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Abstract: Cell voltage equalization is mandatory to eliminate voltage imbalance of series-connected
energy storage cells, such as lithium-ion batteries (LIBs) and electric double-layer capacitors (EDLCs),
to ensure years of safe operations. Although a variety of cell equalizers using selection switches have
been proposed, conventional techniques require numerous switches in proportion to the cell count
and are prone to complexity. This paper proposes a novel cell voltage equalizer using a selective
voltage multiplier. By embedding selection switches into the voltage multiplier-based cell voltage
equalizer, the number of selection switches can be reduced in comparison with that in conventional
topologies, realizing the simplified circuit. A prototype for twelve cells was built, and an equalization
test using LIBs was performed. The voltage imbalance decreased down to approximately 20 mV by
the proposed equalizer, and the standard deviation of cell voltages at the end of the equalization test
was as low as 10 mV, demonstrating its equalization performance.

Keywords: electric double-layer capacitor (EDLC); equalization; lithium-ion battery (LIB);
selection switch; voltage imbalance

1. Introduction

In general, voltages of series-connected energy storage cells, such as lithium-ion batteries (LIBs) and
electric double-layer capacitors (EDLCs), gradually become imbalanced due to nonuniform individual
cell characteristics in capacitance, internal impedance, coulombic efficiency, and self-discharge rate.
Temperature mismatch in a battery pack or module also leads to the occurrence of voltage imbalance
because the self-discharge rate is dependent on temperature—the higher the temperature, the faster
the self-discharge will be [1]. Some cells in a voltage-mismatched pack might be overcharged
and -discharged due to voltage imbalance during charging and discharging processes, respectively.
Charging–discharging energy storage cells beyond safety boundaries likely results in premature
degradation and hazardous situations of fire or, in the worst case, an explosion. Thus, cell voltage
equalization is mandatory to eliminate the voltage imbalance to prevent operations beyond safety
boundaries [2].

Various kinds of cell voltage equalizers have been proposed and commercialized.
Adjacent cell-to-cell equalizers based on non-isolated bidirectional converters, such as PWM
converters [3,4] and switched capacitor converters [5–8], are the most straightforward approach
for cell equalization. However, in addition to a large number of converters necessary for adjacent
cell-to-cell equalization architectures, energy transfer is limited only between neighboring cells,
collectively increasing power conversion loss in the course of equalization, especially in large-scale
systems comprising numerous cells connected in series.
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On the other hand, pack-to-cell equalizers, which are based on a single-input–multi-output
converter, can achieve reduced numbers of converters and active switches [9–20]. A conventional
pack-to-cell equalizer based on a voltage multiplier is shown in Figure 1 as an example. This topology
requires only two switches, regardless of cell count, achieving a simplified circuit. This equalizer
automatically supplies an equalization current toward the least charged cell having the lowest voltage in
the pack, realizing the automatic equalization even without feedback control. However, this automatic
equalization cannot be simply applied to LIBs because the relatively large voltage drop across internal
impedances of LIBs hinders and slows down the voltage equalization process.
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Figure 1. Conventional equalizer using an inverter and voltage multiplier [19].

Meanwhile, cell-to-cell equalizers using cell selectin switches have been intensively developed for
EV battery systems [21–35]. Target cells having the lowest or highest voltages in the pack are selected
by the cell selection switches so that their stored energies are exchanged to equalize cell voltages,
regardless of voltage drops across internal impedance. Typical equalization systems using cell selection
switches are listed in Figure 2. In general, selection switches are bidirectional switches consisting of
two metal-oxide-semiconductor field-effect transistors (MOSFETs) connected back-to-back in order
to block bidirectional current flow. The direct cell-to-cell equalizer using a unidirectional isolated
converter (e.g., a flyback converter), as shown in Figure 2a, requires 4n selection switches, and therefore,
the system is prone to complexity [21,22]. Needless to say, a unidirectional switch is also necessary
for the isolated converter. With the pack-to-cell or cell-to-pack equalizers with selection switches
(Figure 2b) [23–26], the numbers of selection switches can be halved (i.e., 2n), but there is still a room
for improvement. The pack-to-cell equalizer with polarity switches (Figure 2c) can further reduce the
switch count as low as n + 5 [27]. The direct cell-to-cell equalizer with an energy storage medium
(Figure 2d), such as a capacitor, inductor, resonant tank, etc., can reduce the switch count as low as
n + 1 [28–35], but selection switches in many existing direct cell-to-cell equalizer must operate at a
high switching frequency, for which numerous high-frequency gate drivers are also indispensable.
Furthermore, four unidirectional switches are also necessary in the case of the topology in Figure 2d.
Since each bidirectional selection switch and unidirectional switch requires a gate driver as well as
its auxiliary power supply, the switch count can be an index to represents the circuit complexity.
The number of selection switches should desirably be reduced as much as possible to simplify the
circuit and to reduce the cost.

This paper proposes a novel pack-to-cell equalizer using a selective voltage multiplier.
By embedding cell selection switches into a voltage multiplier-based cell voltage equalizer, the numbers
of selection switches can be reduced to n, achieving the simplified circuit. Section 2 describes
the proposed equalizer and its major features, followed by the operation analysis in Section 3.
The experimental results of an equalization test for twelve LIB cells connected in series are shown in
Section 4.
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Figure 2. Conventional cell equalizers with selection switches: (a) direct cell-to-cell equalizer based
on an isolated converter; (b) pack-to-cell equalizer; (c) pack-to-cell equalizer with polarity switches;
and (d) direct cell-to-cell equalizer with energy storage medium.

2. Proposed Cell Voltage Equalizer Using Selective Voltage Multiplier

2.1. Topology

The proposed voltage equalizer using the selective voltage multiplier for four cells connected in
series is shown in Figure 3 as an example. This equalizer consists of the resonant inverter and voltage
equalizer with selection switches embedded. In comparison with the conventional pack-to-cell equalizer
using the voltage multiplier (see Figure 1), coupling capacitors C1–C4 are replaced with selection
switches S1–S4. S1–S4 are bidirectional switches comprising two MOSFETs connected back-to-back,
as shown in the inset of Figure 3. The symmetric half-bridge resonant inverter is employed, but its
fundamental operation principle is identical to that of the conventional equalizer shown in Figure 1.

High- and low-side switches, QH and QL, are alternately driven in a complementary mode with a
fixed 50% duty cycle to generate resonant AC current for the transformer secondary side. A selection
switch corresponding to the least charged cell is activated, and the AC current transferred from the
resonant inverter is rectified by the voltage multiplier, producing a DC equalization current for the
least charged cell. The detailed operation principle is discussed in Section 3.
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2.2. Features

Conventional selection switch-based equalizers require at least n + 1 bidirectional selection
switches, as introduced in Section 1. The topology in Figure 2d comprises the least number of selection
switches (i.e., n + 1), but it requires four unidirectional switches. With the proposed equalizer, on the
other hand, the number of bidirectional selection switches and unidirectional switches can be reduced
to as low as n and two, respectively, reducing the circuit complexity and cost. Furthermore, the selection
switches in the proposed equalizer do not need to operate at a high frequency, and therefore, gate driver
circuits for selection switches can be simpler and less powerful than those needed in conventional
cell-to-cell equalizer using selection switches [28–35]. Although diodes D1–D8 and smoothing capacitors
Co1–Co4 are additionally necessary for the voltage multiplier, these are passive components and do not
need auxiliary circuits. Hence, the added complexity due to the passive components in the voltage
multiplier would be minor compared to selection switches, for which auxiliary circuits, including gate
drivers and power supplies, are indispensable.

The resonant inverter in the proposed equalizer is essentially identical to that in the convention
equalizer shown in Figure 1 [19]. It operates in a discontinuous conduction mode (DCM), by which an
equalization current supplied to cell(s) can be automatically constant even without feedback control.
This inherent constant current characteristic is a suitable feature for energy storage devices because
LIBs and EDLCs are essentially a voltage source.

3. Operation Analysis

3.1. Operation Modes

The operation analysis is performed for the case that B1 is the least charged cell in the battery pack
and S1 is activated. All circuit elements are assumed ideal unless otherwise noted. Theoretical key
operation waveforms and current flow paths are shown in Figures 4 and 5, respectively.

Mode 1 (0 ≤ t < T1) (Figure 5a): The gating signal for QH, vGS.H, is applied to turn on QH,
achieving zero current switching (ZCS) turn-on. Lkg and Cr start resonating, and the current of Cr,
iCr, sinusoidally changes. On the transformer secondary side, the resonant current flows through the
activated selection switch of S1 and the high-side diode corresponding to B1, D2. This operation mode
lasts until iCr becomes zero.

Mode 2 (T1 ≤ t < T2) (Figure 5b): QH and QL are still on and off, respectively. The polarity of iCr
is reversed, while the low-side diode corresponding to B1, D1, starts to conduct. vGS.H is removed
before iCr comes back to zero in order to turn off QH at zero voltage switching (ZVS). At the same time,
the body diode of QH conducts. This operation mode ends when iCr becomes zero.
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Mode 3 (T2 ≤ t < T3) (not shown): This mode is unique to the DCM operation. No currents flow
in this mode, except for the smoothing capacitors.
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Mode 4 (T3 ≤ t < T4) (Figure 5c): The gating signal for QL, vGS.L is applied to turn on QL at ZCS.
Lkg and Cr start resonating again. D1 on the secondary side conducts. This operation mode ends when
iCr becomes zero.

Mode 5 (T4 ≤ t < T5) (Figure 5d): QH and QL are still off and on, respectively. The polarity of iCr is
opposite to that in Mode 4. The current on the secondary side flows through D2. vGS.L is removed
before iCr comes back to zero so as to turn off QL at ZVS. As iCr becomes zero, the operation moves to
Mode 6.

Mode 6 (T5 ≤ t < Ts) (not shown): This mode is identical to Mode 3, and no currents flow in
the circuit.

In summary, the resonant current flows through the activated selection switch (S1) and diodes
connected to the least charged cell. The AC current is rectified by the diodes in the voltage multiplier,
and a DC equalization current is supplied to the least charged cell only.

3.2. Operation Boundary and Equalization Current

As can be seen in Figure 4, half the switching period (0.5Ts) must contain a full resonant period Tr.
Hence, the following operation boundary needs to be fulfilled:

2 fS ≤ fr, (1)

where fs is the switching frequency and fr is the resonant frequency.
Since the resonant inverter in the proposed equalizer is identical to that in the conventional

pack-to-cell equalizer [19] (see Figure 1), the equalization current supplied to the least charged cell can
be expressed in the identical form, as:

Ieq ≈
2NωsVin
πZ0ωr

, (2)

whereωs andωr are the angular switching and resonant frequencies, respectively, Z0 is the characteristic
impedance of the resonant tank:

Z0 =

√
LkgN2

Cr
, ωr =

√
ω2

0 − γ
2, (3)

where ω0 is the characteristic angular frequency, and γ is the damping factor given by:

ω0 =
N√

LkgCr

, γ =
R

2Lkg
, (4)

where R is the sum of resistive components in the resonant current path.
The equalization current Ieq is independent on cell voltage, as Equation (2) does not contain the

cell voltage. By properly designing the resonant tank parameters, currents in the circuit can be limited
within desired levels even without feedback control.

3.3. Equalization Algorithm

The equalization algorithm for the proposed equalizer is shown in the form of the flow chart in
Figure 6. At the beginning, all the selection switches are off. Cell voltages are measured, and open-circuit
voltages VOC are estimated by compensating a voltage drop across the impedance of cells. Since the
equalization current Ieq supplied from the equalizer is known and constant (see Equation (2)), the voltage
drop across the internal impedance of the selected cell can be determined. The open-circuit voltage
of the selected cell, VOC.i, can be estimated by compensating the voltage drop across the internal
impedance Zint, as:

VOC.i = Vi − IeqZint, (5)
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where Vi is the terminal voltage of the selected cell Bi (i = 1 . . . 4). To compensate the voltage drop
IeqZint, Zint needs to be measured in advance.
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The most and least charged cells with the highest and lowest VOC, Vmax and Vmin, are determined.
If the difference between Vmax and Vmin is less than the threshold voltage Vth, all selection switches
remain off. If Vmax − Vmin is greater than Vth, the selection switch corresponding to Vmin is turned on.
Finally, QH and QL are driven to perform voltage equalization for X seconds. This sequence is repeated
until all cell voltages are balanced, and Vmax − Vmin will be within Vth.

A relative state of charge (SOC) compensated by the equalizer in a single cycle of the flow chart is
expressed as:

∆SOC =
IeqX

3600×C
, (6)

where C is the cell capacity in Ah. For the experimental verification test using a prototype with
Ieq ≈ 0.75 A for LIB cells with 3400 mAh (see Section 4.3), X was determined to be 180 s so that ∆SOC
was about 1%.

4. Experimental Results

4.1. Prototype

A prototype for twelve cells connected in series was built, as shown in Figure 7. Circuit elements
used for the prototype are listed in Table 1. The resonant frequency fr was approximately 320 kHz,
and the prototype was operated at fs = 120 kHz to fulfill (1).

Table 1. Components list.

Component Value

QH, QL N-Ch MOSFET, FDD390N15A, Ron = 40 mΩ
CH, CL Ceramic Capacitor, GRM31CB31H106KA12L 10 µF

Cr Film Capacitor, F161SP474M063V, 0.47 µF
Transformer N1:N2 = 15:3, Lkg = 13.8 µH, Lmg = 100 µH

S1–S12 N-Ch MOSFET, IRF7341PBF, Ron = 50 mΩ
Co1–Co12 Ceramic Capacitor, JMK325ABJ277MM-P, 220 µF
D1–D24 Schottky Diode, CRS04 (T5L, TEMQ), Vf = 0.49 V
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Figure 7. Prototype of proposed equalizer for twelve cells.

4.2. Measured Waveforms and Characteristics of Equalizer

Characteristics of the prototype alone were measured by breaking the node A designated in
Figure 3. The equalizer was powered by an external power supply with Vin = 48 V. All cells were
removed, and a variable resistor was connected in parallel with Co1 to emulate the current flow path in
Figure 5.

The measured key operation waveforms are shown in Figure 8. These waveforms agreed well
with the theoretical ones in Figure 4, verifying the operation of the prototype.

Electronics 2019, 8, x FOR PEER REVIEW 8 of 12 

 

4. Experimental Results 

4.1. Prototype 

A prototype for twelve cells connected in series was built, as shown in Figure 7. Circuit elements 

used for the prototype are listed in Table 1. The resonant frequency fr was approximately 320 kHz, 

and the prototype was operated at fs = 120 kHz to fulfill (1). 

 

Figure 7. Prototype of proposed equalizer for twelve cells. 

Table 1. Components list. 

Component Value 

QH, QL N-Ch MOSFET, FDD390N15A, Ron = 40 mΩ 

CH, CL Ceramic Capacitor, GRM31CB31H106KA12L 10 µF 

Cr Film Capacitor, F161SP474M063V, 0.47 µF 

Transformer N1:N2 = 15:3, Lkg = 13.8 µH, Lmg = 100 µH 

S1–S12 N-Ch MOSFET, IRF7341PBF, Ron = 50 mΩ 

Co1–Co12 Ceramic Capacitor, JMK325ABJ277MM-P, 220 µF 

D1–D24 Schottky Diode, CRS04 (T5L, TEMQ), Vf = 0.49 V 

4.2. Measured Waveforms and Characteristics of Equalizer 

Characteristics of the prototype alone were measured by breaking the node A designated in 

Figure 3. The equalizer was powered by an external power supply with Vin = 48 V. All cells were 

removed, and a variable resistor was connected in parallel with Co1 to emulate the current flow path 

in Figure 5. 

The measured key operation waveforms are shown in Figure 8. These waveforms agreed well 

with the theoretical ones in Figure 4, verifying the operation of the prototype. 

 

Figure 8. Measured key operation waveforms. 

-6.0

-3.0

0.0

3.0

6.0

i C
r 

[A
]

Time [2 µs/div]

60

40

20

0

v
Q

L
 [

V
]

Figure 8. Measured key operation waveforms.

Measured output equalization current Ieq characteristics and power conversion efficiencies are
shown in Figure 9—VCo1 in Figure 9 corresponds to the voltage of Co1. Ieq slightly declined with as
VCo1 increased but was nearly constant, demonstrating the constant current characteristic in DCM.
The efficiency was lower than 60%, and diode forward voltage drops were considered to be the dominant
loss factor as it took a significant portion of the output voltage. The measured efficiency characteristic
was somewhat inferior to that of conventional equalizers (e.g., 80% [31,35]). Nevertheless, the inferior
efficiency performance would be acceptable in most applications because processed power in the
equalizer is one-hundredth to one-thousandth that of a main converter [36,37]. Therefore, the loss in
the equalizer would be negligibly small from the system viewpoint.
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4.3. Equalization Test

An equalization test was performed for series-connected LIB cells, each with a capacity of
3400 mAh. Individual cell voltages, or SOC, were intentionally imbalanced. The experimental setup for
the equalization test is shown in Figure 10. Individual cell voltages were measured using differential
amplifies, and a TMS320F28335 control card was used to generate gating signals and to perform the
equalization algorithm in Figure 6. The equalization was carried out with Vth = 20 mV.
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Figure 10. Experimental setup of equalization test for twelve LIB cells.

The resultant equalization profiles are shown in Figure 11. B1 and B2, the least charged cells at
the beginning of the test, received an equalization current, and their voltages of V1 and V2 increased.
At the same time, other cells supplied the input current for the equalizer, and their voltages decreased.
During the course of the equalization, cells became the least charged cell alternately and received an
equalization current based on the equalization algorithm. The voltage imbalance gradually vanished
and decreased down to approximately 20 mV. The standard deviation of cell voltages at the end
of the equalization test was as low as 10 mV, demonstrating the equalization performance of the
proposed equalizer.
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5. Conclusions

The cell voltage equalizer using a selective voltage multiplier for series-connected LIB cells has
been proposed in this paper. The proposed equalizer can be derived by embedding selection switches
into the conventional voltage multiplier-based cell voltage equalizer. In comparison with conventional
cell equalizers using selection switches, the proposed topology can reduce the number of selection
switches by embedding selection switched into the voltage multiplier-based equalizer, achieving the
simplified circuit and reduced cost.

The equalization test using the prototype was performed for twelve LIBs connected in series.
The voltage imbalance decreased to approximately 20 mV, and the standard deviation of cell voltages
at the end of the equalization test was as low as 10 mV, demonstrating the equalization performance of
the proposed cell equalizer.
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