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Abstract: In this report, a method for estimating pulse power performance according to pulse duration
is proposed. This approach can be used for power control logic in an environmentally friendly power
generation system such as electric vehicles and an energy storage system (ESS). Although there have
been studies on pulse power capability, we are unaware of any publications on the estimation of the
magnitude of pulse power according to the power usage time, and the verification of the estimation
result. Therefore, we propose a method to predict power performance according to the pulse duration
of batteries and supercapacitors that are used in eco-friendly power generation systems. The proposed
method is systematically presented using both a lithium-ion battery module with a nominal voltage
of 44 V, 11 Ah, and a supercapacitor module with a maximum voltage of 36 V and a capacitance of
30 F.
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1. Introduction

Generally, the pulse power capability, a term that is commonly used in energy storage systems
such as batteries and supercapacitors, is the maximum output power that does not exceed the over- and
under-voltage limit conditions in the current state of charge (SOC) of the energy storage. Therefore, even
in the case of batteries and supercapacitors that are used in hybrid cars, battery, and hydrogen-electric
vehicles, the pulse power capability is a very important parameter in terms of electrical stability as well
as driving performance [1–5]. The relationship between pulse power and the driving performance and
safety of an electric vehicle is represented by the block diagram shown in Figure 1.Electronics 2019, 7, x FOR PEER REVIEW  2 of 17 
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Figure 1. Block diagram for the generation of traction and braking torque reference of an electric 
vehicle. 

Studies on the pulse power capability of auxiliary storage devices and their estimation have been 
conducted [6–11]. In a previous paper [6], a method for calculating the pulse power and an 
experimental approach for measuring the lumped resistance were described. However, this work did 
not consider an approach for vehicle driving control and the effect on the duration time when pulse 
power is applied. In related studies [7,8], the magnitude of the pulse power was estimated over a 
period of 10 seconds, considering the acceleration and deceleration of the electric vehicle. Bjorn 
Fridholm [9] proposed an adaptive power capability estimation method that considered the 
communication time delay between controllers. This study focused mainly on stability analysis of the 
feedback system with batteries. Rui X. [10] presented a recursive least square method for estimating 
peak power capability based on the dynamic battery model. However, the effects of the pulse 
duration were not fully considered. In addition, there are no known studies on the supercapacitors 
that are typically used to assist the peak power. Studies on the pulse power of a supercapacitor over 
a 5 second or 10 second duration are presented in references [11,12]. However, the magnitude of the 
lumped resistance measured based on the experimental results for the hybrid pulse power 
characterization (HPPC) test [6] was used, and there was no consideration of the change of the pulse 
duration.  

Therefore, in this investigation, we propose a method to estimate the pulse power of a battery 
and supercapacitor according to the sampling period of the power control algorithm of each 
application. Firstly, a method for estimating the magnitude of the lumped resistance according to the 
pulse duration is presented to determine the pulse power of a battery and a supercapacitor. It is 
subsequently shown that a battery and supercapacitor can be used in the stable voltage range for 
pulse power operation when the proposed method is applied. In this paper, pulse power estimation 
results for a 44.4 V, 11 Ah lithium battery module, and a 36 Vmax, 30 F supercapacitor module are 
presented to demonstrate the validity of the proposed method. 

2. Pulse Power Capability of a Lithium Battery 

2.1. Lumped Resistance of a Battery 

In Figure 2, when a pulse current of I [A] is applied to the battery for a period t1–t2, the values 
Vbat,t1 and Vbat,t2 can be measured from the voltage response of the battery. Based on this experimental 
result, it is possible to obtain the lumped resistance, which is the impedance of the battery, by 
applying the pulse current to the battery and using Equation (1), i.e., Ohm's law [7–8,13,14]. 
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However, since that the lumped resistance of the battery is a function of the time when the 
constant current is applied, as can be seen from Equation (1), it should be calculated according to the 
period for which the pulse power is required. As indicated in a previous work [6], hybrid and electric 
vehicles typically use a lumped resistance measured at a 10 second duration to calculate the pulse 

Figure 1. Block diagram for the generation of traction and braking torque reference of an electric vehicle.

Figure 1 shows a basic control block used to generate a torque command for a traction motor and
the mechanical brake which is implemented in the vehicle control unit (VCU) of an electric vehicle.
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The VCU determines the torque command, denoted Tmot_ref, that allows the battery to be driven by the
power it can supply without operating at a low voltage, based on the motor speed, denoted ωrm, as
the vehicle’s accelerator pedal (AP) is pressed. Similarly, in the braking mode, the VCU calculates the
regenerative torque command of the traction motor and the torque command value of the mechanical
brake. This is performed so that the traction motor can be operated within the maximum chargeable
power value without exceeding the overvoltage of the battery, based on the degree of depression of
the brake pedal (BP). The available power of the battery for determining the torque command can
be defined as the pulse power, which is represented as the variables Pbat,pulse,dis and Pbat,pulse,cha in
Figure 1. Therefore, to maximize the driving performance of a vehicle and to stabilize the system, it is
necessary to estimate the maximum pulse power that energy storage devices such as batteries and
supercapacitors can charge and discharge in the current state.

Studies on the pulse power capability of auxiliary storage devices and their estimation have
been conducted [6–11]. In a previous paper [6], a method for calculating the pulse power and an
experimental approach for measuring the lumped resistance were described. However, this work
did not consider an approach for vehicle driving control and the effect on the duration time when
pulse power is applied. In related studies [7,8], the magnitude of the pulse power was estimated
over a period of 10 seconds, considering the acceleration and deceleration of the electric vehicle.
Bjorn Fridholm [9] proposed an adaptive power capability estimation method that considered the
communication time delay between controllers. This study focused mainly on stability analysis of the
feedback system with batteries. Rui X. [10] presented a recursive least square method for estimating
peak power capability based on the dynamic battery model. However, the effects of the pulse duration
were not fully considered. In addition, there are no known studies on the supercapacitors that are
typically used to assist the peak power. Studies on the pulse power of a supercapacitor over a 5 second
or 10 second duration are presented in references [11,12]. However, the magnitude of the lumped
resistance measured based on the experimental results for the hybrid pulse power characterization
(HPPC) test [6] was used, and there was no consideration of the change of the pulse duration.

Therefore, in this investigation, we propose a method to estimate the pulse power of a battery and
supercapacitor according to the sampling period of the power control algorithm of each application.
Firstly, a method for estimating the magnitude of the lumped resistance according to the pulse duration
is presented to determine the pulse power of a battery and a supercapacitor. It is subsequently shown
that a battery and supercapacitor can be used in the stable voltage range for pulse power operation
when the proposed method is applied. In this paper, pulse power estimation results for a 44.4 V, 11 Ah
lithium battery module, and a 36 Vmax, 30 F supercapacitor module are presented to demonstrate the
validity of the proposed method.

2. Pulse Power Capability of a Lithium Battery

2.1. Lumped Resistance of a Battery

In Figure 2, when a pulse current of I [A] is applied to the battery for a period t1–t2, the values
Vbat,t1 and Vbat,t2 can be measured from the voltage response of the battery. Based on this experimental
result, it is possible to obtain the lumped resistance, which is the impedance of the battery, by applying
the pulse current to the battery and using Equation (1), i.e., Ohm’s law [7,8,13,14].

Rbat,lumped =
∆V
∆I

=
Vbat,t1 −Vbat,t2

I
(1)
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Figure 2. Battery voltage response during the pulse current.

However, since that the lumped resistance of the battery is a function of the time when the constant
current is applied, as can be seen from Equation (1), it should be calculated according to the period for
which the pulse power is required. As indicated in a previous work [6], hybrid and electric vehicles
typically use a lumped resistance measured at a 10 second duration to calculate the pulse power.
However, to maximize battery utilization, the lumped resistances must be recalculated as follows [7].

To calculate the lumped resistance, it is necessary to determine the voltage (Vbat, t1) at the time
when the pulse current is applied and the battery voltage (Vbat, t2) at the time when the pulse current
ends. Given that Vbat, t1 is the voltage measured at the present time and Vbat,t2 is the voltage at a future
time, the latter must be predicted to calculate the lumped resistance in real-time. Therefore, in this
paper, Vbat,t2 is predicted using an electrical equivalent model of the battery as shown in Figure 3.

Electronics 2019, 7, x FOR PEER REVIEW  3 of 17 

 

power. However, to maximize battery utilization, the lumped resistances must be recalculated as 
follows [7].  

 

 

Figure 2. Battery voltage response during the pulse current. 

To calculate the lumped resistance, it is necessary to determine the voltage (Vbat, t1) at the time 
when the pulse current is applied and the battery voltage (Vbat, t2) at the time when the pulse current 
ends. Given that Vbat, t1 is the voltage measured at the present time and Vbat,t2 is the voltage at a future 
time, the latter must be predicted to calculate the lumped resistance in real-time. Therefore, in this 
paper, Vbat,t2 is predicted using an electrical equivalent model of the battery as shown in Figure 3. 

Assuming that a pulse current is applied at time t1, the voltage of the battery can be expressed 
by Equation (2). In this case, the decrease of the battery SOC during the pulse current injection time 
can be expressed by Equation (3) and the voltage Vd across the capacitor Cd at the time t2 can be 
expressed by Equation (4). Therefore, given that the voltage of the battery at time t2 is derived as 
expressed by Equation (5), the lumped resistance of the battery can be calculated using the predicted 
voltages Vbat,t2 and Equation (1). 

( ), 1 , 1 , 1bat t bat t d tV OCV SOC V= −  (2)

( )2 1
, 2 , 1bat t bat t

n

t t
SOC SOC I

C
−

= −  (3)

( ) ( )2 1 2 1
1 1

, 2 , 1 1d d d d
t t t t

R C R C
d t d t dV e V R I e

− − − − 
 = + −  
 

 (4)

( ), 2 , 2 , 2bat t bat t d t iV OCV SOC V R I= − −  (5)

 

 

Figure 3. Electrical equivalent circuit model of lithium battery.

Assuming that a pulse current is applied at time t1, the voltage of the battery can be expressed by
Equation (2). In this case, the decrease of the battery SOC during the pulse current injection time can
be expressed by Equation (3) and the voltage Vd across the capacitor Cd at the time t2 can be expressed
by Equation (4). Therefore, given that the voltage of the battery at time t2 is derived as expressed by
Equation (5), the lumped resistance of the battery can be calculated using the predicted voltages Vbat,t2
and Equation (1).

Vbat,t1 = OCV
(
SOCbat,t1

)
−Vd,t1 (2)

SOCbat,t2 = SOCbat,t1 −
(t2 − t1)

Cn
I (3)

Vd,t2 = e
−

1
RdCd

(t2−t1)Vd,t1 + RdI
(
1− e

−
1

RdCd
(t2−t1)

)
(4)

Vbat,t2 = OCV
(
SOCbat,t2

)
−Vd,t2 −RiI (5)
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2.2. Pulse Power Capability of a Battery

If the battery’s lumped resistance is known, it is possible to estimate the magnitude of the
maximum pulse current for which an under-voltage or over-voltage does not occur in any charged
status of the battery. The maximum pulse current follows the definition of the lumped resistance and
is derived as Equations (6) and (7). However, if the predicted pulse current exceeds the maximum
current specification of the cell provided by the manufacturer, or exceeds the current specification
of the power converter or the overcurrent protection relay, the maximum pulse current is limited
according to Equations (8) and (9).

Ibat,pulse,dis =
Vbat,t1 −Vbat,min

Rbat,lumped,dis
(6)

Ibat,pulse,cha =
Vt1 −Vbat,max

Rbat,lumped,cha
(7)

Ibat,pulse,dis = min
{
Ibat,pulse,dis, Ibat,dis,max,set

}
(8)

Ibat,pulse,cha = max
{
Ibat,pulse,cha, Ibat,cha,max,set

}
(9)

In this case, Vbat_min represents the low-voltage limit value indicated by the battery manufacturer
or the low-voltage limit value set for the system operation, whereas Vbat_max corresponds to the
over-voltage limit value stipulated by the manufacturer or the over-voltage limit value set for the
system operation. Rbat,lumped,dis and Rbat,lumped,cha represent lumped resistances for discharging and
charging, respectively. Ibat,dis,max,set and Ibat,cha,max,set represent the current limit value determined by
the smallest value among the maximum current values of the power converter and the battery cell.

Therefore, the maximum pulse power that can be charged and discharged in the current status
of the battery is defined as Equations (10) and (11), which represents the constant power capability
that can provide or store the energy to the load for a specified time. As such, when the pulse power
information of the battery is used for power control, the battery can be used within a stable voltage
range, and a system control algorithm can be implemented to improve the performance and efficiency
of the vehicle.

Pbat,pulse,dis =

OCV · Ibat,dis,max,set − I2
bat,dis,max,set

·Rbat,lumped,dis i f Ibat,pulse,dis ≥ Ibat,dis,max,set
Vbat,min(Vbat,t1−Vbat,min)

Rbat,lumped,dis
i f Ibat,pulse,dis < Ibat,dis,max,set

(10)

Pbat,pulse,cha =

OCV · Ibat,cha,max,set + I2
bat,cha,max,set

·Rbat,lumped,cha i f Ibat,pulse,cha ≥ Ibat,cha,max,set
Vbat,max(Vbat,t1−Vbat,max)

Rbat,lumped,cha
i f Ibat,pulse,cha < Ibat,cha,max,set

(11)

3. Pulse Power Capability of a Supercapacitor

3.1. Lumped Resistance of a Supercapacitor

The pulse power capability of a supercapacitor has been investigated using the same approach
used for a battery [12]. In this report, we first examine the pulse power capability of supercapacitors
using the same concept of pulse power that was defined for a battery. However, the use of pulse power
values based on the conventional definition used in the power control algorithm leads to the problem
whereby the output performance values differ slightly from the available maximum pulse power.
Therefore, in the case of a supercapacitor, we propose a method for calculating the lumped resistance
and the pulse power according to the sampling period, in which the pulse power is calculated and this
information is utilized in the power control algorithm.
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If a pulse current is applied to a supercapacitor, the response of the voltage and current can be
obtained as shown in Figure 4. Thus, the supercapacitor can be modeled as the electrical equivalent
circuit shown in Figure 5. At this time, the magnitude of the lumped resistance can be obtained from
Equation (12).

Rsc,lumped =
∆Vsc

∆Isc
=

Vsc,t1 −Vsc,t2

Isc
(12)
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Figure 5. The equivalent electrical circuit of the supercapacitor.

In this case, if the duration of the pulse power changes, the lumped resistance should be calculated
according to the time. As indicated earlier, given that a supercapacitor can be modeled as an electrical
equivalent circuit as shown in Figure 5, the voltage after the sampling period can be estimated as
shown in Equation (13). Thus, using the current and predicted voltages, the lumped resistance value
can be expressed by Equation (14).

Vsc,t2 = Vsc,t1 −Ri,scIsc −
∫ t2−t1

0
Isc
Csc

dt
= Vsc,t1 −Ri,scIsc −

∆TIsc
Csc

= Vsc,t1 −
(
Ri,sc +

∆T
Csc

)
Isc

(13)

Rsc,lumped = Ri,sc +
∆T
Csc

(14)

In this case, Vsc,t1 is the voltage at t1, Vsc,t2 is the voltage at t2 when the pulse current ends, Ri,sc is
the equivalent series resistance of the supercapacitor, Csc is the capacitance of the supercapacitor, Isc is
the magnitude of the pulse current, ∆T is the time duration of the pulse current and is given by ∆T =
t2-t1.

3.2. Pulse Power Capability of a Supercapacitor

To obtain the maximum available discharge and charge pulse power within a set voltage range of
a supercapacitor, S.M. Lukic [12] used Equations (15) and (16) to define the battery’s pulse power.
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Psc,pulse,dis =
Vsc,min(Vsc,t1 −Vsc,min)

Rsc,lumped
(15)

Psc,pulse,cha =
Vsc,max(Vsc,t1 −Vsc,max)

Rsc,lumped
(16)

In this case, Vsc,max is the maximum voltage of the supercapacitor, and Vsc,min is the low-voltage
limit value, which is usually set to half the maximum voltage (0.5 × Vsc,max). The parameter Rsc,lumped
represents the lumped resistance of the supercapacitor, defined as Equation (14).

4. Experimental Results

The charge and discharge tests, and the pulse power verification of the battery and supercapacitor
were performed using the experimental setup shown in Figure 6. Figure 6a represents the equipment
used for the charge and discharge experiments to model the battery’s cells, whereas Figure 6b shows the
experimental configuration of the battery and supercapacitor modules. Table 1 lists the batteries, and
supercapacitors used in the experiment, in addition to equipment used for charging and discharging.
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To obtain the pulse power of the battery as described in Section 2, it is necessary to measure or
estimate the lumped resistance of the battery. An example of an experimental method for measuring
this resistance is the direct current internal resistance (DCIR) method, similar to the current profile and
experimental procedure in Figure 7 [15]. In this method, when the discharge (denoted using a positive
sign) and charge current (denoted using a negative sign) are increased stepwise for each SOC point of
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the battery, the voltage response can be obtained. Figure 8 shows the results for a battery’s cell when
the DCIR current profile is applied. The battery model parameters in Figure 3 are extracted as shown
in Figure 9a–d.

Table 1. Specifications used for experimental testing.

Specifications Parameters

Battery
Module Voltage 32.4–50.4 V

(SLPB55205130H cell – 12S1P)
Nominal Capacity 11 Ah

Current
Continuous: 55 A

Discharge Peak: 110 A
Charge Peak: 22 A

Supercapacitor
Module Voltage 18–36 V

(ESHSP-1700C0-002R7 – 56S1P)
Capacity 30.4 F
Current Rated: 371 A

Power Supply for cell Voltage/Current 0–60 V, 0–50 A
Electronic Load for cell Voltage/Current 0–80 V, 0–500 A, Max. 3 kW

Power Supply for modules Voltage/Current 0–60 V, 0–50 A
(DCS60-50E)

Electronic Load for modules Voltage/Current 0–80 V, 0–500 A, Max. 3 kW
(SLL-5K)

The accuracy of battery modeling using the extracted modeling parameters was verified under
pulse current and dynamic current conditions as shown in Figure 10. The upper waveform in Figure 10a
shows the current profile, and the SOC estimation result using the ampere-hour (Ah) counting method
is shown in the second figure. The capacity measured at room temperature before the experiment
was 11.58 Ah. Thus, to discharge the SOC at 10% intervals, a current of 5.5 A was applied for 758
seconds. In the experimental results, it can be seen that the discharge is performed in nine steps from
100% to 10% of SOC. In the third waveform, the solid line represents the measured voltage of the
battery. The dash-dotted line shows the battery voltage (denoted as Modeling 1) when the parameters
in Figure 9 are configured as the lookup table according to each SOC. The dashed line represents the
battery voltage (Modeling 2) that was modeled using the average value of the extracted parameters.
The last waveform shows the modeling error for Modeling 1 and 2. It is evident from the experimental
results that even when the average model of the extracted battery model is used, the modeling error is
smaller than ± 0.03 V. Therefore, parameters of the battery use the average value. The 12-series battery
module was modeled using the average value of the battery’s cell parameters, and the modeling
accuracy of the battery module was determined to comparable to the cell modeling. The modeling
accuracy of the battery module is shown in Figure 10b.
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Equations (1)–(5) can be used to calculate the lumped resistance for 10 seconds, and the results of
the estimated lumped resistance are shown in Table 2. The lumped resistance of the battery’s cell shows
a small deviation according to the SOC, but has a value of approximately 14 mΩ. The pulse power
according to the SOC of the battery module can be obtained using Equations (10) and (11) as shown
in Figure 11. Figure 11a shows the magnitude of the discharging pulse power of the conventional
method and the proposed method. The conventional method calculates the pulse power using only
the second equation of Equation (10). Therefore, when the pulse current of the battery estimated from
Equations (6) to (9) is limited, the pulse power is fixed to a constant value. However, if the battery
current is fixed at the maximum value, the pulse current must be calculated from the voltage calculated
from Equations (2)–(5). Therefore, the pulse power can be calculated as described in the first Equation
of (10), which is larger than the conventional method. On the contrary, in the case of charging, as
the state of charge of the battery is lowered, the magnitude of the charging current is fixed to the
maximum current from the Equations (6)–(9). At this time, the conventional method calculates the
pulse power based on the maximum voltage even if the pulse charging current is limited. However,
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the proposed method predicts the magnitude of the pulse power based on the estimated voltage when
the pulse current is applied, and this value shows a smaller pulse power value than the conventional
method. Figure 11b shows the charge/discharge pulse power capability during the sampling period
of 10 seconds and 5 seconds using the proposed method. Because batteries have more energy than
supercapacitors, which will be discussed in the next section, there is no significant difference in the
amount of pulse power with respect to the sampling period. However, if we want to use the battery for
maximum performance in the stable voltage range, we need to calculate the pulse power considering
the sampling period of the algorithm.
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Table 2. Calculated lumped resistance of the battery’s cell. Unit: [mΩ].

SOC
Charging Current Discharging Current

4 A 8 A 12 A 16 A 4 A 8 A 12 A 16 A 20 A

80% 14.2 14.5 14 14.9 15 15.3 15.3

70% 14.5 14.5 14.4 14 14 14.3 14.3 14.6

60% 14 14 14 14 13 13.1 13.3 13.4 13.8

50% 14.2 14.2 14 14.1 13 13 13.2 13.4 13.7

40% 14.3 14.3 14.3 14.3 12.8 13 13.2 13.4 13.9

The simulation results obtained when the proposed method was applied to the power management
algorithm of the electric vehicle are shown in Figure 12. This figure shows the result of charging and
discharging the battery with the power scaled down according to the experimental setup, assuming
that the ten-ton electric vehicle continuously drives the heavy duty-urban dynamometer driving
schedule (HD-UDDS) and the city driving profile [16,17]. The upper waveform in Figure 12a shows
the speed profile, and the lower waveform shows the demanded power required from the battery.
In this experiment, we conducted a power test on the demanded power profile at 70% of the SOC
of the battery, and predicted the magnitude of the pulse power considering the voltage at the point
indicated by Vbat,dc in Figure 6b as the voltage of the battery. Thus, the magnitude of the pulse power
due to the lumped resistance, which includes a 30 mΩ resistor representing the effects of the fuse,
the molded case circuit breaker (MCCB) and the cable impedance, was calculated. In this case, the
charging pulse power not exceeding the maximum voltage of 50.4 V and the discharging pulse power
not exceeding 36V are shown in Figure 12b. The green dashed line represents the discharging pulse
power, and the red dash-dotted line shows the charging pulse power. Figure 12c shows the results of a
charge/discharge test when the battery is not used within the magnitude of the pulse power estimated
by the battery management system (BMS). In Figure 12c, points A and B represent the intervals in
which the battery is used in excess of the charging pulse power, and during this period, it can be seen
that the battery exceeds the overvoltage range of 50.4 V. On the other hand, Figure 12d shows the
simulation result for the case that the charging power is limited to the estimated charging pulse power
by the BMS. In this case, since the power of the battery is limited to the available charging power, it can
be seen that no overvoltage occurs in the A and B points.
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Figure 12. Battery charging and discharging result by a scaled-down power profile of the electric vehicle.
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The parameters of the supercapacitor (SC) can be obtained from the voltage response characteristics
for a pulse current, similar to the battery. The series resistance parameter of Figure 5, which is the
electrical equivalent circuit of the supercapacitor, can be obtained from the voltage drop of the applied
pulse current. The resistance was obtained as shown in Figure 13. The series resistance component of
the supercapacitor did not exhibit a significant difference according to the magnitude of the current.
An average value of 42.3 mΩ was determined as the series resistance value.

Because of the high power density of super-capacitors, the power capability of the super-capacitors
is higher than that of the battery. However, since the energy density is low, the magnitude that can
maintain the pulse power for a certain period fluctuates depending on the conditions such as the energy
state. Therefore, the pulse power must be estimated considering the sampling period for estimating
the pulse power.Electronics 2019, 7, x FOR PEER REVIEW  13 of 17 
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The supercapacitor used in the experiments in this report has a value of 36 Vmax and an equivalent
series resistance of 42.3 mΩ. Figure 14 shows the pulse power estimation results when the sampling
period was set to 5 seconds or 1 second using Equations (12)–(16). It is evident from the two shaded
areas shown in the figure that the pulse output power of the supercapacitor for 5 seconds and 1 second
varies depending on the required time.Electronics 2019, 7, x FOR PEER REVIEW  14 of 17 
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method compared to the conventional method. Moreover, in the charging period, the proposed 
method has a lower charge at a smaller SOC compared to the conventional method. Therefore, when 
the proposed method is applied to the power distribution algorithm of an electric vehicle, the output 
capability is increased during acceleration, and the performance and stability of the system can be 
increased by restricting the chargeable power during regenerative braking. 
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As previously indicated, the power distribution algorithm of electric vehicles as shown in Figure 1
uses the power capability of the energy storage device to calculate the torque command reference of the



Electronics 2019, 8, 1395 13 of 16

traction motor. Therefore, it is possible to influence the acceleration performance and the regenerative
braking energy of the system, according to the algorithm’s sampling period, to calculate the power
capability of the supercapacitor. In addition, if the lumped resistance used to calculate the pulse power
of the supercapacitor is not calculated based on the sampling period, it is evident that a larger pulse
power can be output during discharge. However, it cannot be used, as shown in Figure 14. During the
charging process, an issue arises in that it is assumed that the energy storage device can accept an
output larger than the actual power capacity.

To predict the pulse power of the supercapacitor, the discharge power capability can be estimated
using Equations (17)–(19), considering the characteristics of the cell and the current limitation according
to the current specification of the power conversion unit, and the protection relay. Assuming that the
pulse power lasts for a certain period (∆T), the lumped resistance is calculated using the parameters of
the supercapacitor. The voltage generated after the duration of the pulse power is then estimated, and
the discharge pulse power is estimated using this value.

Psc,pulse,dis = Vsc,pulse,dis·Isc,pulse,dis (17)

Isc,pulse,dis = Isc,max , Vsc,pulse,dis = Vsc,t1·Isc,pulse,dis ·Rsc,lumped (i f Vsc,pulse,dis > Vsc,min) (18)

Isc,pulse,dis =
Vsc,t1 −Vsc,min

Rsc,lumped
, Vsc,pulse,dis = Vsc,min ( i f Vsc,pulse,dis ≤ Vsc,min) (19)

The charging pulse power capacity of the supercapacitor can be derived using Equations (20)–(22),
as in the previous case.

Psc,pulse,cha = Vsc,pulse,cha · Isc,pulse,cha (20)

Isc,pulse,cha = −Isc,max , Vsc,pulse,cha = Vsc,t1 − Isc,pulse,cha ·Rsc,lumped (i f Vsc,pulse,cha < Vsc,max) (21)

Isc,pulse,cha =
Vsc,t1 −Vsc,max

Rsc,lumped
, Vsc,pulse,cha = Vsc,max(i f Vsc,pulse,cha ≥ Vsc,max) (22)

As previously indicated, the pulse power capability for the case where the sampling period
of the pulse power of the supercapacitor is set to 1 second is shown in Figure 15, for comparison
of the conventional method and the proposed method. In this case, Psc_pulse,dis(conventional) and
Psc_pulse,cha(conventional) represent the discharging and charging pulse power capability for 1 second for
the conventional method. The power parameters with ‘proposed’ in the notation represent the charging
and discharging pulse power capability for the proposed method. As the SOC of the supercapacitor
increases in the discharge period, more power can be supplied using the proposed method compared
to the conventional method. Moreover, in the charging period, the proposed method has a lower
charge at a smaller SOC compared to the conventional method. Therefore, when the proposed method
is applied to the power distribution algorithm of an electric vehicle, the output capability is increased
during acceleration, and the performance and stability of the system can be increased by restricting the
chargeable power during regenerative braking.

The pulse current prediction results of the supercapacitor are verified in Figure 16. After the
supercapacitor was charged to 36 V, an experiment was conducted to facilitate discharge to the lowest
possible voltage with a pulse current of 39 A within a specified period. The controller unit was used to
calculate the pulse power of the supercapacitor with a sampling period of 1 second and serves to limit
the current command when a value that exceeds the available pulse power is applied. In Figure 16a,
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since a current command of 39 A is greater than the pulse power that can be discharged at 43 seconds,
it is evident that the magnitude of the pulse current changed to 29 A. This value is the predicted
one-second pulse current. Since the voltage of the supercapacitor after the one-second pulse current of
29 A was applied became 18 V, which is a low voltage setting value, it can be seen that the magnitude
of the estimated one-second pulse current is accurate. The top waveform of Figure 16b shows the
magnitude of the power of the supercapacitor during the experiment, and the bottom waveform
shows the powers based on the state of charge of the supercapacitor. The red dashed line indicates
the magnitude of the discharging pulse power of Figure 15, and it can be seen that the pulse power
estimation result and the experimental result are almost the same.Electronics 2019, 7, x FOR PEER REVIEW  15 of 17 
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5. Conclusions

In this report, we propose a method for estimating the pulse power capability of batteries and
supercapacitors. The proposed method estimates the lumped resistance and the pulse current after
estimating the voltage after the sampling period at which the pulse power is calculated from the
equivalent electrical circuit modeling. Then, the magnitude of the pulse power is predicted according
to whether or not the magnitude of the estimated current is the maximum value. The detailed analysis
and experimental results are presented to evaluate the validity of this study based on the observed
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differences between the proposed method and the conventional method according to pulse duration.
The results of this study can be extended to analyze the equivalent model of a battery with series
resistance and two or more RC ladders. If the parameters of the battery and supercapacitor vary with
temperature, additional studies should be applied. If only the results of this study are applied to the
algorithm, the effect of parameter variations can be minimized by applying a lookup table according to
temperature. To demonstrate the validity of the proposed method, pulse power experimental results
for a lithium battery module with 44.4 V, 11 Ah, and a supercapacitor with 36 V, 30 F were presented.
The pulse power proposed in this paper can be applied online or via a look-up table method in a
supervisory controller of an electric vehicle or an energy storage system to achieve optimal power
distribution. In addition, the proposed method can increase the performance and stability of storage
system when applied to the system control logic in combination with the estimation of the SOC of
the battery.
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