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Abstract: Hydrogen-based energy storage and generation is an increasingly used technology,
especially in renewable systems because they are non-polluting devices. Fuel cells are complex
nonlinear systems, so a good model is required to establish efficient control strategies. This paper
presents a hybrid model to predict the variation of H2 flow of a hydrogen fuel cell. This model
combining clusters’ techniques to get multiple Artificial Neural Networks models whose results
are merged by Polynomial Regression algorithms to obtain a more accurate estimate. The model
proposed in this article use the power generated by the fuel cell, the hydrogen inlet flow, and the
desired power variation, to predict the necessary variation of the hydrogen flow that allows the
stack to reach the desired working point. The proposed algorithm has been tested on a real proton
exchange membrane fuel cell, and the results show a great precision of the model, so that it can be
very useful to improve the efficiency of the fuel cell system.

Keywords: fuel cell; hydrogen energy; intelligent systems; hybrid systems; artificial neural networks;
power management

1. Introduction

The climate change and the problems derived from the pollution have caused society to look for
new source of energy, especially clean energy sources. The hybrid energy topologies, where classical
power plants and energy storage are combined, are some of the most promising technologies.
The hydrogen is a possible technology to use in storage systems; the hydrogen can be produced
with electrolyzers, storage, and then used in fuel cell to produce electrical power [1].

The main challenge of storage systems is the efficiency improvement in general terms. However,
from a useful point of view, this efficiency is frequently measured in economic terms. Obviously,
before reaching this profitable objective, there is conscientious development. During the last times,
there are a lot of different proposals for achieving energy storage systems, in some different ways.
For instance, in [2], an optimal nonlinear controller based on model predictive control (MPC) for a
flywheel energy storage system is proposed in which the constraints on the system states and actuators
are taken into account. The authors in [3] described a system for storing energy deep underwater in
concrete spheres which also can act as moorings for floating wind turbines. A proposal is made in [4]
for a deterministic and an interval unit commitment formulation for the co-optimization of controllable
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generation and PHES (pumped hydro energy storage), including a representation of the hydraulic
constraints of the PHES.

The fuel cell systems are still researched, and its performance could increase in a few years. This
is a high reliability choice for steady applications like electrical vehicles or space applications and,
moreover, it is a clean energy source [5]. Internally, a fuel cell is a combination of small individual cells
that are connected to create a stack. In the stack, an electrochemical reaction produces the electrical
power when the hydrogen (H2) is combined with the oxygen (O2) in a specific environment. A control
system ensures that the whole operation is performed in a safe condition, using some subsystems
(cooling, conditioning the gases, inlet system, etc.) [6].

In different clean technologies, like photovoltaic or wind generation, the power production
depends on the availability of the primary energy (sun or wind). The fuel cells do not depend on
other energy than H2 have, and such a thing allows for installing it wherever it is necessary. A Proton
Exchange Membrane Fuel Cell (PEMFC) is one of the most efficient technologies, as it has high energy
density, low volume, and weight against other fuel cells. It operates at a low temperature (less than
100 ◦C), and this allows for using less time to heat when it starts working. It has a large range of
power that can adapt to a lot of applications [5]. High power fuel cells could be used connected
to the electrical network in power stations [7–11]—while smaller systems could be used in mobile
stations [12]. Apart from the output power, the energy stored (the power during the time that can be
produced) depends only on the amount of H2 available.

The output of the fuel cell is considered as a non-regulated power, as it is produced by an
electrochemical reaction. It needs a system to control the H2 and O2 inlet flow, and also to ensure
the security of the whole system. Moreover, the electrical output values can vary by, for example,
external agents like temperature, pressure, etc. [13–16]. To increase the efficiency of the fuel cell, it is
very important to have a model to predict the dynamic behavior of the system [1,17–21]. In previous
research, like [22], the variation of voltage and current from starting to steady state operation working
point is studied. In [23], for example, it is showed that the change of the voltage affects the current;
these variations must be taken into account when the fuel cell changes its power.

To avoid these variations in the output, a power system is attached after the fuel cell to establish
the voltage to the desired application. Then, the main output signal to control the fuel cell would be
the amount of electrical power produced. The model presented in this article predicts the H2 flow inlet
variation, in order to adapt the actual to the desired electrical power at the output of the fuel cell. The
model is based on input–output data techniques [22,24–28] that help the control system to be more
accurate and efficient [29–35].

A hybrid intelligent model is created by combining clustering and intelligent regression
algorithms. These kinds of models were used with good results in several different applications [36–42].
Other algorithms based on multiple regression analysis used to have worse performance, but they are
still used [37,43–46]. The hybrid system presented in this paper uses Artificial Neural Networks and
Polynomial Regression techniques to perform the regression phase [47–52]. This type of hybrid model
allows for obtaining good accuracy in nonlinear systems [53–58].

This paper is organized as follows: after the Introduction, the case study is presented, where the
physical system used in the research is presented. The following section is the model approach where
the hybrid intelligent model and the algorithms used are described. The results section explains the
configuration of the hybrid model and the performance values achieved with the prediction model.
Finally, conclusions and future works are depicted.

2. Case Study

Figure 1 shows a PEMFC fuel cell diagram; in this type of cell, the electrolyte is in contact with
anodes and cathodes. When there is an inlet flow of hydrogen through the anode and oxygen in the
cathode, ions (electrical charges) appear in the electrolyte [59]. In the anode, electrons that flow in an
external circuit to the cathode are produced. The ions and the electrons are combined in the cathode to
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produce pure water as a residue of the whole reaction. In a normal condition, a single fuel cell can
generate 1.2 V. To create high power systems, some single cells can be connected between each other to
form a stack; the cell could be in series or parallel.

Figure 1. Fuel cell diagram.

2.1. Test Bench

To collect the data for the present research, a test bench in a laboratory has been used. The stack
is a PEMFC FCgen-1020AVS from Ballard (Majsmarken, Hobro, Denmark) [60], and it is formed
by 80 BAM4G polymeric single cells [61]. The stack has a porous carbon cloth anode and cathode,
with catalyst based on platinum [62]. The whole stack has graphite plates between cells, and aluminum
end plates, all of them joined by compression.

The maximum output power of the stack is 3.4 kW, with typical values for voltage and current of
45.33 V and 75 A. The stack has its own refrigeration system that cools the stack by air. The pressure of
the hydrogen inlet is around 1.36 bar. The stack also has the oxidant subsystem that is built based on
the manufacturer’s instructions [63]; the cooling system follows these instructions too.

Figure 2 shows the diagram of the Balance of Plant (BoP) system, where all the subsystems are
represented. In Figure 3, the real laboratory equipment is shown [64]. To perform different tests,
a programmable electronic load was used (Amrel PLA5K-120-1200, San Diego, CA, USA). The monitor
system stores all the important values of the stack, as temperature, voltage, current, hydrogen flow,
etc., and it is described in [65,66].

Figure 2. Stack and the Balance of Plant (BoP) to integrate the fuel cell.
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Figure 3. Laboratory implementations to test the fuel cell.

There are several previous works that demonstrate these important values; for example, the
authors in [67] studied the effects on the cell operation of stack temperature. In [63], the necessary
purge process in the hydrogen that needs to be vented to the atmosphere periodically is studied.

2.2. Power System

As the fuel cell is a system that produces a non-regulated power, it is necessary to include a power
system at the output of the cell to adapt the voltage and power values to the ones desired to the specific
application, Figure 4.

Figure 4. Power system diagram to control cell power output.

The power system should have a stable voltage; the control system would stabilize the variations
in the fuel cell produced by the variation of the output power. Then, the main value in the system
would be the output power, as the power system controls the voltage and current values.

3. Model Approach

This research is based on the basic model shown in Figure 5a, where the main variables are
presented. The model uses the power generated by the fuel cell, the hydrogen inlet flow, and the
desired power variation, in order to predict the necessary variation of the hydrogen flow. As it is
explained, this research takes into account the amount of power generated by the fuel cell, not the
values of current and voltage. With power converters, for example, the voltage variation at the output
of the fuel cell can be established at the right value for a specific application.
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(a) Basic schematic model. (b) Model approach
Figure 5. Basic and specific model to predict variation in the hydrogen inlet flow.

Figure 5b shows the timing for specific inputs and output of the model, and also that this research
will use a hybrid model. The output of the model is a future prediction; in this case, the model obtains
the output with a horizon of five instants in the future. These five instants should be sufficient to adapt
the hydrogen inlet control system of the fuel cell to the desired new output power.

The hybrid intelligent system layout is shown in Figure 6; in this figure, it is shown the different
local models created for the different clusters. Figure 7 shows the procedure to create the hybrid model.

Figure 6. Internal schematic to achieve the hybrid model.

First of all, the clustering phase assigns each training sample to a cluster; the number of clusters
used is not known previously, and it is selected in the last phase, after checking the results of all possible
hybrid topologies. For each cluster, different configurations of regression techniques were trained.
K-Fold cross validation is used to select the best local model that produces the lowest prediction error
(Figure 8).
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Figure 7. Flowchart of the hybrid model creation phases.

Figure 8. K-Fold training and test data selection.

A more real error measurement is achieved by using K-Fold instead of Hold-Out validation.
With K-Fold, all the data are used as testing data, but in different instants; in the case of 10-Fold cross
validation, 10 models are created, each one with 90% of the data for training. Each of these 10 models
uses the other 10% of the data for testing the model; at the end of the training process, the “Error log”
(Figure 8) includes all the available data. Hold-Out validation would divide the data in training and
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testing in ratios like 60–40 or 70–30; and only one model would be created. The error was calculated
only with this testing data.

The Mean Squared Error is a commonly used error measurement for selecting the best regression
local model, in order to choose the best configuration for the regression techniques of each cluster,
as the second and third steps in Figure 7 show. After that, it is necessary to select the best hybrid
topology, the number of local models to the final hybrid model. To choose this topology, a new testing
dataset, isolated at the beginning for the training procedure described below, is used in all the different
hybrid models (with different topologies). Each hybrid model produces different errors depending on
the internal number of clusters and, with this type of hybrid testing, it is ensured that the best topology
is chosen.

3.1. K-Means Algorithm

One of the most known clustering algorithms is the K-Means algorithm. This algorithm creates as
many centroids as clusters, and, at the end of the training phase, the centroids are placed in the center
of their cluster. The data belonging to each cluster are data with similar characteristics [68,69].

To train the algorithm, in an initial phase, the centroids are randomly chosen from all the data.
During the training, these centroids vary their positions to be the center of each cluster. An iterative
phase includes the assignment of the cluster for all data samples, taking into account the distances
to the centroids. After all, the samples have their “new” cluster, the centroids are calculated another
time (as the center of each cluster). The training finishes when the centroids are not moved from the
previous iteration [70].

Once the algorithm is trained, a new sample only needs to compare the distance to each centroid
to assign a cluster. The usual distance is the Euclidean, and new data are assigned to its cluster very
fast [71]. The training phase could finish in local minima; to avoid these situations, it is usual to train
several times with random initialization and choose the furthest centroids.

3.2. Artificial Neural Networks

ANN (Artificial Neural Network) is an algorithm used in regression (and in classification) that is
based on small units called neurons. The neurons are connected internally with links, and every one
calculates its output using an activation function. The input to this activation function is the sum of
the input links in the neuron [72].

The ANN algorithm has the ability to generalize through the experience; although the cases are
not trained before, the obtained results should be good [73]. This intelligent algorithm creates its own
internal representation of a problem, adapting the different links of the neurons [74].

The mentioned activation function used to define the state of a neuron [75]. This state is defined
in a normalized range for each ANN—normally [0, 1] or [−1, 1]. Depending on the inputs and the
selected activation function, the neuron can be inactive (0 or −1) or active (1). In some cases, the
neuron could be neither inactive nor active; instead of that, the output would mean an intermediate
state between the range.

The internal configuration of the ANN is known as its topology. An ANN could be divided into
different layers: input, hidden, and output layer, whose neurons have the same inputs and outputs.
The topology defines the links between the neurons and layers, and also the activation functions [76].

The most known architecture of an ANN is the Multi-Layer Perceptron that has a feedforward
connections from the input to the output layer (through the hidden layers). Most of the neurons used
have a Tan-Sigmoid or Log-Sigmoid activation function; however, the output neurons when the ANN
is trained for regression could have a linear function instead.
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3.3. Polynomial Regression

The Polynomial regression algorithm is an old technique used to achieve a linear regression
function. It is based on some basis functions that are summed [77–81]. The number of inputs and the
degree of the used polynomial affect the number of these basis functions.

Different examples of the polynomial are shown in equation (1) and (2)—both of them for two
inputs, but with different polynomial degrees:

F(x) = a0 + a1x1 + a2x2, (1)

F(x) = a0 + a1x1 + a2x2 + a3x1x2 + a4x2
1 + a5x2

2. (2)

3.4. Data Processing

The BoP described below collects the data used in this research. All of the data available have
736,339 samples from six different experiments. However, as the model used different time instants for
the inputs and outputs, there are some samples that are not used. The number of valid samples to the
research was 736,309.

This data were divided in three different sets of data: for training (441,785 samples), to select the
hybrid topology (147,262 samples), and, for tests, the final hybrid model (147,262 samples).

4. Results

The results of this research could be divided into four different parts: the clustering, the modelling,
the hybrid topology selection, and the test.

4.1. Clustering Results

As it is explained, he K-Means algorithm is used for clustering. With this technique, the training
data were divided into nine different hybrid systems, with different numbers of clusters for each one
(from 2 to 10). Moreover, the global model (without cluster division) is taken into account.

To ensure good results in the clusters creation, the K-Means algorithm was random initialization
of the centroids, and the training was repeated 20 times. These repetitions allow for avoiding finishing
the training in a local minima. Table 1 shows the number of samples for each cluster.

Table 1. Number of samples in each created cluster.

Cl-1 Cl-2 Cl-3 Cl-4 Cl-5 Cl-6 Cl-7 Cl-8 Cl-9 Cl-10

Global 441,785
Hybrid 2 201,384 240,401
Hybrid 3 118,308 154,026 169,451
Hybrid 4 83,452 86,605 117,997 153,731
Hybrid 5 34,942 83,221 83,286 86,605 153,731
Hybrid 6 34,942 66,739 83,221 83,286 86,310 87,287
Hybrid 7 7785 27,157 66,739 83,221 83,286 86,310 87,287
Hybrid 8 7785 27,157 37,172 51,646 65,208 83,221 83,286 86,310
Hybrid 9 7785 27,157 30,610 36,146 37,089 50,181 83,221 83,286 86,310

Hybrid 10 7785 19,961 27,157 30,610 36,146 37,089 50,181 66,478 83,093 83,285

4.2. Modeling Results

To train the regression algorithm (ANN and Polynomial), K-Fold cross validation in the training
data was used. As is described, this validation divides the data K times and the final error achieved is
a more real measure of the behavior of the system.

The ANNs were configured with only one hidden layer, but the different architectures mean
different numbers of neurons in this hidden layer. They have three inputs and one output—tan-sigmoid



Electronics 2019, 8, 1325 9 of 15

as activation function for all the neurons except the output one that has a linear function. The internal
neurons varied from 1 to 15.

To train each ANN configuration, the Levenberg–Marquardt optimization algorithm was used.
Moreover, to finish the training phase, gradient descent was used as a base on the MSE (mean squared
error).

In the case of a polynomial regression algorithm, the configuration varies between the first or
second degree, with the same number of inputs and outputs that are described below.

To select the best algorithm and its configuration for each cluster, the MSE as the performance
error measurement is used. Table 2 shows the MSE for each cluster, and Table 3 shows the best
algorithm for each case.

Table 2. Mean square error for each individual hybrid model (·10−3).

Cl-1 Cl-2 Cl-3 Cl-4 Cl-5 Cl-6 Cl-7 Cl-8 Cl-9 Cl-10

Global 0.0123
Hybrid 2 0.0108 0.0149
Hybrid 3 0.0111 0.0130 0.0091
Hybrid 4 0.0089 0.0073 0.0114 0.0122
Hybrid 5 0.0269 0.0120 0.0054 0.0068 0.0124
Hybrid 6 0.0269 0.0149 0.0121 0.0053 0.0072 0.0095
Hybrid 7 0.1104 0.0026 0.0138 0.0123 0.0053 0.0069 0.0095
Hybrid 8 0.1104 0.0027 0.0069 0.0092 0.0140 0.0121 0.0053 0,0071
Hybrid 9 0.1104 0.0029 0.0199 0.0049 0.0069 0.0092 0.0108 0.0054 0.0069

Hybrid 10 0.1104 0.0069 0.0027 0.0162 0.0040 0.0068 0.0094 0.0068 0.0122 0.0054

Table 3. Configuration for each individual hybrid model.

Cl-1 Cl-2 Cl-3 Cl-4 Cl-5 Cl-6 Cl-7 Cl-8 Cl-9 Cl-10

Global ANN12
Hybrid 2 ANN14 Poly1
Hybrid 3 ANN14 ANN12 ANN13
Hybrid 4 ANN11 ANN11 Poly1 ANN11
Hybrid 5 Poly1 Poly2 Poly1 ANN12 ANN11
Hybrid 6 Poly2 ANN13 Poly2 Poly1 ANN14 ANN13
Hybrid 7 Poly1 ANN11 ANN13 Poly1 Poly1 ANN15 ANN11
Hybrid 8 Poly1 ANN15 ANN13 ANN14 ANN11 Poly2 Poly1 ANN14
Hybrid 9 Poly1 ANN13 ANN11 ANN15 ANN15 ANN15 ANN13 Poly1 ANN15
Hybrid 10 Poly1 ANN15 ANN14 ANN11 ANN15 ANN13 ANN12 ANN14 Poly1 Poly1

4.3. Hybrid Topology Selection

To select the hybrid topology, the number of local models or the global one, a new data set isolated
from the training phase described in the previous subsection is used. The models used this new data
to calculate the output, and a new error log was achieved for each hybrid topology. Table 4 shows the
MSE obtained for each model, where it is possible to choose the configuration with eight clusters, as it
has the lowest MSE value.

Table 4. Mean squared error for each model.

Global
Hybrid Model (Local Models)

2 3 4 5 6 7 8 9 10

0.1403 0.1405 0.1466 0.2567 0.6253 0.9691 0.3424 0.1204 0.2638 0.2015

According with Table 3, the best hybrid model will have internally different algorithms as
Polynomial (first and second degree), and Artificial Neural Networks (with 11, 13, 14, and 15 neurons in
the hidden layer). All these models are different—although in the table, the same model configurations
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appear, and each model is specific for its cluster. Poly11 is different than Poly18 (with superscripts
meaning the clusters), in the same way ANN132 is different than ANN137, and ANN154, ANN155,
ANN156, and ANN159 are different between each other.

4.4. Test Results

After the hybrid configuration was chosen, the final hybrid model was tested with the final data set
isolated from the beginning. Table 5 shows different error measurements for this configuration: MSE,
NMSE (Normalized MSE), MAE (Mean Absolute Error), and MAPE (Mean Absolute Percentage Error).

Table 5. Performance values for the best hybrid configuration.

MSE NMSE MAE MAPE

8 local models configuration 1.2036 × 10−5 3.1051 5.1196 × 10−4 819.7600

MSE: Mean Squared Error; NMSE: Normalized Mean Squared Error; MAE: Mean Absolute Error; MAPE: Mean
Absolute Percentage Error.

Figure 9 shows the fuel cell inlet flow. The green line was calculated with the actual flow and
the simulated variation from the model presented in Table 5, a configuration with eight local models.
The blue line is the real hydrogen inlet flow.

Figure 9. Hydrogen flow calculated with simulated (green) and real (blue) data.

Another simulation using random samples from another test was made. The graphical results
(Figure 10) show that the error between the real and simulated data used to be less than 0.1.
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Figure 10. Error between real and simulated values.

5. Conclusions and Future Works

In this research, a new model to predict the variation in the inlet flow rate to change the output
power of a fuel cell is developed. The model can predict with very good results this variation, and
allow for adapting the hydrogen inlet control system to the desired working point.

As the fuel cell system is nonlinear, a hybrid model is chosen, combining clusters’ techniques with
ANN and Polynomial regression algorithm. The results show that the best configuration is achieved
with eight local models. These models are different topologies of ANN (with 11 to 15 neurons in the
hidden layer), and Polynomial regression (first and second degree). The test data used to check the
performance of the final model obtained error values like 1.2 × 10−5 for MSE, or 5.1196 × 10−4 for
MAE.

As future work, the joining of the prediction variation calculated with the present model, and the
control system of the fuel cell, is taken into consideration. It is possible to create an adaptive-predictive
control system with the model from this paper; this new control should be faster and better to adapt
the fuel cell to the changes desired in the load power.
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