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Abstract: In recent years, unmanned surface vehicles (USVs) have made important advances in civil,
maritime, and military applications. With the continuous improvement of autonomy, the increasing
complexity of tasks, and the emergence of various types of advanced sensors, higher requirements
are imposed on the computing performance of USV clusters, especially for latency sensitive tasks.
However, during the execution of marine operations, due to the relative movement of the USV cluster
nodes and the network topology of the cluster, the wireless channel states are changing rapidly, and
the computing resources of cluster nodes may be available or unavailable at any time. It is difficult
to accurately predict in advance. Therefore, we propose an optimized offloading mechanism based
on the classic multi-armed bandit (MAB) theory. This mechanism enables USV cluster nodes to
dynamically make offloading decisions by learning the potential computing performance of their
neighboring team nodes to minimize average computation task offloading delay. It is an optimized
algorithm named Adaptive Upper Confidence Boundary (AUCB) algorithm, and corresponding
simulations are designed to evaluate the performance. The algorithm enables the USV cluster to
effectively adapt to the marine vehicular fog computing networks, balancing the trade-off between
exploration and exploitation (EE). The simulation results show that the proposed algorithm can
quickly converge to the optimal computation task offloading combination strategy under heavy and
light input data loads.

Keywords: task offloading; marine fog-cloud computing networks; unmanned surface vehicles

1. Introduction

In recent years, USVs have made important advances in civil, maritime, and military applications.
In the foreseeable future, unmanned surface vehicles will perform more missions with important
application prospects.

They can be used for maritime search and rescue, maritime inspections, environmental monitoring,
etc. In military applications, they can be used for different tasks, including maritime security, special
operations support, and maritime interception operations support, etc.

During tasks execution, USVs need to complete necessary marine situational awareness,
autonomic strategy formulation, dynamic team formation, and joint mission evaluation by itself
or other cooperative nodes within the same mission framework, and use encrypted radio frequency
communication link for information distribution and collaboration with other platforms (unmanned
or not).

With the continuous improvement of autonomy, the increasing complexity of tasks, and the
emergence of various types of advanced sensors, higher requirements are imposed on the computing
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performance of USV cluster, especially for latency sensitive tasks [1]. The main reasons include the
following aspects:

• In complex mission operations, USV team nodes must be assigned different roles, depending
on limited platform size, energy, and payloads. For example, some nodes need to be installed
with more payloads to complete the detection and sensing functions for the cluster, and no more
computing resources can be configured. At the same time, some nodes can be configured with
stronger computing resources, but fewer other payloads. By assigning different roles to cluster
nodes, it is possible to make unmanned node functions more specific and fully utilized.

• At the level 1 of unmanned system’s autonomy, cluster nodes do not need to have strong computing
resources. All sensor data will be transmitted to the remote control center, and the operator judges
the situation and sets the corresponding commands. As the task complexity increases, the cluster
node autonomy must be improved, and remote control mode is far from meeting the requirements
of complex tasks, and cannot take the advantages of unmanned systems.

• At the same time, cluster nodes need to be equipped with more advanced sensors to achieve
higher requirements of detection and sensing through more sensor data to meet the needs of
complex tasks. This large amount of data cannot be handled by the remote control center because
it will generate a large delay and cannot meet the requirements of cluster nodes to respond to
situational changes in a short time.

In the past few years, we focused on research of collaborative autonomy and control of USVs,
and we had achieved level 2 of unmanned system’s autonomy. In recent years, we have begun to
research new communication technologies because we find that the existing maritime communication
technologies cannot be able to support autonomy of USVs to cope with more complex tasks, especially
latency-sensitive tasks.

The picture below shows a certain type of USV that we have developed which has significant
applications in some areas. USVs are undergoing marine testing, as shown in Figure 1.
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Figure 1. Marine test of unmanned surface vehicles (provided by our research team).

For the above reasons, it is important to make full use of the computing resources of USV cluster.
At the same time, combined with the computing resource of the remote cloud, the overall computing
performance can be significantly improved.

However, due to the limited marine communication conditions (such as bandwidth limitation,
channel quality, etc.) between USV cluster and remote cloud, if a large number of complex computing
task are offloaded to a centralized cloud with rich computing resources, the transmission costs are also
relatively high.
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Although the application of marine unmanned systems is just at the beginning, the development
capability is very strong. The capacity of marine unmanned platforms is increasing. Advanced sensor
technologies continue to emerge and are used in a wider range of applications and deployments.
In order to cope with these factors, there is an urgent need for a reliable, flexible, and marine
communication mechanism with effective carrying capacity to achieve multi-level information process,
exchange, and transmission.

Therefore, this paper proposes a marine fog-cloud computing architecture for USV clusters,
which can dynamically allocate USV cluster and cloud resources to achieve overall optimized
computing performance.

The contribution of this work can be summarized as follows:

• This paper proposes a marine fog-cloud computing architecture for USV clusters, and analyzes
the network dataflow.

• For typical application scenarios, we consider a marine vehicular fog-cloud computing model of
moving USV cluster nodes.

• An optimized learning-based computation offloading mechanism based on classic MAB theory
is proposed. This mechanism enables USV cluster nodes to dynamically make decisions by
learning the potential offloading performance of their neighboring team nodes to minimize
average computation task offloading delay.

• Furthermore, we propose an optimized algorithm named AUCB algorithm and design
corresponding simulations to evaluate the performance under typical conditions.

2. Related Work

The research of unmanned systems involves a deep integration of many disciplines such as
systems engineering, control engineering, information, and communication engineering. It is also the
frontier research field and future development direction of marine science and technology.

With the rapid development of information technology, technological advances have paved the
way for the emergence of complex services. Computation task offloading is attractive for Internet of
Things (IoT) and edge computing. Typically, task offloading can occur between sensors, edge devices,
fog nodes, or IoT nodes [2].

In order to improve the task scheduling efficiency of the marine collaborative edge systems and
reduce communication cost, an optimized algorithm is proposed in [3].

SDN and fog computing have been integrated into maritime broadband communication systems
to minimize the total weight delay of the stand-alone scheduling scenario and to achieve the minimum
delay for weighted upload packets in [4].

In the marine mobile computing environment, the network status changes at any time during task
execution, and the migration decision problem in the mobile fog environment needs to be transformed
into a runtime offloading decision-making problem.

If the migration decision is made without considering the dynamics of the marine mobile fog
environment, the strategy will result in incorrect migration, and ultimately affect the comprehensive
dynamic computing performance of the USV fog cluster.

As far as the scope of this paper is concerned, at present, there are many researches on static
computation offloading decision-making. In the system development stage, the offloading strategy is
formulated through program analysis. After development completion, the algorithm strategy will no
longer change. For example, the problems studied in [5–8] are static offloading decisions.

Some existing related research based on mobile device edge computing mostly utilizes the idle
mobile node device around user terminals to complete the offloading of computing task through D2D
communications. The corresponding research is carried out in [9,10].

Reference [11] designs the computation offloading strategy under renewable energy supply and
the opportunistic-based mobile self-organizing cloudlet offloading strategy.
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USV clusters work in a challenging communications environment, and the reliable communication
system is a vital factor for them to operate safely and accomplish mission tasks. It needs to be able to
ensure the reliability and effectiveness of the communication mechanism under the premise of coping
with the ever-changing adverse factors, even in the harsh electromagnetic and network environment.

Therefore, in a dynamic environment, the migration strategy design should be formulated
according to the current situation, and the migration strategy should change constantly.

Driven by the latest developments in artificial intelligence, the fog radio access networks are seen
as a potential architecture to support IoT services. A joint mode selection and resource management
algorithm based on deep reinforcement learning is proposed in [12].

F-RAN is an emerging architecture that takes advantage of edge computing and distributed
storage in edge devices. Reference [13] proposes a NOMA-based F-RAN architecture with powerful
edge computing capabilities to meet the heterogeneous requirements of mobile vehicular systems.

In a fog computing network, a mobile device can offload its data or computation intensive tasks
to a fog node in its vicinity. Based on theoretical analysis, a multi-objective optimization problem
is proposed in [14] with the objective of minimizing energy consumption, processing delays and
communication costs for each mobile terminal.

The vehicular edge computing network integrates the computing resources of nearby vehicles
and provides computing services. A learning-based offloading mechanism is proposed in [15].

However, obtaining an optimal strategy in such a dynamic system is challenging. In addition to
immediate rewards, reinforced learning (RL) also considers long-term goals, which are important for
time-varying dynamic systems. Reference [16] proposes a RL-based optimized algorithm to solve the
task allocation problem in wireless mobile edge computing network.

Reference [17] proposes a task offloading algorithm based on deep Q-network. The algorithm
can learn to develop an optimal offloading strategy without relying on the prior knowledge of
dynamic statistics.

Related research on computation migration systems, cloud service operators and cloud resource
operators in [18] from three aspects: migration decision-making, task access control and energy-efficient
resource management. The research fully considers the problems and challenges brought by the mobile
cloud environment to the computation offloading system.

Fog computing is expected to provide low latency computing services at the edge of the network
for the IoT systems. Reference [19] proposes a computation task offloading algorithm to simulate the
competition between IoT terminals and to distribute the limited computing resources of the fog nodes.

Fog computing can provide latency-sensitive service for terminals and reduce power consumption
and traffic congestion. It achieves efficient resources utilization and better performance [20].

Reference [21] performs a strict comparative analysis of the fog computing and the conventional
cloud computing in the IoT environment. The results show that the performance of fog computing
is superior to traditional cloud computing with the increase in the number of applications requiring
real-time services.

Reference [22] proposes a new fog computing model that can alleviate the potential problems of
dedicated computing infrastructure and the slow response in cloud computing. The results show that
fog computing can greatly improve the performance of the analysis service compared to using only the
cloud model.

Reference [23] investigates the joint allocation of radio and computing resources to optimize
system performance and improve user satisfaction, and proposes a matching game mechanism to
provide a distributed solution for the joint resource management.

We adopt a lot of ideas from related research on resource management, communication, and other
aspects in [1,24].

Reference [25] proposes a fog-cloud computing architecture for unmanned aerial vehicles and
carried out the corresponding computing performance analysis. A utility-aware data transmission
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mechanism for delay tolerant networks is proposed in [26], which considers the internal properties of
nodes and external contacts.

3. System Model

3.1. Computing Architecture

In this section, we will explain several existing problems of marine communication, and discuss
the proposed model and expected goals.

During the execution of a marine mission, the USV cluster must be able to perform several
important functions such as information distribution and task collaboration, which include information
distribution, task coordination, team roles allocation, dynamic team formation, interaction with team
members or external devices, etc.

The cluster nodes can use wireless communication link for information distribution. They can
distribute dynamic mission information to other cooperative nodes (unmanned or not).

However, the marine communication environment has corresponding special characteristics—such
as large scale, limited bandwidth, communication delay, etc.—and requires the following considerations:

• For the most computing tasks, a large amount of data generated by the USV cluster nodes which
are responsible for situational awareness, needs to be processed, and the processed data is much
smaller than the raw data, which is below several orders of magnitude.

• The computing performance of remote cloud is much higher than that of each USV cluster node,
but limited by the marine communication conditions between marine cluster and remote cloud,
the transmission delay is also very large and unrealistic, if all raw data is offloaded to cloud
for calculation.

• Although the computing performance of the cluster node is lower than remote cloud server,
considerable computing performance can also be obtained by making full use of the parallel
computing performance of each cluster node and the communication bandwidth advantage
within cluster coverage.

• In general, for most computing tasks, USVs are usually energy insensitive.

Therefore, we propose a marine fog-cloud computing architecture, and develop an optimized
learning-based offloading mechanism to solve several mentioned problems.

The marine fog-cloud computing architecture can provide a promising solution to these problems.
In the proposed computing architecture, task offloading to the distributed USV cluster nodes enables
the full use of underutilized computing resources to mitigate the communication load, and reduce
processing delays.

Generally, the moving USV cluster nodes can be classified into task nodes (TaNs) and computation
nodes (CoNs). TaNs generate computation tasks that need to be offloaded to available CoNs of USV
fog cluster, or remote cloud, as shown in Figure 2.

Each node of USV fog cluster has networked structure features such as decentralization and roles
equality. By optimizing the utilization of fog node resources, the overall performance of the network is
optimized. The fog coordinator mainly performs roles allocation, task coordination, dynamic team
forming, or radio frequency communication between fog cluster and remote cloud.

Although the conditions of marine communication are relatively limited currently, but when
the fog cluster nodes are few, or the computing resources are not particularly rich, the fog-cloud
computing architecture can also obtain considerable overall computing performance by fully utilizing
the computing resources of remote cloud.
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When the computing resources available to the fog cluster nodes are abundant, the remote cloud
will be less important to the overall computing performance. Therefore, the fog-cloud computing
architecture fully considers the comprehensive consideration of the above situations to achieve
acceptable computing benefits.

Vehicular fog computing integrates fog computing and vehicular networks and is expected to
provide real-time service for latency-sensitive task [27].

In this paper, the proposed task allocation and resource management algorithms of fog-cloud
computing architecture are optimized to reduce processing delay and communication load, and take
full advantage of the computing performance of the fog-cloud computing architecture.

3.2. Marine Fog-Cloud Computing Network Dataflow

With the continuous improvement of unmanned system’s autonomy and the increasing complexity
of tasks, higher requirements are imposed on the computing performance of USV cluster, especially for
latency sensitive tasks.

Many tasks must be completed at the marine cluster level to meet latency requirements—such
as teamwork keeping, resource allocation, cluster coordination, etc.—as shown in Figure 3. It also
shows the computation offloading delays considered in the proposed computing model, including
transmission delay and computation delay.

In addition, because industrial big data is often unstructured, it is pruned and refined by local fog
before being sent to the remote cloud [28].

In general, the transmission delay includes the delay in which the raw data is migrated from TaNs
to the CoNs, and the delay in returning the processed data. The transmission delay is affected by the
amount of data, transmission power, channel state, etc.

The computing delay refers to the delay when the CoNs complete the data computation, which is
usually determined by the raw data size and the computing performance or available resources of
the CoNs.

However, during task execution, the channel state and the computing performance or available
resources of the computation node cannot be known to the task node in advance, when making a
computation migration strategy.

On the other hand, the signaling overhead will be much high, if each task node requests the
parameters of all candidate computation nodes in each time period.
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Therefore, we need to develop an effective scheduling mechanism or algorithm that can be used to
take full advantage of the computing performance of the fog-cloud computing architecture, and reduce
processing delay and communication load, when making the offloading decision without additional
signaling overhead.

3.3. Typical Application Scenarios of Marine Fog-Cloud Computing

This section describes typical application scenarios of the marine fog-cloud computing architecture
for USV clusters. These application scenarios require low latency of computing services.

The fog-cloud computing architecture and efficient algorithm design can be used for providing
optimization for computing services.

3.3.1. Marine Situational Awareness (MSA)

The USV’s MSA systems can obtain sensing information from onboard sensors, or receive cluster
information through the communication module, including task collaboration data from teammates,
and convert the information into a generic situation picture. This is important for the unmanned
system’s collaborative autonomy.

Four different levels of requirements should be achieved, including:
Level 1, object evaluation, it completes the fusion and elimination of data onboard sensors, or

external collaborative data sources of heterogeneous nodes, and generates an overall situational map
within the task framework.

Level 2, situational assessment, it is used to evaluate the fused general contextual picture to
identify object attributes within the coverage of the teammates’ sensors (eg, hostile, friendly, neutral,
etc.) and to prioritize emerging or potential threat-related targets.

Level 3, predictive consciousness, it is used to identify the motion parameters and future trajectories
of possible threats and assesses the intentions of possible threats.
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Level 4, process optimization, it determines that when information from an MSA system does not
meet the operation requirements, other means can be taken to obtain important information, such as
requesting a mission plan from another platform or from a communication network [29].

The MSA system is also capable of collecting and maintaining other information such as sea
states, weather conditions, etc. All the information will also be provided to the mission plan to make
autonomic strategy for guiding USV cluster nodes’ behaviors.

With the emergence of advanced sensors, a large amount of data is generated for situational
analysis. USV cluster nodes need to intelligently analyze, process, and convert related data into a
general situation picture in the mission framework for collaborative nodes. The processed information
can also be distributed to remote monitoring and control centers.

3.3.2. Autonomic Strategy Formulation

Autonomic strategy formulation determines and establishes the goals, mission and objectives of
USV cluster. It enables the USV cluster to identify and select the appropriate plan among all available
strategies that can achieve its goals.

With the continuous adoption of intelligent algorithms including reinforcement learning, the
autonomy level of USV clusters is also constantly improving. At the same time, more and more complex
and real-time tasks require USV cluster to make autonomous decisions immediately to respond to the
changing environmental requirements internal or external.

This is extremely important for unmanned systems. In addition to being able to accomplish tasks
better, it also enables USV clusters to respond effectively to complex and changing environments,
embodying the intelligence of unmanned systems.

Although the computing performance of USV cluster nodes is still relatively low compared with
cloud computing, but with the continuous development of information technology, the computing
performance of USV cluster nodes is also continuously improved.

Especially for latency-sensitive tasks, it is also an important method to obtain considerable
computing performance, by making full use of the USV cluster computing resources, especially when
marine communication conditions (bandwidth limitation, channel quality, etc.) are limited between
the cluster and remote cloud.

3.3.3. Dynamic Team Formation

It accommodates the composition and rebuild of the USV cluster as required, including teammates
identification, team structures, and roles allocation within mission framework.

It is very important for USV clusters to cope with changes to refactor the team organization,
including team member loss or failure, new team members joining, current task changes, and
other conditions.

As conditions change, the structure of the team will be dynamically adjusted and the roles will be
re-allocated to form new interactions.

In the process of dynamic team formation of multiple heterogeneous platforms, team members are
regrouped according to the requirements of tasks, forming a new organization to complete a separate
task, or merging the organizations to form a new joint task team.

The heterogeneous fog cluster can dynamically perform computation migration/offloading, and
utilize the dynamic resources of mobile platforms in the network to provide computing services. The
marine fog cluster should also allow mobile nodes to join and leave at any time.

The computing task is completed through the cooperation of the mobile platforms, and the
dynamic performance of the edge computing service is maintained.

Through the dynamic mobile edge computation migration and offloading strategy, the
computing performance of USV fog cluster nodes are optimized under the conditions of limited
maritime communication resources. The marine fog-cloud computing architecture reduces
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unnecessary offloading of computing tasks and communication tasks and maintains good dynamic
computing performance.

In summary, a satisfactory computation offloading strategy can fully utilize the heterogeneous,
diversified storage and computing resources of USV cluster nodes, and should also consider the
mobility of the cluster nodes.

3.3.4. Joint Mission Evaluation

Joint mission evaluation can be used to provide a higher-level operational assessment of large-scale
joint operations and diversification of mission implementation.

It should have the ability to integrate multiple mission nodes, multi-dimensional situational
information space, operation patterns, etc., to build modular joint mission evaluation space.

After operations completion, it is not difficult to evaluate the results of simple task for USV cluster.
However, for large-scale, multi-factor, multi-node participated operations, USV cluster needs to conduct
comprehensive assessment of task completion degree based on a large number of multi-dimensional
observation data, and generate task evaluation results.

Usually, mission evaluation should be completed in a short period of time and clear evaluation
results should be drawn, so it is also time sensitive.

The task evaluation results will be sent to the remote monitoring center to reduce communication
load, data processing, and communication delay.

3.4. Massive Data of Heterogeneous Sensors and Computing-Intensive Tasks

With the continuous improvement of unmanned system’s autonomy, and the increasing complexity
of tasks, various types of advanced sensors have emerged. At the same time, higher requirements are
imposed on the computing performance of USV cluster, especially for latency sensitive tasks.

The following functions should be achieved: multi-sensor data fusion, re-configurability of
sensor weighting, adaptability of fault sensors and erroneous data, intelligent heterogeneous data
association, etc.

3.4.1. Multi-Sensor Information Fusion

In complex and uncertain marine surface environments, USVs must have abilities of integrate
multi-sensor data to maintain accurate and continuous sensing of the surrounding conditions and to
transform sensory data into meaningful information within the task framework.

At the same time, this feature provides the USVs with the adaptability to perform tasks in dynamic,
complex situations.

3.4.2. Reconfigurability of Sensor Weighting

This feature refers to the re-configurability of the sensor weight of USVs during task execution.
When USV’s heterogeneous sensor networks are used for multi-sensor data fusion processing, each
sensor onboard may have different weights for different applications and different tasks.

The sensor management system must have the ability to dynamically reconfigure sensor weights
to achieve good performance of the USV platforms for different mission operations.

3.4.3. Adaptability of Faulty Sensors and Erroneous Information

In many cases, USVs need to work in a heterogeneous sensor network due to the requirements
of different tasks. This is also one of the important parameters to be considered when designing a
multi-sensor data fusion system.

Based on this situation, the sensor management system must be dynamically self-adaptive of
sensor failure and erroneous data, thereby enhancing the adaptability of USV sensor network to cope
with changes.
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3.4.4. Intelligent Heterogeneous Data Association

In general, multi-sensor data fusion systems based on heterogeneous sensor networks must have
abilities to process different sensor data simultaneously.

Since the combination of heterogeneous sensors may change during task execution, the data
combination also changes. Intelligent heterogeneous data associations must be performed before
multi-sensor data fusion and input to the decision-making module of the USVs.

3.5. Computation Tasks Offloading

For the above typical application scenarios, we consider a marine vehicular fog-cloud computing
system in which USV cluster nodes can be classified into two categories: TaNs and CoNs as shown in
Figure 2. TaNs generate computation tasks that need to be offloaded to CoNs of USV fog cluster, or
remote cloud.

At the same time, they can also complete partial computing tasks, if conditions permit. Roles of
TaN or CoN are not fixed during task execution, which depends on whether the computation resources
on board are shareable and sufficient or not. CoNs are employed as fog computing nodes to provide
computation services, while TaNs generate computation tasks that need to be offloaded.

For each TaN of fog cluster, the surrounding CoNs in same marine operations within its
communication range Cr can be considered as candidate available computation task allocation nodes.

TaN can obtain the dynamic information of each available CoN, including USVs ID, position, and
speed, provided by automatic identification system. The computation task will be migrated to several
of available CoNs of fog cluster or remote cloud according to task offloading algorithms.

In the proposed framework, task migration decisions will be completed in a distributed manner.
Each TaN can make its computation task migration decisions independently, in order to avoid additional,
large signaling overhead.

In the above typical application scenarios, we focus on a representative task offloading in the
marine operations for total T time periods. The TaN generates tasks, makes computation offloading
decisions in discrete-time t, selects several available CoNs or remote cloud, and performs computation
task offloading and receives the processed results.

Denote the available CoNs set by N(t), and we should note that N(t) may change with time since
USV cluster nodes are moving during execution of operations.

3.5.1. Computation Delay

In the proposed mechanism, the input raw data size in time period t can be denoted by xt (in
bits) which should be offloaded from TaN to CoN n. Denote the output processed data size by yt (in
bits) which will be fed back to TaN. The computing performance parameter is denoted by ωt, which
indicates the number of CPU cycles required to process each bit of data

The total workload can be given by xtωt in time period t [30].
For each CoN n, the maximum computing capability can be denoted by F(n) (in CPU cycles per

second). In general, multiple computing tasks may be processed simultaneously, and the available
computing capability to TaN can be denoted by F(t, n) in time period t. Therefore, the computation
delay Dc(t, n) of CoN n is

Dc(t, n) =
xtωt

F(t, n)
(1)

3.5.2. Transmission Delay

However, in the real systems of USV fog cluster, F(t, n) cannot be known to the TaN in advance.
The uplink transmission rate between TaN and CoN n ∈ N(t) can be denoted by R(u)

t,n in time period t.

The uplink channel state between TaN and CoN n can be denoted by H(d)
t,n . The interference power at
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CoN n is I(u)t,n . Denote transmission power by P, channel bandwidth by W of TaN and the noise power
by δ2. Therefore, the uplink transmission rate between TaN and CoN n is

R(u)
t,n = W log2(1 +

PH(u)
t,n

δ2 + I(u)t,n

) (2)

The downlink transmission rate can be given by

R(d)
t,n = W log2(1 +

PH(d)
t,n

δ2 + I(d)t,n

) (3)

The downlink channel state between CoN n and TaN is denoted by H(d)
t,n . The interference power

at the TaN is denoted by I(d)t,n . The total transmission delay Dt(t, n) can be written as

Dt(t, n) =
xt

R(u)
t,n

+
yt

R(d)
t,n

(4)

In the real systems of USV fog cluster, both R(u)
t,n and R(d)

t,n cannot be known to the TaN in advance.

3.5.3. Offloading Delay

In time period t, the total offloading delay D(t, n) is the computation delay Dc(t, n) plus the
transmission delay Dt(t, n). If conditions permit, TaNs can also perform partial computation tasks. So
for TaNs, only the computation delay Dc(t, n) should be considered, and A represents a set of TaNs.

D(t, n) =
{

Dc(t, n), n ∈ A
Dc(t, n) + Dt(t, n), n < A

(5)

4. Problem Formulation

The TaN can formulate a task migration strategy At that allocates a computation amount to each
CoN to minimize offloading delay. Therefore, the problem can be formulated as

D(t, At) = max
{
D(t, 1) , D(t, 2), . . . , D(t, n)

}
(6)

P1 : min 1
T

T∑
t=1

D(t, At)

s.t. D(t, At) ≤ t0,∀t
(7)

For the task migration strategy At, the offloading delay D(t, At) is the maximum of the delays of
available computing nodes.

If the exact values of relevant parameters, such as computing capability F(t, n), uplink transmission
rates R(u)

t,n and downlink transmission rates R(d)
t,n of all available CoNs, can be known to TaN in advance,

it is not difficult to calculate the offloading delay D(t, n).
However, in real systems and marine operations, due to the relative movement of the USV cluster

nodes, the state and interference of the wireless communication channel will change rapidly with
time, and the resources of the CoN n may be shared by several computing tasks simultaneously.
Therefore, the transmission rate and computing capability will also change rapidly with time. The
above parameters are difficult to predict in advance. Furthermore, if each TaN requests the relevant
parameters of all CoNs in each time period t, the signaling overhead between TaN and CoN will be
much high.
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When making the current offloading decisions, TaNs do not know the performance of the CoN in
advance. We design an optimized learning-based computation task offloading mechanism that helps
TaNs learn the offloading performance of available CoNs through historical data.

5. Proposed Algorithms

5.1. Problem Analysis

We develop an optimized learning-based offloading algorithm which enables TaN to learn the
offloading performance of available CoNs to minimize the average delays. In the same computing
task, it can be assumed that there are various different input data sizes, and the ratio of the output data
size to the input data size is kept constant throughout the time. It is a reasonable assumption when the
computing task types are the same. Therefore, let yt/xt = α0 and ωt = ω0 for ∀t.

Then the offloading delay can be defined as

u(t, n) =

 ω0F(t, n), n ∈ A
1

R(u)
t,n

+ α0

R(d)
t,n

+ω0F(t, n), n < A (8)

u(t, n) is the total delay of offloading one bit data to CoN n in time period t, which reflects the
average offloading performance of CoN. The offloading delay is

D(t, n) = xtu(t, n) (9)

In a real system, the size of the input data xt can be known to TaN, when making offloading
decisions at time t. However, for ∀n ∈ N(t), it is impossible to know the exact value of u(t, n) and its
distribution in advance. This requires the TaN to learn to get a relatively accurate estimate.

5.2. Optimized Algorithms

The problem is similar to MAB problem. In our proposed framework, TaN can be considered the
player and each available CoN corresponds to an action with unknown loss distribution. The player
then decides which combination of bets should be taken to minimize the average loss and achieve
considerable gains.

The main challenge of classic MAB problem is whether it can effectively balance the trade-off

between exploration and exploitation (EE) by exploring different operations to understand the relatively
accurate estimates of each distribution.

Several excellent algorithms have been proposed to solve MAB problems, such as the UCB1 and
UCB2 algorithms based on the upper confidence bound (UCB). The MAB mechanism has been adopted
in wireless communications to learn unknown environments, including channel access and mobility
management [31].

The proposed problem is similar to the classic MAB problem. However, there are still several
problems that need to be solved. First, we need a combination offloading strategy of USV fog cluster
nodes to achieve higher performance rather than only one best node.

Second, the available CoNs set N(t) changes with time, but the number of actions is fixed in
classic MAB problems. The computing resources of CoNs may available or unavailable within the
communication coverage of TaN during task execution, and the computing resources of candidate
CoNs may be unavailable, causing a dynamic selection space. Therefore, existing solutions need to be
optimized to fully and effectively utilize the empirical information of the remaining CoNs.

Finally, in the classic MAB problem, the performance loss is equal in each time period. In the
proposed algorithms, we introduce a weighting factor for the input data size xt. It enables the algorithm
exploit more when xt is high and explore more when xt is low, to reduce exploration costs and achieve
balanced computing performance.
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For each computing node, we set the upper and lower computing thresholds of the input data
size to x+p and x−p . When xt is higher than x+p , the computing capability is saturated. When it is lower
than x−p , the computing capability is excessive.

x̂t = max

min

 xt − x−p
x+p − x−p

, 1

, 0

 (10)

Therefore, we propose an AUCB algorithm, as follows (see Algorithm 1).

Algorithm 1 Adaptive UCB algorithm for computation task offloading

1: Input: α0,ω0,β,x+p ,x−p
2: for t = 1, . . . ,T do
3: if Any CoN n is new computation fog node or One node’s performance does not meet the
requirements then
4: Update available CoN list once
5: Update new computation node u(t, n) = max

{
u(t, 1), u(t, 2), . . . , u(t, n− 1)

}
,kt,n = 1,tn = t

6: else
7: Observe xt

8: Calculate the computing performance coefficient of each candidate CoN n ∈ N(t):

9: ût,n = ut−1,n +

√
β(1−x̂t) ln(t−tn)

kt−1,n

10: Offload the task to CoNs:
11: At = arg min D(t, At)

12: Observe delay D(t, At)

13: Update ut,at ←
ut−1,at kt−1,at+ut,at

kt−1,at+1

14: Update kt,at ← kt−1,at + 1
15: end if
16: end for

The proposed algorithms consider the appearance time of new CoN n and the input data
size xt, and can dynamically adjust the exploration weight and introduce the load-awareness and
occurrence-awareness during task offloading. The computation offloading strategy is made on line 11.
In the algorithm design, when the system communication characteristics change significantly, the
computation offloading count will be reset.

6. Simulations and Performance Analysis

6.1. Performance Analysis

In real systems, reliable allocation algorithms can make performance loss ρT stable and acceptable
without known relevant current parameters in advance. The average delay of optimal solution is
denoted by D

∗

within time period T.

ρT =
1
T

T∑
t=1

D(t, At) −D
∗

T (11)

δT =
1

D
∗

T

1
T

T∑
t=1

D(t, At) − 1 (12)

Similarly, percentage of performance loss is denoted by δT. In the next section, we design several
simulations to evaluate the performance of the proposed AUCB algorithm in both heavy and light
input data load conditions, which varies across time.
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The idea of the bandit algorithms is to see how much regret the choice will bring, and the less
regrets the better. In the MAB problem, the indicator used to measure good or bad is cumulative regret
or performance loss. By simulating the same number of times with different selected algorithms, we
can compare the cumulative regret growth rate of selected algorithms. If an algorithm is better, its
cumulative regret growth is also slower than others.

6.2. Simulations

We design corresponding simulations to evaluate the offloading delay and performance loss of
the proposed algorithm. We rationalize the corresponding parameters to a certain extent to simplify
the calculation process.

In our simulations, xt and u(t, n) varies across time in a natural way with an initial value. In the
series of u(t0, n), the first one is cloud node, others are fog cluster nodes. Next, we will analyze the
performance of the proposed algorithm from multiple perspectives and assess the impact of changes in
the main parameters. Main parameters’ values in simulations are shown in Table 1. Table 2 shows the
performance settings of CoNs, and the available or unavailable time of computing resources.

Table 1. Parameter values in simulations.

Parameter Value Unit

β 2

x−p ,x+p
1.8, 2.2

Mbit1.6, 2.4
1.2, 2.8

x0 2 Mbit

Table 2. Performance settings of CoNs.

Index of CoNs Recourse Available Time Recourse Unavailable Time u(t0, n) (s/Mbit)

1 1 850 0.2
2 1 — 0.75
3 1 — 1.25
4 500 — 0.65
5 1 — 0.85
6 1 — 1.0
7 700 — 0.5

6.2.1. Performance of Selected Algorithms under Heavy Data Load Conditions

Figure 4a shows the input data size varies across time in a natural way with initial value of 2 Mbits.
For most of the time, the data input load is large. Figure 4b shows the performance of the selected
algorithms under diverse resource available time of CoNs. In our simulations, we set up different
scenes to evaluate the effect of available time and unavailable time.

In the first epoch, two CoNs indexed by 4 and 7 are available, while in the next epoch, remote
cloud node is unavailable. The results show that the proposed algorithm can learn the task offloading
performance of the newly appeared CoNs more quickly, and effectively utilize the performance of the
remaining CoN when one node is unavailable. It can reduce performance loss by about 70% compared
to the UCB1 algorithm. The average task offloading delay is shown in Figure 4c, where the average
performance of AUCB converges faster than UCB1 and other selected algorithms to achieve the optimal
offloading performance.
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6.2.2. Performance of Selected Algorithms under Comprehensive Conditions

Figure 5a also shows the input data size varies across time, but for most of the time, the data
input load is light. Figure 5b shows the performance of the selected algorithms under comprehensive
conditions without any changes of cluster nodes. Under this condition, the proposed algorithm and
UCB1 can achieve similar results, but when data input load raises, the proposed algorithm will get
better performance than UCB1 immediately. The simulations show that the proposed algorithm
achieves better performance than other algorithms, and can obtain more optimized values faster,
especially under heavy data load conditions.
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6.2.3. Performance Loss Comparison of Computing Thresholds Settings

Figure 6a shows that different computing check thresholds settings may affect the computing
performance of the proposed algorithm at the beginning of simulations, but as time progresses, the
difference of performance becomes very small and is ignorable.
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Figure 6b shows that the proposed algorithm achieves near-optimal computation offloading
performance. At the end of the simulation period T, its performance loss is less than 8% of the optimal
delay, which is superior to other selected algorithms.

The simulation results show that the proposed AUCB algorithm can still effectively balance the
trade-off between exploration and exploitation under both heavy and light input data load conditions.
The algorithm performance is relatively good compared to the optimal solution and can provide a
bounded deviation.

By introducing the recourse available or unavailable time of CoN and the normalized input data
size, AUCB algorithm is both load-aware and occurrence-aware. The computing performance is also
relatively good.

7. Conclusions

In this work, we propose a marine fog-cloud computing architecture for USV clusters, and study
the computation task offloading problem in the marine vehicular computing system architecture.
We develop an optimized learning-based computation task offloading mechanism based on classic
MAB theory. It enables vehicles to learn the potential offloading performance of their neighboring
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team nodes to minimize average computation task offloading delay. The simulation results show that
computing performance of proposed AUCB algorithm is relatively good under both heavy and light
input data load conditions.

Next, we will build a more detailed model or framework, and the corresponding simulation
environment, to support the optimization of the proposed algorithm in order to obtain better
performance. At that stage, the simulation platform will satisfy more complex tasks’ requirements,
while retaining the further expansion and exploration capabilities.
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