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Abstract: In recent years, target detection has drawn increasing attention in the field of radar
signal processing. In this paper, we address the problem of coherent integration for detecting
high-speed maneuvering targets, involving range migration (RM), quadratic RM (QRM), and Doppler
frequency migration (DFM) within the coherent processing interval. We propose a novel coherent
integration algorithm based on the frequency-domain second-order phase difference (FD-SoPD)
approach. First, we use the FD-SoPD operation to reduce the signal from three to two dimensions
and simultaneously eliminate the effects of QRM and DFM, which leads to signal-to-noise ratio
improvement in the velocity-acceleration domain. Next, we estimate the target motion parameters
from the peak position without the need for a search procedure. We show that this algorithm can
be easily implemented by using complex multiplications combined with fast Fourier transform
(FFT) and inverse FFT (IFFT) operations. We perform comparisons with several representative
algorithms and show that the proposed technique can be used to achieve a good trade-off between
computational complexity and detection performance. We present both simulated and experimental
data to demonstrate the effectiveness of the proposed method.

Keywords: maneuvering target detection; coherent integration; motion parameter estimation;
second-order phase difference (SoPD); time-frequency analysis

1. Introduction

With the increasing requirements for space target detection and high-resolution
imaging, radar high-speed maneuvering target detection has drawn growing attention [1–11].
Normally, a low-speed target is located in the same range cell during the short observation time,
and the conventional moving target detection (MTD) algorithm [12] can complete coherent integration
by using fast Fourier transform (FFT). It is well known that in order to improve the detection ability
in far-range and low radar cross section (RCS) targets, a long-term coherent integration is always
required [13]. In this case, for high-speed maneuvering targets, the linear range migration (LRM),
quadratic range migration (QRM), and Doppler frequency migration (DFM) effects will inevitably
occur, thereby deteriorating integration performance.

As for radar coherent integration, many successful detection algorithms have been proposed,
such as the keystone transform (KT) [14,15], scaled inverse Fourier transform (SCIFT) [16,17],
frequency-domain deramp-keystone transform (FDDKT) [18], modified location rotation transform
(MLRT) [19], and Radon Fourier transform (RFT) [20]. For a moving target with linear range
migration, these algorithms achieve satisfactory antinoise performance, parameter estimation accuracy,
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and detection ability with reasonable computational cost. Nevertheless, they may suffer from
integration performance degradation due to ignoring the effects of QRM and DFM caused by the
target’s acceleration.

To address these issues, many advanced methods have been recently proposed. They can be
roughly divided into three categories.

(a) Radon transform-based algorithms, such as generalized Radon Fourier transform (GRFT) [21],
Radon-fractional Fourier transform (RFRFT) [22], and Radon-Lv’s Distribution (RLVD) [23–26].
These kinds of algorithms implement phase compensation and parameter estimation by searching
the maneuvering target motion trajectory. Although they can obtain coherent integration
under a low signal-to-noise ratio (SNR), the huge computational load seriously limits their
practical application.

(b) KT based algorithms, such as second-order keystone transform (SoKT) [27], Doppler keystone
transform (DKT) [28], keystone-Lv’s distribution (KT-LVD) [29], and so on. The KT is used to
correct the QRM blindly, which reduces the calculation cost to a certain extent, but it still needs to
use parameter searching to eliminate the Doppler ambiguity.

(c) Correlation-based algorithms: The representative adjacent cross-correlation function and
Lv’s distribution (ACCF-LVD) algorithm proposed in References [30–32] reduces the
migration order by ACCF and quickly estimates the motion parameters without any
searching procedure, which greatly reduces the computational burden and benefits practical
applications. Unfortunately, this method is only effective when the input SNR is high [33].
The three-dimensional scaled transform (TDST) method was then presented to realize coherent
integration and motion parameters estimations for maneuvering targets under a low SNR
background [34]. This method eliminates the coupling effectively among spatial frequency,
slow time, and time delay. However, the complex three-dimensional transform is usually less
suitable for realistic applications.

Aiming to realize the coherent integration of radar high-speed maneuvering targets with low
computational complexity, we propose a novel frequency-domain second-order phase difference
(FD-SoPD) algorithm in this paper. First, the SoPD is used in the spatial frequency domain to eliminate
the impact of acceleration. Then, we can simultaneously estimate the velocity and acceleration from the
peak position, followed by phase compensation and coherent integration. The proposed technique has
the following contributions: (a) It reduces the signal from three to two dimensions, thus avoiding the
complex operation of TDST; (b) the target motion parameters can be easily estimated by FFT without
any searching process; (c) the phase difference eliminates the Doppler ambiguity, thus the high speed
of target can be accurately estimated; (d) it achieves a good balance between the computational cost
and detection ability. Finally, we present both simulated and experimental data to demonstrate the
effectiveness of the proposed method.

The remainder of this paper is organized as follows. In Section 2, the signal model for the
maneuvering target is established. In Section 3, we deduce the principle of FD-SoPD in detail
and discuss the situations of single target and multi-targets, respectively. Section 4 analyses the
computational burden. In Section 5, we evaluate the performance via several numerical experiments.
Finally, conclusions are drawn in Section 6.

2. Signal Model and Problem Formulation

Suppose the radar transmits a linear frequency modulated (LFM) signal, which can be expressed as:

st
(
t̂
)
= rect

(
t̂

Tp

)
exp

(
j2π fc t̂ + jπγt̂2

)
(1)
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where,

rect
(

t̂
Tp

)
=

{
1,
∣∣t̂∣∣ < Tp/2

0,
∣∣t̂∣∣ > Tp/2

(2)

is the rectangular window function, and t̂ is the fast time. Tp, fc and γ indicate the pulse width,
carrier frequency, and frequency modulation rate, respectively. Assume that there are K targets in the
scene of radar observation. During the accumulation time, the distance between the maneuvering
target and radar can be approximated as second order, i.e.,

Ri(tm) = ri + vitm + ait2
m/2 (3)

where tm = m/PRF is the slow time, m and PRF denote the transmitted pulse number index and the
pulse repetition frequency (PRF). ri, vi, and ai are respectively the initial slant range, radial velocity,
and acceleration of the ith target.

Ignoring the influence of noise, the received signal of K targets after down conversion can be
expressed as [35]:

sr
(
t̂, tm

)
=

K

∑
i=1

Ar,irect
(

t̂− 2Ri(tm)/c
Tp

)
exp

{
−j

4π fcRi(tm)

c

}
exp

{
jπγ

(
t̂− 2Ri(tm)

c

)2
}

(4)

where Ar,i is the target reflectivity, and c is the light speed.
After pulse compression, the radar echoes are written as:

sc
(
t̂, tm

)
=

K

∑
i=1

Ac,isinc
[

B
(

t̂− 2Ri(tm)

c

)]
exp

{
−j

4π fcRi(tm)

c

}
(5)

where Ac,i denotes the amplitude after compression and B = γTp is the bandwidth of
transmitted signal.

Substituting Equation (3) into Equation (5), we obtain:

sc
(
t̂, tm

)
=

K

∑
i=1

Ac,isinc

[
B

(
t̂−

2
(
ri + vitm + ait2

m/2
)

c

)]
exp

{
−j

4π fc
(
ri + vitm + ait2

m/2
)

c

}
(6)

As can be seen from Equation (6), the signal envelope indicates the target range, which changes
nonlinearly with the slow time. When the offset exceeds the range resolution ∆r = c/2B, the LRM
will occur. If the target has a large acceleration, the QRM can be seen in the envelope. In this case,
the conventional MTD is invalid. In addition, the phase in Equation (6) indicates a linear change in the
Doppler frequency of the ith target, i.e.,

fd,i =
2
λ

d
(
ri + vitm + ait2

m/2
)

dtm
=

2vi + 2aitm

λ
(7)

where λ = c/ fc is the wave length. Similarly, when the offset exceeds a Doppler resolution, DFM would
occur and defocus the target energy in the Doppler domain. Moreover, for high-speed targets, we often
have fd,i � PRF, which induces the Doppler ambiguity and makes it hard to estimate the target’s
velocity. Therefore, the coherent accumulation of high-speed maneuvering targets can only be achieved
by effectively eliminating the LRM, QRM, and DFM.
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3. The Principle of the FD-SoPD

3.1. FD-SoPD with Mono-Target

According to Equation (6), the compressed signal of the ith target is

sc
(
t̂, tm

)
= Ac,isinc

[
B

(
t̂−

2
(
ri + vitm + ait2

m/2
)

c

)]
exp

{
−j

4π fc
(
ri + vitm + ait2

m/2
)

c

}
(8)

Performing the Fourier transform (FT) along the t̂ axis, we obtain the spatial spectrum of the
signal, i.e.,

S( fr, tm) = A fr ,irect
(

fr
B

)
exp

(
−j 4π( fr+ fc)Ri(tm)

c

)
= A fr ,irect

(
fr
B

)
exp

{
−j4π

( fr+ fc)
c
(
ri + vitm + ait2

m/2
)} (9)

where fr is the frequency of the spatial harmonic from the spatial spectrum of the fast time signal
record, and A fr ,i is the amplitude of the spatial harmonic obtained by FT of the fast time signal record.

As shown in Equation (9), the coupling between fr and tm (or t2
m) is the fundamental cause of

LRM or QRM. Moreover, the existence of t2
m broadens the Doppler spectrum and makes the signal

energy defocused. If the velocity vi and acceleration ai are accurately estimated, it is easy to perform
phase compensation and coherent integration.

The proposed FD-SoPD is defined as:

RSoPD(tm, τ, τ1; fr) = S
(

fr; tm +
τ

2

)
S∗
(

fr; tm −
τ

2

)[
S
(

fr; tm +
τ1

2

)
S∗
(

fr; tm −
τ1

2

)]∗
(10)

where τ and τ1 are two lag time variables. Substituting Equation (9) into Equation (10) yields:

RSoPD( fr, tm, τ; τ0) =
∣∣∣A fr ,i

∣∣∣4rect
(

fr
B

)
exp

[
j4π

fr+ fc
c vi(τ1 − τ)

]
× exp

[
j4π

fr+ fc
c aitm(τ1 − τ)

] (11)

When τ and τ1 have fixed nonzero lag time difference, the coupling between τ and τ1 will be
eliminated, i.e.,

2τ0 = τ1 − τ (12)

where τ0 is the fixed lag time. Equation (11) can be further expressed as:

RSoPD( fr, tm, τ; τ0) =
∣∣∣A fr ,i

∣∣∣4rect
(

fr
B

)
exp

(
j8π

fr+ fc
c viτ0

)
× exp

(
j8π

fr+ fc
c aiτ0tm

) (13)

As shown in Equation (13), three axes, fr, tm and τ, exist in RSoPD( fr, tm, τ; τ0). However, the signal
energy is constant along the τ axis, and thus can be accumulated coherently by the addition operation
as follows:

RA( fr, tm; τ0) = ADDτ [RSoPD( fr, tm, τ; τ0)]

= Gm

∣∣∣A fr ,i

∣∣∣4rect
(

fr
B

)
exp

(
j8π

fr+ fc
c viτ0

)
exp

(
j8π

fr+ fc
c aiτ0tm

) (14)

where ADDτ(·) is the addition function along the τ axis and Gm denotes the corresponding
integration gain.

Remark 1. From Equation (14), we may find three features of the FD-SoPD. (a) The signal is reduced from three
to two dimensions, which avoids the multidimensional scaled transform in TDST algorithm. (b) The QRM and
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DRM are simultaneously eliminated. (c) Equation (14) is equivalent to a uniform motion model, whose velocity
is −2aiτ0. Thus, the Doppler ambiguity is eliminated. If the envelope migration caused by the velocity −2aiτ0

exceeds a range cell, the KT is needed, i.e.,

( fr + fc)tm = fcτm (15)

where τm denotes the scaled slow-time variable.

After performing the KT on Equation (14), we have:

RA( fr, τm; τ0) = Gm

∣∣∣A fr ,i

∣∣∣4rect
(

fr
B

)
exp

(
j8π

fc
c viτ0

)
× exp

(
j8π

fr
c viτ0

)
exp

(
j8π

fc
c aiτ0τm

) (16)

Applying the FT with respect to fr and τm, we get:

SF
(
t̂, fτm

)
= FTτm

{
FT fr [RA( fr, τm; τ0)]

}
= AF,i exp

(
j 8π fcviτ0

c

)
sinc

[
B
(

t̂ + 4viτ0
c

)]
sinc

[
CI
(

fτm − 4aiτ0
λ

)] (17)

where AF,i is amplitude after two-dimensional FT, fτm is the frequency with respect to τm, and CI
denotes the coherent integration time.

From Equation (17), we can simultaneously estimate the velocity vi and acceleration ai of the ith
target, i.e., (

v̂i =
−ct̂max

4τ0
, âi =

λ fτm,max

4τ0

)
(18)

Notice that the fixed lag time constant τ0 is important in the implementation of the SoPD. A large
fixed lag time τ0 will improve the parameter estimation accuracy, whereas spectrum aliasing may occur.
Therefore, the compromise consideration usually chooses τ0 < Ta/4, where Ta is the observation time.

Utilizing the estimated parameters, we can construct the phase compensation function to
compensate the LRM, QRM, and DFM in Equation (9)

Hcom( fr, tm) = exp
(

j4π fr
vitm + ait2

m/2
c

)
exp

(
j4π fc

ait2
m/2
c

)
(19)

Finally, the signal energy will be integrated by the IFT and the FT operations,

E
(
t̂, fd

)
= FTtm

{
IFT fr [S( fr, tm)Hcom( fr, tm)]

}
= AE,isinc

[
B
(

t̂− 2ri
c

)]
δ( fd + fd0,i)

(20)

where fd is the Doppler frequency with respect to tm, and fd0,i is the Doppler frequency of the target.
In Equation (20), the signal energy of a high-speed maneuvering target is integrated into a single

peak in the range-Doppler domain. The peak position is (2ri/c,− fd0,i) and the peak value is∣∣E(2ri/c,− fd0,i)
∣∣. Here, the constant false alarm rate (CFAR) [36] technique can be used for the

target detection, i.e., ∣∣E(2ri/c,− fd0,i)
∣∣ H1
≷
H0

η (21)

where η is the CFAR threshold. If
∣∣E(2ri/c,− fd0,i)

∣∣ is larger than the threshold, there will be a moving
target. Otherwise, no target is detected.
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Remark 2. Different from the Radon transform based algorithms in [13,21–23], the proposed FD-SoPD
method avoids the brute-force searching procedure of unknown motion parameters. In addition, it can be easily
implemented by FFT and IFFT, which significantly reduces the computational complexity.

In the following, we will give an example to demonstrate how the FD-SoPD works to accomplish
target motion parameter estimation and coherent integration.

Example 1. We use an ideal maneuvering point target in this example. The parameters of frequency-modulated
continuous-wave (FMCW) radar are set as: The carrier frequency fc = 1 GHz, the bandwidth B = 100 MHz,
the sampling frequency fs = 2 MHz, pulse repetition frequency PRF = 128 Hz, and the number of integration
pulses M = 256 and τ0 = Ta/5. The motion parameters of the maneuvering point target are: Ar,i = 1,
ri = 3km, vi = 15 m/s, ai = 1m/s2. Simulation results are shown in Figure 1.
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Figure 1. Simulation results of Example 1. (a) The result of pulse compression; (b) the result of the
frequency-domain second-order phase difference (FD-SoPD); (c) velocity–acceleration distribution;
(d) the result of coherent integration.

Figure 1a shows the result of pulse compression, where serious LRM occurs due to the target’s
high speed and the radar’s high resolution. Figure 1b shows the result of FD-SoPD transform. It is
obvious that, after the FD-SoPD with respect to slow time, the envelope migration is effectively
eliminated, and the target energy is located in the same range cell. Performing the FT with respect to
τm, we can get the velocity-acceleration distribution, as shown in Figure 1c. The target energy is well
accumulated as one peak, and we can estimate v̂i = 15.01 m/s and âi = 1.031m/s2 from its position.
Finally, coherent integration is easily accomplished with FFT, and the result is given in Figure 1d.
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3.2. FD-SoPD with Multi-Targets

In this subsection, we will analyze the performance of FD-SoPD under multi-targets in detail.
Assume that there are K maneuvering targets in the scene of radar observation. The compressed signal
can be expressed as Equation (6). Accordingly, the signal in the spatial frequency domain is:

S( fr, tm) =
K
∑

i=1
A fr ,irect

(
fr
B

)
exp

(
−j 4π( fr+ fc)Ri(tm)

c

)
=

K
∑

i=1
A fr ,irect

(
fr
B

)
exp

{
−j4π

( fr+ fc)
c
(
ri + vitm + ait2

m/2
)} (22)

Substituting Equation (22) into Equation (10) along the slow time, we obtain the FD-SoPD of S( fr, tm)

RSoPD( fr, tm, τ; τ0) = Rauto( fr, tm, τ; τ0) + Rcross( fr, tm, τ; τ0) (23)

where Rauto( fr, tm, τ; τ0) and Rcross( fr, tm, τ; τ0) denote the auto-terms and cross terms, and can be
written as

Rauto( fr, tm, τ; τ0) =
K
∑

i=1

∣∣∣A fr ,i

∣∣∣4rect
(

fr
B

)
exp

(
j8π

fr+ fc
c viτ0

)
× exp

(
j8π

fr+ fc
c aiτ0tm

) (24)

Rcross( fr, tm, τ; τ0) = R2 + R3 + R4 + R5 (25)

The summation R5 can be further expanded as the following three parts:

R5 = R6 + R7 + R8 (26)

The detailed expressions of Ri(i = 2, 3 · · · , 8) are given in the Appendix A.
After the addition, KT and two-dimensional FT, the velocity and acceleration of target will be

estimated simultaneously, i.e.,

SF
(
t̂, fτm

)
= FTτm

{
FT fr{KT{ADDτ [RSoPD( fr, tm, τ; τ0)]}}

}
(27)

According to the specific motion of the maneuvering target, we consider the cross-terms resulting
from the following two cases.

Case 1. The acceleration of any two targets is different, i.e., ai 6= aj, ∀i, j = 1, 2, . . . , K, i 6= j. In this case,
Rauto has a similar form with Equation (13), which can be integrated after FFT. R2 has the linear term of τ and
the coupling term between tm and τ, which cannot be accumulated in the addition operation and FFT of Equation
(27). R3,R4, R7 and R8 have the quadratic term τ2 and a coupling term between tm and τ, and thus cannot
be accumulated as well. It is known from Equation (34) that R6 has a symmetric property about τ, which will
become a sinusoidal oscillation term after the addition in Equation (27). Therefore, the energy of R6 will be
smeared after performing two-dimensional FFT. In summary, the cross terms can be ignored compared to the
auto-terms. Here, we give an example to illustrate the discussion of Case 1.

Example 2. In this example, we use two maneuvering targets designated as Tr1 and Tr2, respectively.
Radar parameters are the same as those in Example 1. Target motion parameters are set as: Ar,1 = 1, r1 = 3km,
v1 = 15 m/s, a1 = 1m/s2 for target Tr1; Ar,2 = 1, r2 = 3.2km, v2 = −12 m/s, a2 = −0.6m/s2 for target Tr2.

Figure 2a is the result of pulse compression. Figure 2b gives the result of FD-SoPD. It is obvious
that the auto-terms are corrected into beelines, while the cross-terms cannot be corrected. Thus, after the
addition and two-dimensional FT, only the auto-terms are accumulated into two peaks, as shown in
Figure 2c. We can estimate the velocity and acceleration of targets as v̂1 = 15.01 m/s , â1 = 1.067m/s2 ,
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v̂2 = −12 m/s , â2 = −0.5822m/s2 . After compensating the RM, QRM, and DFM with the estimated
motion parameters, these two targets are coherently integrated, as shown in Figure 2d,e.
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Figure 2. Simulation results of Example 2. (a) The result of pulse compression; (b) the result of
FD-SoPD; (c) the velocity-Acceleration distribution; (d) coherent integration result of Tr1; (e) coherent
integration result of Tr2.

Case 2. Some of the accelerations coincide, i.e., ai = aj or ci2 = cj2, ∃i, j = 1, 2, . . . , K, i 6= j. In this case,
the coupling term between tm and τ in R2 is eliminated, but there are still linear terms of τ. The energy of R2

will be accumulated only when ci1 = cj1, which means the two targets have the same velocity and acceleration.
i.e., R1 = R2. R3, R4 and R8 have the quadratic term τ2 and coupling term between tm and τ, and thus cannot
be accumulated. R7 has linear terms of τ and a random initial phase regarding target reflectivity and the initial
range, which defocuses the target energy.



Electronics 2019, 8, 287 9 of 19

As for R6, when ci2 = cj2, it can be simplified as:

R6 =
K

∑
i=1

K

∑
j=1

i 6=j

|Ai|2
∣∣Aj
∣∣2 exp

{
j
4π

ε

[(
ci1 + cj1

)
τ0 + 4ci2τ0tm

]}
(28)

Substituting Equation (28) into Equation (27), we can see that R6 can achieve energy accumulation,
and the peak position is in the middle of the auto-terms, that is, the acceleration is the same as the real
value, while the velocity is estimated as the average of the two targets.

Example 3. In this example, two maneuvering targets designated as Tr1 and Tr2 have the same acceleration.
Radar parameters are the same as those in Example 1. Target motion parameters are set as: Ar,1 = 1, r1 = 2.9km,
v1 = 15 m/s, a1 = 1m/s2 for Target Tr1; Ar,2 = 1, r2 = 3.1km, v2 = −15 m/s, a2 = 1m/s2 for target Tr2.

Figure 3a shows the target trajectories after pulse compression. Figure 3b is the result of FD-SoPD.
It is obvious that, in addition to the auto-terms, the cross term R6 is also corrected as a beeline,
which locates in the middle of them. Thus, the energy of R6 is accumulated into Peak 1 in Figure 3c,
and the auto-terms form Peak 2 and Peak 3. Moreover, the motion parameters of Peak 1 also confirm
the theoretical analysis in Case 2.
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Figure 3. Simulation results of Example 3; (a) the result of pulse compression; (b) the result of the
FD-SoPD; (c) the velocity-Acceleration distribution; (d) the coherent integration result with peak 1;
(e) Coherent integration result with peak 2; (f) the coherent integration result with peak 3.
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The next step is to determine whether all of these peaks are real maneuvering targets. After phase
compensation with Peak 1, the coherent integration result is shown in Figure 3d, where no target
will be detected by CFAR detection. Therefore, Peak 1 belongs to a cross-term peak. In contrast,
integration with Peak 2 or Peak 3 can both produce a single sharp peak in the range-Doppler domain.
Thus, Peak 2 and Peak 3 belong to the auto-term peaks. This also provides us with a method for
estimating the target motion parameters combined with CFAR detection. The detailed flowchart of the
FD-SoPD algorithm is given in Figure 4.
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4. Computational Burden Analysis of the FD-SoPD Algorithm

In this section, we will analyze the computational burden of the algorithm. The SCIFT [16],
TDST [34], and ACCF-LVD [30] are selected for comparisons.

We denote the number of range cells and pulses by Nr and M. For SCIFT, its main
procedures include the symmetric autocorrelation function (O(2Nr M log2 M)), the chirp-z based SCIFT
(O(3MNr log Nr)), and FFT along the lag time axis (O(Nr M log2 M)). Therefore, the computational
complexity is about O(3MNr(log2 M + log Nr)).

For TDST, to complete the two steps of scaled Fourier transform (SCFT), the computational
complexities are O

(
3Nr M2 log2 M

)
and O

(
3M2Nr log2 Nr

)
, respectively. Thus, the total computational

complexity is in the order of O
(
3Nr M2 log2 Nr M

)
.

For ACCF-LVD, its main procedures include ACCF operation (O(2MNr log2 Nr)) and
chirp-z based LVD algorithm (O

(
3M2 log2 M

)
). Therefore, its computational cost is about

O
(
2MNr log2 Nr + 3M2 log2 M

)
.

The implementation of the proposed algorithm needs the calculation of
RSoPD( fr, tm, τ; τ0) (O

(
2M2Nr

)
), chirp-z based KT (O(3Nr M log2 M)), and two dimensional

FFT (O(MNr(log2 Nr + log2 M))). Therefore, the overall computational cost of the proposed method
is in the order of O

(
2M2Nr

)
.

The computational complexities are listed in Table 1. Under the assumption of Nr = M,
Figure 5 shows the computational complexities of the above four methods. Obviously, the TDST
takes too much time and is not suitable for real-time processing. Table 1 also gives the detailed values
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of computational resources. The TDST takes up much more memory to store the three-dimensional
matrix [34]. In comparison, the SCIFT, ACCF-LVD, and FD-SoPD show great advantages in this aspect.
Therefore, we could conclude that the proposed FD-SoPD cost moderates computational time and
resources, which helps practical applications.

Table 1. The computational burden comparisons of different algorithms.

Method Computational Complexity Time Cost (s) 1) Computational Resources

SCIFT O(3MNr(log2 M + log Nr)) 6.35 O(2MNr)
TDST O

(
3Nr M2 log2 Nr M

)
335.43 O

(
2M2Nr

)
ACCF-LVD O

(
2MNr log2 Nr + 3M2 log2 M

)
6.06 O(MNr)

FD-SoPD O
(
2M2Nr

)
12.24 O(MNr)

1) The main configuration of the computer. CPU: Intel Core i7-6700HQ 2.60 GHz; RAM: 16.00G; Operating System:
Windows 7; Software: Matlab 2015a.
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5. Numerical Results

In the section, we will give several numerical experiments to demonstrate the effectiveness of the
proposed algorithm. The simulation parameters are given in Table 2.

Table 2. Simulation parameters for the radar and target.

Parameters Value Parameters Value

Carrier frequency 1 GHz Bandwidth 100 MHz
Sample frequency 2 MHz PRF 128 Hz

Pulse duration 2 ms Pulse number 256
Initial slant range 3 km Radial velocity 15 m/s

Radial acceleration 1 m/s2 - -

5.1. Coherent Integration Performance

In this part, the coherent integration performance of the proposed method for a maneuvering
target is evaluated. We choose the representative MTD, SCIFT, TDST, and ACCF-LVD algorithms
as references. Complex zero-mean white Gaussian noise is added to radar echoes, and the SNR
is set to be 5dB after compression. Figure 6a shows the target trajectory, and the result of MTD is
given in Figure 6b. It is obvious that the MTD cannot integrate the target energy due to ignoring
the LRM, QRM, and DFM. The velocity estimation and coherent integration results of the SCIFT
are shown in Figure 6c,d, respectively. Unfortunately, the SCIFT is also invalid due to ignoring the
target’s acceleration.
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Figure 6. Coherent integration for a maneuvering target. (a) The result after pulse compression; (b) the
integration result of moving target detection (MTD); (c) the velocity estimation result of the scaled
inverse Fourier transform (SCIFT); (d) the integration result of the SCIFT.

Figure 7a shows the integration result of LVD, where no significant peak can be found.
Thus, the ACCF-LVD cannot integrate target energy in such a low SNR, as shown in Figure 7b.
Figure 7c–f give respectively the parameter estimation and integration results of the FD-SoPD and
TDST. Although both algorithms can accurately estimate the target motion parameters and perform
coherent accumulation, the proposed algorithm has much more advantages in computational efficiency
and resources.
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Figure 7. Integration performance comparison. (a) Parameter estimation result of LVD; (b) integration
result of the ACCF-LVD; (c) parameter estimation result of the proposed algorithm; (d) integration
result of the proposed algorithm; (e) parameter estimation result of the TDST; (f) integration result of
the TDST.

Detailed results of parameter estimation and target detection are given in Table 3.

Table 3. Comparisons of simulated parameter estimation and target detection results.

Initial Range (km) Velocity (m/s) Acceleration (m/s2) Detection Result

MTD 2.95 −1.65 - No target
SCIFT 3.07 655.72 - No target

ACCF-LVD 2.88 1043.84 11.386 No target
Proposed 3.00 15.01 1.031 Detected

TDST 3.00 15.06 1.012 Detected

5.2. Detection Performance

The detection ability of the above five algorithms is evaluated combined with the CFAR detector.
Assume the radar data is contaminated by the zero-mean white Gaussian noise and input SNRs after
pulse compression are set as [-20:1:20] dB. 200 trials are done for each SNR value. The false alarm rate
is set as Pf a = 10−6. Figure 8 shows the simulation result, where one can see that the MTD and SCIFT
have the poorest detection probability due to ignoring the QRM or DFM. The adjacent cross-correlation
function suffers more energy loss than the SoPD in the slow time domain [7]. Thus, the required
SNR of FD-SoPD is about 4 dB less than ACCF-LVD. However, compared with TDST, the proposed
algorithm suffers about 7 dB loss due to two-order bilinear transformation in SoPD. Considering the
advantages of FD-SoPD, we can conclude that the proposed coherent detection algorithm achieves
a good balance between the computational burden and detection ability.
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5.3. Parameter Estimation Performance

We also evaluate the motion parameters estimation performance of FD-SoPD. The SNR after range
compression varies from −15dB–20dB. The parameters for the radar and target are given in Table 2.
two-hundred Monte Carlo simulations are performed for each SNR value. The root mean square error
(RMSE) is utilized as a benchmark. The ACCF-LVD and TDST, which can estimate the velocity and
acceleration of target, are selected for comparisons. Figure 9a,b show the RMSEs of the estimated
velocity and acceleration. It can be seen that the TDST has the best estimation performance at the cost
of huge computational burden. The performance of the proposed method is about 4dB better than
those of ACCF-LVD on the input SNR threshold. However, compared with TDST, the FD-SoPD suffers
from about 8dB SNR loss due to the constant delay in Equation (12). Overall, the proposed technique
strikes a better balance between parameter estimation performance and computational cost.
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Figure 9. Motion parameters estimation performance of the three methods. (a) Estimation of the root
mean square error (RMSE) of velocity; (b) estimation RMSE of acceleration.

5.4. Experimental Data Processing

In this subsection, we adopt the measured data of a DJI Phantom 3 commercial UAV to
demonstrate the proposed FD-SoPD method. The data was collected in March 2017 by the National
University of Defense Technology, Hunan, China. Figure 10a–c show the experimental scene,
FMCW radar system, and radar antennas, respectively. Radar parameters are given in Table 4.
Figure 10d shows the target trajectory after pulse compression, where the UAV moves across 7
range cells during the observation time. Figure 10e gives the parameter estimation result, where we
could read the velocity and acceleration of the UAV, i.e., v̂ = 1.217 m/s and â = 0.2145m/s2.
Finally, coherent integration of FD-SoPD can be obtained with the estimated velocity and acceleration,
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as shown in Figure 10f. At the same time, the integration results of SCIFT and MTD are also
given in Figure 10g,h. Due to ignoring the LRM, QRM, or DFM, the target energy is distributed
in the range-Doppler domain. However, the proposed method can estimate the acceleration of the
target accurately. Thus, a well-focused peak is obtained, which is beneficial to target detection.
Detailed results of parameter estimation and coherent integration are given in Table 5.
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Figure 10. Experimental data processing results. (a) The experimental scene; (b) the FMCW radar
system; (c) the radar antennas; (d) moving trajectory of the UAV; (e) parameter estimation result of
FD-SoPD; (f) the coherent integration result of FD-SoPD; (g) the coherent integration result of the MTD;
(h) the coherent integration result of the SCIFT.

Table 4. Frequency-modulated continuous-wave (FMCW) radar parameters.

Radar Parameter Value Radar Parameter Value

Carrier frequency 9.5 GHz PRF 50 Hz
Bandwidth 1 GHz Sampling frequency 1 MHz
Pulse width 0.0102 s Coherent time 0.92 s

Transmit power 25 dbm Weight 7 kg
Radar length 35 cm Radar width 24 cm
Radar height 20 cm - -

Table 5. Comparisons of experimental parameter estimation results.

Range Cell Velocity (m/s) Acceleration (m/s2) Peak Value

MTD 207 −0.279 - 2.573× 107

SCIFT 204 −0.283 - 4.013× 107

FD-SoPD 204 1.217 0.2145 8.089× 107

6. Conclusions

A frequency-domain second-order phase difference method is proposed to achieve coherent
integration and parameter estimation. First, the FD-SoPD is performed to eliminate the QRM, DFM,
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and Doppler ambiguity simultaneously. After that, parameter estimation and coherent integration are
accomplished. Compared with ACCF-LVD, the FD-SoPD could obtain better detection performance
with moderate computation complexity. Simulations and experimental data processing results
demonstrate the effectiveness of the proposed algorithm.

Author Contributions: K.J., T.L. and Y.Z. conceived and designed the experiments; G.L. performed the
experiments; Y.W. analyzed the data and contributed analysis tools; K.J. and Y.W. wrote the paper.

Funding: This research received no external funding.
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real radar data processing.
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Appendix A

In this appendix, we will give the expressions of cross terms R2-R8. In order to simplify the
expression form, we define

ε = c/( fr + fc)

ci1 = vi
ci2 = ai/2

Ai = A fr ,irect
(

fr
B

)
exp

(
−j4π

( fr+ fc)
c ri

) (A1)

Then the cross terms R2-R8 can be written as follows.
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