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Abstract: The demand for increased capacity and link availability for mobile communications requires
the utilization of higher frequencies, such as millimeter waves at extremely high frequencies (EHFs)
above 30 GHz. In this regime of frequencies, the waves are subjected to high atmospheric attenuation
and dispersion effects that lead to a degradation in communication reliability. The fact that solid-state
millimeter and sub-millimeter wave sources are producing low power calls for effective signaling
utilizing waveforms with a low peak to average power ratio (PAPR), such as constant envelope (CE)
modulation. The CE techniques present a PAPR of 0 dB resulting in peak power transmission with
high energy efficiency. The study of the performances of constant envelope orthogonal modulation
techniques in the presence of co-channel interference is presented. The performance is evaluated in
terms of the average symbol error rate (SER) using analytical results and simulations. The theory
is carried out for the CE-M-ary time orthogonal (CE-MTO) and CE-orthogonal frequency division
multiplexing (CE-OFDM), demonstrating comparable performances while leading to a simpler
implementation than that of the CE-OFDM.

Keywords: co-channel interference (CCI); constant envelope OFDM (CE-OFDM); constant envelope
MTO (CE-MTO); millimeter wave communications

1. Introduction

Wireless communications require more bandwidth because of the necessity of the capacity
increasing, the availability, and the reliability. As a result, new bands need to be searched for in the
electromagnetic spectrum, reaching millimeter and sub-millimeter wavelengths. Recent technological
developments have made extremely high frequencies (EHF) a candidate for wireless applications,
such as for the fifth generation (5G) of cellular communications (for which bands in the 24.25–29.5 GHz
and 37–43.5 GHz are already allocated [1]), satellite communications [2,3], high resolution radars [4,5],
and remote sensing [6,7]. The realization of wireless communications in the millimeter wavelength
systems is becoming commercial, compact, and less expensive [8,9].

However, the fact that the atmospheric medium is not entirely transparent to millimeter waves
(MMWs) requires careful considerations regarding the frequency selective absorption and dispersion
effects emerging in this band [10]. Moreover, low power transmissions and reduced receiver sensitivities
lead to further degradation in the link performances [11]. These phenomena also apply to radars and
remote sensing systems operating in the millimeter and Terahertz frequencies [12].

While the bands in the ultra-high frequency (UHF) spectrum are fully used, millimeter waves
(the EHF spectrum) are relatively free of users, and broad bands of frequencies can be allocated
for wireless communication applications. With the demand for more spectrums for the mobile
communication infrastructure, additional bands within the millimeter waves regime are allocated
for the future 5G of the cellular networks [13]. The extension of the spectrums enables ultra-reliable
low-latency communication (URLLC) broadband services, with faster access and an increased capacity.
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The short wavelength of the millimeter waves enables the utilization of small equipment and antennas.
The MMW cell will be a few hundredths of a meter, having multiple antennas communicating in a
massive multiple-input multiple-output (MIMO) arrangement [14,15]. Beamforming techniques will
allow for the operation of multiple antennas to direct the transmission to the operators [16–18].

The power produced by solid-state devices is limited to several tens of milli-watts in MMWs.
This limitation calls for effective signaling utilizing constant envelope (CE) waveforms with a low peak
to average power ratio (PAPR). The utilization of constant envelope techniques enables a non-linear
class of operation, resulting in a better efficiency of energy consumption. This is particularly important
for battery-powered mobile appliances because of their limited power resources [19–21].

Constant envelope (CE) orthogonal signaling is proposed as an efficient modulation technique for
wireless communication systems [22,23]. The peak to average power ratio (PAPR) in a CE waveform is
0 dB. The popular orthogonal frequency division multiplexing (OFDM) signaling, which is commonly
used in communications, presents envelope fluctuations, resulting in a high PAPR [24].

Several CE techniques have been suggested. In the literature [25,26], the information-bearing
message signal is transformed into a constant envelope waveform by the utilization of the phase
modulation. In the CE-OFDM discussed in the literature [25], the OFDM waveform is used to phase
modulate the carrier, while in our proposed CE-M-ary time orthogonal (CE-MTO) technique described
in [26], orthogonal waveforms in the time domain were used. In our previous work [26], we showed
that the implementation of the CE-MTO technique is expected to be simpler than that of the CE-OFDM,
and that the symbol error rate (SER) performances in the presence of additive white gaussian noise
(AWGN) and fading channels are comparable for both techniques.

Interference is a significant challenge of wireless communications that has a detrimental effect
on the overall link performances. Although it cannot be completely mitigated, the interference effect
can be reduced to a certain extent. Several types of interferences exist [27], one of which is co-channel
interference (CCI) [28]. It occurs when the interfering signal overlaps with the desired signal in the
frequency domain. In order to mitigate the CCI, many methods have been proposed [29–32]. Channel
coding is a traditional and effective way to reduce the CCI, and also provides some robustness [33].

In this paper, we examine the symbol error rate (SER) in the presence of CCI and AWGN, for both
CE-OFDM and CE-MTO techniques. An analytical expression is derived, from which one can estimate
the degradation caused by the CCI in an MMW channel employing constant envelope signaling.

In Section 2, we review the link budgets for the required signal and the interfering one, both
operating in the millimeter wave regime. Section 3 presents an analytic study of the detection for a
constant envelope modulated signal in the presence of co-channel interference. In Section 4, additive
white Gaussian noise is added to the analysis for calculating the symbol error rate. The simulation
results are given in Section 5 for different CCI scenarios. A comparison is made with the results
obtained from the analytical calculations. Section 6 summarizes and concludes the paper.

2. Communication Links in Millimeter Waves

When the electromagnetic radiation in the millimeter wavelengths and terahertz frequencies
regime propagates through the atmosphere, it experiences selective molecular absorptions [34–40].
Several empirical and analytical models have been suggested for estimating the millimeter and
sub-millimeter wave transmission of the atmospheric medium. The transmission characteristics of
the atmosphere at the EHF band were calculated using the millimeter propagation model (MPM),
developed by Liebe [41–44]. The inhomogeneous atmospheric transmission affects the amplitude and
phase of the signals transmitted in the millimeter and sub-millimeter wavelengths [45].

The transmission characteristics of the atmosphere are shown in Figure 1. In this example, graphs
are drawn for several values of relative humidity (RH = 0%, 25%, 50%, 75%, and 100%) at sea level,
assuming clear skies and no fog or rain. The attenuation factor, α( f ) in dB/km, is drawn in Figure 1a,
revealing absorption peaks at 22 and 183 GHz, where the resonance absorption of water (H2O) occurs;
as well as absorption peaks at 60 and 119 GHz, due to the absorption resonances of oxygen (O2) [46–48].
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A minimum attenuation is obtained at atmospheric transmission “windows” in the Ka- (35 GHz) and
W-bands (94 GHz), as well in the vicinity of 130 and 220 GHz [37]. The gray bands represent the
spectrum allocated for the 5G. In Figure 1b, we show the incremental group delay (in ps/km) caused
by the phase variation in the frequency. The atmospheric transfer characteristics can be calculated for
any value of the relative humidity (RH).
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Figure 1. The effect of the atmosphere on (a) attenuation, α( f ) in dB/km, and (b) group delay increment,
∆τd( f ) in ps/km.

When carrying out a link budget, the atmospheric attenuation must be taken into account.
In millimeter wave links, the antennas are usually directive, resulting mainly in line-of-sight (LOS)
paths. When a transmitter (T; with an effective isotropic radiated power (EIRPT)) and an interferer (I;
with EIRPI) transmit a signal to a receiver in their LOS (see Figure 2), the corresponding power from
the transmitting station is as follows:

PSignal = GR

(
λ

4πdTR

)2
· e−2α( f )dTR · EIRPT (1)

and from the interferer station, it is as follows:

PInter f erence = GR

(
λ

4πdIR

)2
· e−2α( f )dIR · EIRPI (2)

where GR is the receiver antennas gain, λ = c/ f is the wavelength of the transmitted signal (c is the
speed of light, f is the frequency), dTR and dTI are the distances between the transmitter or interferer
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to the receiver, respectively, and 2α( f ) is the power attenuation factor caused by the atmospheric
medium. The signal to interference power ratio at the receiver site is given by the following:

SIR =
PTransmitter
PInter f erence

=

(
dIR

dTR

)2

· e−2α·(dTR−dIR) ·
EIRPT

EIRPI
(3)
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where its phase is as follows: 

Figure 2. Illustration of the signal transmission in the presence of interference. EIRP—effective isotropic
radiated power.

3. Error Rate Degradation in the Presence of Co-Channel Interference

Co-channel interference occurs between two transmitters that are using the same frequency. The
co-channel interference can severely affect the performance of the symbol error rate (SER). In this section,
the SER performance properties of the CE-MTO and the CE-OFDM in the presence of co-channel
interference are studied.

The signal arriving at the receiver from the transmitter is a constant envelope phase-modulated
waveform. Its complex amplitude at baseband is given by the following [25]:

s(t) = Ace jφ(t) (4)

where j =
√
−1 and Ac is the (constant) signal envelope. φ(t) is the information-bearing message

phase. Assuming an in-band interference, its respective complex amplitude is as follows:

ι(t) =
Ac
√

SIR
e jθ(t) (5)

with the power given by the variance, as follows:

E
[
ι2(t)

]
=

A2
c

SIR
(6)

where we define SIR as the signal to interference power ratio at the receiver site, as in Equation (3).
The interfering signal phase, θ(t), is a stochastic process that is uniformly distributed (−π,π). Both the
signal and interference are received simultaneously, resulting in a composite waveform, written as
follows:

1 
 

 
(7)



Electronics 2019, 8, 1521 5 of 13

where its phase is as follows:

φ̂(t) = arctan
[

Q(t)
I(t)

]
= arctan


sin[φ(t)] + 1

√
SIR

sin[θ(t)]

cos[φ(t)] + 1
√

SIR
cos[θ(t)]

. (8)

Note that when SIR→∞ , the resulted phase is φ̂(t) = φ(t), equal to that of the required signal,
as expected. In order to calculate the interference component in the phase, we assume φ(t) = 0. In this
case, the phase fluctuation due to the interferer is as follows:

ξ(t) = arctan

 sin[θ(t)]
√

SIR + cos[θ(t)]

. (9)

Further analysis considers the detection of orthogonal modulation techniques (CE-OFDM [25]
and CE-MTO [26] techniques). In the receiver (see Figure 3), after an analog to digital conversion,
the samples, r[n], are sent to the phase demodulator. The output of the phase demodulator in the
continuous-time presentation is φ̂(t) = φ(t) + ξ(t), where ξ(t) is the phase interference component
given by Equation (9). The amplitude is kept constant by a limiter. A set of matched filters calculate
the correlations, as follows:

Q[k] =
Nchip∑
n=1

φ̂[n]qk[n] =
Nchip∑
n=1

{
φ[n] + ξ[n]

}
qk[n] = S[k] + I[k] (10)

where φ[n] = 2πhC
{

N∑
k=1

Ik · qk[n]
}

, h is the modulation index, and C is a constant used to normalize the

variance of the resulted phase, namely: {Ik}
N
k=1 ∈

{
±1,±3, . . . ,±(M− 1)

}
, where M is the pulse-amplitude

modulation (PAM) constellation, Ik is the N real valued data symbols, and qk[n] is the discrete orthogonal
waveforms. In the CE-OFDM technique, qk[n] is the orthogonal subcarriers’ quadrature components,
while in CE-MTO qk[n] is the orthogonal series generated by the Hadamard matrix. S[k] is the signal
component, as follows:

S[k] =
Nchip∑
n=1

φ[n]qk[n] =
Nchip∑
n=1

2πhCx[n]qk[n] = 2πhC

 Nsa∑
n=1

qk
2[n]

Ik = 2πhCq̂Ik = dIk (11)

where d = 2πhCq̂, and for the CE-MTO case, C =
√

3/N(M2 − 1) and q̂ = Nchip, where Nchip
is the number of chips contained in the orthogonal waveforms, qk[n]. For the CE-OFDM case,

C =
√

6/N(M2 − 1) and q̂ =
Nchip

2 , where Nchip = NDFT is the number of points in the inverse discrete
Fourier transformation (IDFT). The interference component in Equation (10) is as follows:

I[k] =
Nsa∑
n=1

ξ[n]qk[n]. (12)

As ξ[n] is the independent random values, the sum of Equation (12) makes I[k] approximately Gaussian,
having I[k] ∼ N

(
0, σ2

I

)
. Based on the literature [25], we may approximate SER as follows:

SER ≈ 2
(M− 1

M

)
Q
(

d
σI

)
(13)

where in our case, we have the following:
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σI =
√

q̂E[ξ2[n]] ≈

√
q̂

1
2A2

c
E
[
ι2[n]

]
. (14)

The substitution of Equation (6) in Equation (14), and σI and d in Equation (13), results, for both
CE-MTO and CE-OFDM, in the following:

SER ≈ 2
(M− 1

M

)
Q

2πh

√
6NchipSIR

N(M2 − 1)

. (15)
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A comparison is made between the analytical results obtained using Equation (15) and those
obtained from simulations of the CE-MTO and the CE-OFDM demodulation in the presence of external
interference. Figure 4 shows the graphs of the SER as a function of the SIR. The correlations between
the graphs are revealed. The graphs were drawn assuming Nchip = 16 chips for each of the N = 14
orthogonal waveforms. Several PAM constellation orders, M = 4, 8, and 16, wre considered. In order
to keep the bandwidth restrained, the modulation index is set to 2πh = 0.4, 0.5, and 0.6.
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M = 4, 2πh = 0.4, 0.5, 0.6. CE-MTO—constant envelope M-ary time orthogonal; OFDM—orthogonal
frequency division multiplexing.

4. Performance of AWGN Channel in the Presence of CCI

In the presence of additive white Gaussian noise, n(t), in addition to the interference (see Figure 3),
the received signal can be written as follows:

r(t) = s(t) + ι(t) + n(t). (16)

Due to the fact that ι(t) and n(t) are independent random processes, that is, σ2
I+N

= σ2
I
+ σ2

N
, where the

AWGN standard deviation is based on the following [26]:

σN =

√√
q̂2

2 Eb
N0

N log2 M
. (17)

Here, Eb is the energy per bit of the transmitted signal and N0 is the power spectral density (PSD) of
the AWGN. In order to calculate the SER analytical expression of this new scenario, the expression of
(13) is used, leading to:

SER ≈ 2
(M− 1

M

)
Q

 d√
σ2

I
+ σ2

N

 = 2
(M− 1

M

)
Q

2πh

√√√√
6NchipSIR Eb

N0
log2 M

(M2 − 1)
( Eb

N0
N log2 M + NchipSIR

)
. (18)

A comparison is made between the analytical results obtained using Equation (18) and the
simulation results of the CE-MTO and the CE-OFDM techniques in the presence of external interference
and AWGN. Figure 5 shows the simulated results for the SER as a function of the Eb/N0. It is
noticeable that there is a high correlation between the simulated results for both modulation techniques
(CE-OFDM and CE-MTO).
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The graphs in Figure 5 have been created for N = 14 orthogonal waveforms, each containing
Nchip = 16 chips. The PAM constellation order is M = 4 and the modulation index is kept at 2πh = 0.6.
The signal to interference power ratio is assumed to be SIR = 15 dB. The “Analytical AWGN only”
curve refers to the analytical expression obtained in our previous work [26] in Equation (21) for the
case of the AWGN channel only. The “Analytical Interference only” and the “Analytical Interference
and AWGN” curves refer to Equations (15) and (18), respectively. Figure 5 shows that for the case of
SIR = 15 dB, M = 4, and 2πh = 0.6, the SER for the “Analytical Interference only” is approximately
equal to 0.025. Please note the “Analytical AWGN only” and the “Analytical Interference only” curves
function as an asymptote for the “Simulated” and “Analytical Interference and AWGN” graphs in
which the interference and AWGN exists.

5. Results for Different CCI Scenarios

The simulation results for the different CCI scenarios are presented in the following. First, it is
assumed that the interferer transmits at the very same frequency as the required transmission. Then,
a frequency shift, ∆ f , is introduced to the interferer carrier.

The analytical Equation (18) for the SER in the presence of interference and AWGN depends on
the signal to interference (SIR) power ratio at the receiver, on the modulation index (2πh), and the
constellation order (M). The case when the carrier frequencies of the transmitter and the interferer are
identical is studied. Note that for Figure 6, the “Analytical AWGN only” curve refers to the situation
where the PAM constellation order is M = 4 and the modulation index is 2πh = 0.6. In Figure 6a,
we show the dependence on the SIR parameter. As expected, a higher SIR results in a lower SER.
Figure 6b shows the SER dependence on the modulation index, 2πh. As the value of 2πh is increased,
the SER decreases. Finally, Figure 6c demonstrates the dependence on the constellation M. Smaller
constellations show a better performance.

Interferer shift in frequency results in phase θ(t) = 2π∆ f t, where ∆ f is the difference in carrier
frequencies. Figure 7 presents the spectrum of the CE-OFDM, CE-MTO, and the CW interference.
Note that for the CE-MTO, Tchip is the time duration of a series “chip”, while for the CE-OFDM,
Tchip = Tsymbol/N, where N is the number of subcarriers. The inspection of Figure 7 reveals that
the CE-MTO spectrum is null for the ∆ f · Tchip= integer. The interference is located at ∆ f · Tchip = 2.
Comparing the two modulation techniques reveals a slight difference between the spectrum of the
CE-OFDM and that of the CE-MTO.
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Figure 8a–c shows the graphs of the SER as a function of Eb/N0. The results in Figure 8a–c have
been obtained for N = 14 orthogonal waveforms of Nchip = 16 chips. The order constellation is M = 4
and the modulation index is 2πh = 0.6. It is assumed that the signal to interference power ratio is SIR =

15 dB for different frequency shift values, ∆ f ·Tchip. In Figure 8a, where ∆ f ·Tchip = 0.3, the performance
of CE-MTO is revealed to be better than that of CE-OFDM. However, in Figure 8b, where ∆ f ·Tchip = 0.6,
the CE-OFDM demonstrates a better performance than that of CE-MTO. The curves in Figure 8c refer
to ∆ f · Tchip = 1. In this scenario, the performance of CE-MTO and that of CE-OFDM are identical.
The results obtained in Figure 8a–c are as expected when examining the spectrum as given in Figure 7.
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6. Summary and Conclusions

Small PAPR modulation schemes are being used for better power efficiency. In CE-OFDM,
the carrier is phase-modulated with the OFDM signaling to generate a constant envelope waveform.
CE-MTO is a new suggested technique for constant envelope modulation, which is based on orthogonal
waveforms in the time domain, and with the implementation expected to be simpler than that of the
CE-OFDM. An analytical expression for the SER performance degradation caused by the co-channel
interference in different scenarios is presented. It is shown that the SER decreases in the presence of
interference when the modulation index is increased. The SER grows the higher the constellation order.
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