visual result.
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Group 4 is one set of classic multi-sensor image pair, which can be found in most of papers about
remote sensing image fusion. By comparing the bottoms of the fused images in Figure 10, we can find
that there are some unwanted spots and artificial texture in Figure 10d, and the small round black area
is very blurred or even lost in Figure 10a–c,f. Since the rivers display as black areas like wide line or
curve in the fused images, it has worst visual effect in Figure 10f, of which the detailed information
has been lost. As a result, the fused image in Figure 10h looks more comfortable for our eyes and the
proposed method has better ability to fuse remote sensing images.

Similarly, we use the aforementioned objection evaluation indexes to value the fused images in
Figures 8–11 and the objective values are shown in Tables 2–5. As shown in Tables 2 and 3, the algorithm
proposed in this paper has obtained the best results for Group 1 and Group 2 in Figure 7. This fully
demonstrates that the proposed method has a better ability to perform remote sensing image fusion.
Compared with Group 1 and Group 2, there is more low frequency information and less detail and
edges in Group 3 and Group 4. However, the proposed method is more suitable for the images with
great detail. As a result, the SSIM of the fused image by NSCT is better than others in Table 4, but other
values of the proposed method are satisfactory. All these values demonstrate that the proposed method
performs better in terms of remote sensing image fusion.
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Figure 11. The fused images of Group 4: (a) MWGF; (b) GuF; (c) LP; (d) DCT; (e) NSCT; (f) SR;
(g) MST-SR; (h) the proposed.

Table 2. The evaluation index values of fused images in Figure 8.

Indexes
Methods

MWGF GuF LP DCT NSCT SR MST-SR The Proposed

EN 7.1741 7.4931 7.6687 7.6006 7.6935 7.4351 7.5925 7.7076
SF 54.1839 53.6728 55.0006 55.2435 54.6567 53.9868 54.8697 56.3409

QAB/F 0.7030 0.7104 0.7110 0.6105 0.7143 0.7089 0.7073 0.7174
SSIM 0.7933 0.7976 0.8077 0.7759 0.8170 0.7916 0.8060 0.8235
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Table 3. The evaluation index values of fused images in Figure 9.

Indexes
Methods

MWGF GuF LP DCT NSCT SR MST-SR The Proposed

EN 6.9778 7.6668 7.8936 7.5537 7.8154 7.3634 7.6580 7.8946
SF 53.6844 53.3379 53.8149 53.2507 53.3216 53.1757 54.1247 54.1590

QAB/F 0.6668 0.6687 0.6310 0.4783 0.6190 0.6379 0.6346 0.6710
SSIM 0.6283 0.6314 0.6340 0.5433 0.6172 0.5969 0.6429 0.6438

Table 4. The evaluation index values of fused images in Figure 10.

Indexes
Methods

MWGF GuF LP DCT NSCT SR MST-SR The Proposed

EN 7.2073 7.0657 6.9885 6.9246 6.9359 7.2902 7.3556 7.5855
SF 15.4453 16.4780 18.7239 19.5068 18.3164 18.3152 18.9748 19.8665

QAB/F 0.5491 0.5640 0.5574 0.3619 0.5411 0.4741 0.5658 0.5774
SSIM 0.6641 0.6954 0.6898 0.4789 0.6958 0.6168 0.6797 0.6826

Table 5. The evaluation index values of fused images in Figure 11.

Indexes
Methods

MWGF GuF LP DCT NSCT SR MST-SR The Proposed

EN 6.0932 7.1620 7.3451 7.3081 7.3317 7.1194 7.0635 7.6861
SF 27.8713 27.0044 29.2465 28.9847 28.2961 25.7550 29.2601 29.6650

QAB/F 0.6473 0.6318 0.5857 0.4143 0.5653 0.5586 0.5886 0.5968
SSIM 0.6528 0.6647 0.6736 0.5548 0.6871 0.6590 0.6733 0.6930

5. Conclusions

Due to the good performance of sparse representation and the rich information in the spatial
domain, this paper presents one new remote sensing image fusion method based on sparse
representation and guided filtering. It also makes full use of the redundant and complementary
information of different source images. Experimental results show that our method is more suitable
for the human visual system and has better objective evaluation index values. However, the proposed
image fusion method is very powerful for the details such as image edges. Although remote sensing
images have rich detailed information, it would be inefficient if there is much more low frequency
information than high frequency information. How to overcome this shortcoming will be investigated
in future work.
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