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Abstract: Mobile-oriented internet technologies such as mobile cloud computing are gaining wider
popularity in the IT industry. These technologies are aimed at improving the user internet usage
experience by employing state-of-the-art technologies or their combination. One of the most important
parts of modern mobile-oriented future internet is cloud computing. Modern mobile devices use
cloud computing technology to host, share and store data on the network. This helps mobile
users to avail different internet services in a simple, cost-effective and easy way. In this paper,
we shall discuss the issues in mobile cloud resource management followed by a vendor-agnostic
resource consolidation approach named Phantom, to improve the resource allocation challenges in
mobile cloud environments. The proposed scheme exploits software-defined networks (SDNs) to
introduce vendor-agnostic concept and utilizes a graph-theoretic approach to achieve its objectives.
Simulation results demonstrate the efficiency of our proposed approach in improving application
service response time.

Keywords: cloud computing; management; middle box; placement; resource; SDN; vendor-agnostic;
virtual machine; VM

1. Introduction

Mobile-oriented future networks [1–3] are gaining tremendous importance in the field of computing
and networking industry. With the advent of wireless networking technologies, the wide-scale use of
smartphone devices and the World Wide Web is being shifted rapidly from static to mobility-based
solutions. For example, mobile service users will exceed two billion users [4,5]. Such drastic changes
are influencing the way IT concepts used to act and behave in the past.

However, the original idea of the internet was not based on mobility-based services. In other
words, it can be said that the original idea of the internet was meant for fixed hosts instead of mobile
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hosts. So with the emergence of mobile technology, various patch-on protocols were introduced to
support mobile environments e.g., Mobile IP [6,7] and its variants. However, patch-on technology
based solutions also have their limitations.

In an environment based on mobile computing, support for mobility is a vital requirement rather
as an add-on feature. The legacy network protocolsmainly focus on fixed hosts. In terms of usability,
legacy protocols often describe mobility as an additional functionality of a device. This behavior leads
to the creation of protocols based on mobility and is related to the modified versions of TCP/IP protocols
suite [8–10]. With these trends of mobility-awareness in the protocols, unexpected degradation of
performance, such as overuse of proxy, triangle routing, etc., is induced.

Mobile devices, including tablet PC or smartphones, are increasingly becoming an important part
of our lives as a vital and easy sources of communication tools that are not bounded by the elements of
time and space [11]. Mobile users utilize multiple mobile-based services by using different kinds of
mobile apps. These apps are hosted on remote servers through wireless networks. The fast growth
witnessed in mobile computing is a very prominent factor in the IT industry. It also influenced the
commerce industry. However, with this fast growth of mobile devices, we are also facing numerous
challenges such as computing resources car city, bandwidth allocation, storage and retrieval challenges
and battery life time. Therefore, it can be safely said that the limitations of computing resources greatly
hinder the betterment of computing services quality.

Cloud computing has been accepted as the infrastructure of next-generation networks [12].
Cloud users can benefit through cloud infrastructure by using various services (such as storage
and services hosting), platforms (operating systems, middleware and related services) and software
(applications) supported by cloud-enabled services like Amazon, Salesforce or Google at low prices.
Furthermore, cloud computing enables its users to broadly utilize the resources on a pay-per-use
policy [13]. By using such mobile applications, users can benefit from various cloud computing
functions. With the rapid growth of mobile apps and better support for cloud-oriented services, the
term mobile cloud computing is introduced. Mobile cloud computing is basically an integration of
cloud computing in the mobile environment. With the advent of mobile cloud computing, mobile
users are taking advantage of new type of services and which facilities them in fully utilizing cloud
computing services.

Mobile cloud computing [14,15] has the potential to transform the large arena of the IT industry.
This will help in making software and hardware-oriented services more accessible and attractive [1].
One of the primary objectives of cloud computing is to provide computing and storage services at low
and reasonable costs. This happens by sharing many resources between different users. The actual
provisioning of such services at a low process depends on how efficiently resources are utilized in the
cloud. A typical mobile cloud computing infrastructure is illustrated in Figure 1.

Cloud vendors can offer special hardware and particular software techniques for the provisioning
of reliable services at a high price. Later, these reliable services could be sold to users by signing terms
under certain clause or service level agreement. Nowadays, the cloud computing industry is using the
term “no single point of failure”. But the single point of failure often occurs when a single cloud service
provider is hosting all these solutions [16]. It is worth mentioning that a true vendor-agnostic solutions
will not only an open source technology solution (software) but will be accepted only if it is being
operated on a vendor neutral hardware (by using off-the shelf, bare-metal/SDN-enabled devices) etc.

On the other hand, software-defined clouds (SDCs) make use of SDNs in order to create
a programmable and flexible network by separation of functions for control plane and data plane.
The reason for choosing SDNs in data center resource management is their simplicity and control over
data center infrastructure. The idea of vendor agnostics through SDNs in data centers is implemented
by the Open Flow with the decomposition of traffic control authorization to different parts [17–19].
The controller element is a powerful manager of the network that is processing information related
to flows. Open Flow switches include basic functions like receiving, forwarding or looking up in
a data traffic table. By using OpenFlow, routing is not confined to a Media Access Control (MAC)
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address or IP address. This basically helps in the determination of paths with the parameters of high
security, low packet loss or low delay and also helps in maintaining the fine-grained scrutiny policies
for various applications.
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The main purpose of this paper is to contribute towards the field of SDCs by investigation of
a major problem in cloud computing i.e. the placement of virtual machine (VM). VM placement
is very important in datacenters and has been studied extensively, particularly for their use in the
software-defined domain [20–22]. In a cloud environment, VMs are a key player as they provide the
flexibility claimed by cloud service providers. Figure 1 presents the layout of VM in a distributed
environment. When a computing service admitted into the cloud system demands for higher
computational resources, then VM management plays a very important role. VM management helps
in balancing the system constraints and loads [23,24]. Its main purpose is to retain user service
satisfaction level. There are numerous VM placement challenges. Traditionally, the techniques for
VM placement only focus on the resource allocation efficiency. Network research related to cloud
resource management often focus on placement of VMs in data center environments. A vast number
of VM placement techniques propose a solution based on available network resources [25]. This paper
presents a relatively simpler approach for VM placement in the SDC environment. The concepts
presented in this paper are related to the state-of-the-art technologies such as server and network
resource utilization, software-defined networks, VM placement/ mapping and software-defined middle
box networking. The paper presents a combination of these technologies for resource management in
cloud environments.

The rest of the paper is further organized as follows. Section 2 discusses the related work, Section 3
presents the research allocation and mapping discussion in cloud environments, Section IV presents
the mathematical modeling. In Section 4 we perform the performance evaluation. Finally, Section 5
concludes the paper.

2. Related Work

In cloud environments, resource sharing must be done in a way that a user’s application
requirements must not influence other user applications. Resource sharing must be done in such
a way that these are secured and privately available [26]. VMs are acquired by applications on cloud
infrastructure when needed. However, for cloud tenants, VM acquisition is a challenge. It is due to the
limitations in cloud system’s granularity and limitations in VM control and placement.



Electronics 2019, 8, 1183 4 of 16

Data-intensive applications [27,28] frequently communicate with data centers. That is why the
data traffic transmission of these applications is quite large. This results in network performance
degradation and higher system overheads. VM placement strategies often use VM consolidation
and reallocation techniques to solve vendor lock-in issues. These issues greatly influence network
performance. In vendor lock-in issues, the users’ traffic volumes can face delays. This ultimately leads
to VM placement issues. The VM placement problem with traffic awareness [5,6] was proposed for
solving these problems through network optimization based strategies.

In cloud environments, VMs follow certain patterns in accessing network resources. Research
studies conducted in [29,30] involves a large number of CPU traces from different servers.
It demonstrates that the demand traces are mostly in correlation and follow a periodic behavior.
However, the concept of statistical multiplexing exists due to varying workloads. Data packet
behavior for these applications relies primarily on the idea of exploiting possible correlations in VMs.
Other approaches to vendor lock in issues include continuous monitoring of all VMs running on the
network by using various VM measurement heuristics [31].

Current VM placement strategies have been extended for the inclusion of other data center
infrastructure aspects such as network storage and network traffic. In a cloud infrastructure, all deployed
VMs typically show a dependency on network traffic. The best optimization strategy to address
their consolidation challenges is by hosting them on the nearest available physical machine [32,33].
Interestingly, network topology and data center design has a major impact on the selection of placement
for traffic optimization targets [34]. Similar dependencies often occur for VMs and storage resources
with different user requirements. In this situation, applications needing greater I/O performance can
be moved closer to the storage locality.

Different vendors provide tools for resource-management functions. These tools include a wide
range of applications. This includes system-level monitoring tools to application-level deep packet
tracers and monitors. These sophisticated tools are a good choice; however, they slow down the
system performance. Therefore, a vast-scale adoption of these tools will not only burden the network
features, but will also influence underlying network resources (including virtual and infrastructure
resources). In view of the above, a vendor-agnostic approach is used in [35,36] which proposes VM
placement on a physical machine with the least data transfer time with respect to network bandwidth
usage. However, within the datacenter premises, the data transmission rate is better due to wired
communication. Therefore, users of these services expect high-qualityenterprise-level services rather
than services offered by mobile devices with limited resources. Although not having enough tenant
support for the VM migration, the cloud services provider have high control functions over all VMs
locations. The manipulation of VMs can be performed by scaling in and out of physical resources.

Network support for tenant-controlledVM placement is difficult. An API-based SDN-enabled
solution for these issues helps in providing a clean interface to the network administrator and is widely
used in SDC environments.

SDNs [37,38] provide new possibilities for designing, operating, and securing data-intensive
networks. However, the realization of these benefits largely requires the support of underlying
infrastructure. In addition to handling the increased traffic loads, the network performance satisfaction
opens new avenues of network services.

Mobile cloud computing based systems perform cloud computing functions with the exception
that its users are mobile. Graph theory is a widely used concept in applied mathematics to structure
pair wise models and relationships between objects. In this paper, we use graph-theoretic approach for
resource consolidation on a vendor-agnostic hardware infrastructure which uses SDNs to administer
network functions.

The proposed methodology is described by the formulation of a solution for VM placement that
can be incorporated in SDCs. Currently, there is very limited support for VM placement in SDCs.
For example, Amazon EC2 lacks support for co-locating its instance types. Although limited support
features are present for cluster-based computational structures, high-performance features can only be
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afforded with premium prices [39,40]. Typically, the network resources available in close proximity are
used for improved networking performance. It is believed that SDCs will be extensively used in future
for flexibility and support in network applications and resource management.

3. Research Allocation and Mapping in Cloud Environments

Current mobility management schemes are based on centralized data access methodology. It is
similar to the concepts used in traditional DC architectures. The main problem with this scheme is that it
is difficult to manage. In terms of performance-based measures, these techniques results in routing and
path optimization-related constraints which ultimately leads to performance degradation challenges.

The term vendor-agnostic refers to a concept where the products of a specific manufacturer are
not tied to a particular vendor/brand etc. In distributed networks and systems theory, this term is
often mingled with any off the self-solution. Vendor-agnostic solutions operate upon free, open-ended
and generic solutions which involve basic mathematical optimization laws and principles not tied
or related to a particular company. These solutions provide a clean interface to users for interacting
with real-world problems. Our reason for highlighting vendor-agnostic behavior is based on the
reason that we use a combination of open-ended hardware and software (via SDNs, graph-theory and
Pareto-optimality) to achieve resource management functions.

In cloud environments, the rapid interaction between network’s I/O devices, data and application
services affect the system’s overall performance [41]. The SDN concept to decouple data from control
streams eases application and network performance. Here, we want to mention that SDN itself
is an enabling technology. We need to employ SDN infrastructure for developing VM placement
mechanism to achieve the desired goals. Therefore, we present a VM placement scheme for a SDC
environment which can improve the service response time of applications.

We consider a software-defined cloud architecture where SDN based APIs administer the cloud
resource management functions. These APIs manage topology and admission control features of cloud
resources. Our framework’s architecture is presented in Figure 2. Beneath the APIs lies a set of network
manager and cloud manager. They control various functions of cloud e.g., mapping VMs, network
statistics monitoring and controlling incoming outgoing packet requests. The last layer of the design
architecture consists of virtual and physical resources.
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Figure 2. Proposed SDN cloud scenario.

SDN management APIs provide cloud resource management functions as high-level policies for
the underlying network infrastructure. Such APIs help in managing and accessing an apparently
infinite pool of computing resources like VMs etc. The function of the planner is to determine the
location of hosting features for the received application requests in collaboration with cloud manager,
modeler, and network manager. The modeler performs the comparison of received data and services
from cloud planner and cloud manager. It is also used to model resource utilization features for
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updating network directory status. The network and cloud managers are used for managing virtual
machines. The cloud and network managers on the other hand consolidate data at both physical and
logical levels. The abstraction layer consists of logically-deployed physical hardware. Finally, the
physical infrastructure layer consists of a list of physical resources that could be abstracted such as
storage and network resources (routers or switches), servers, computing hosts, etc.

After sending off a request, the console of SDN manager makes sure that the made request
is in compliance with the minimum number of SLAs. It then creates the topology of a blueprint.
The topology information is later submitted to the admission controller. The admission controller
validates and ensures that a connection can be established if current resources are sufficient for the
proposed connection [42,43]. A simplistic approach of the performed sequential operation is illustrated
in Figure 3.
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The location of hosting applications is determined by planner and modeler in consultation with
cloud and network managers. Mapping of cloud resources is performed by the mapper. The proposed
system performs VM placement. For ease of management, VM mapping should be controlled separately
to ensure that cloud resources are managed in a clear and concise manner. The lower layer of SDC
consists of different network resources. The layer for physical infrastructure contains any physical
resource that could be abstracted e.g., storage and network resources (routers or switches), computing
hosts, servers, etc. The abstraction layer provides abstraction information from a logical perspective.
Conceptually physical layer resides beneath the abstraction layer [44,45].

In the proposed framework, by using graph theory, compute nodes are managed for allocation of
VMs. In the proposed framework both virtual topologies and the physical infrastructure (switches,
hosts, and links between them) are simulated for achieving dynamic routing features. In the presented
scenario, all traffic patterns are supported by all the network elements. The assumptions in the
proposed mechanism are mapped in a simulated environment for evaluation purpose.

The representation of the placement of VMs problem with the use of metrics (from linear algebra)
is based on the fact that the cloud systems can be presented as a graph containing nodes and edges.
Graph theory is the basic topic under discrete mathematics. Many advantages are present in the
graph-theoretic approach.
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On the basis of applied graph theory, we then manage compute nodes for VM allocation. In the
proposed framework, both physical infrastructure and virtual topologies are simulated in CloudSim [46].
A detailed overview on latest trends and developments in the field of virtual resource management
and network functions has been presented in [47].

4. Mathematical Modeling

We provide a mathematical representation of VM placement similar to [48] through our cloud
model using a graph-theoretic approach. The entire interconnection between various entities of the
proposed cloud is represented by adjacency matrices. Storage nodes (SN) represents data storage
nodes. Compute nodes (CN) consist of multiple physical computational nodes, whereas data packet
(DP) represents the data to be transmitted across the cloud. Our cloud infrastructure consists of 3 CNs,
2 SNs, and 3 DPs. Below we describe our model in detail. We consider a cloud system composed of m
> 0 compute nodes (CN) and n > 0 storage nodes (SN). Please take note that the values of m and n are
positive integers. The entire interconnection of the CNs and SNs can be depicted as a graph as shown
in Figure 4.
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Figure 4. A graph-theoretic representation of the interconnection between the compute nodes (CN)
and storage nodes (SN) forming a bipartite.

In discrete mathematics terminology (especially in graph theory), the graph shown in Figure 5
is known as a bipartite. A bipartite is a group of two sets of nodes where each member of each set
is able to “communicate” with each and every member of the other set. The edges connecting the
CN and SN may represent any relationship between these nodes. In order to limit and scale down
the performance of our simulation, we assume that these edges could represent either bandwidth in
MBps or time constant in secs/MB (which is just the reciprocal of the bandwidth). For example, the
edge connecting SN1 to CN1 could represent the bandwidth value of 3.2 MBps or time constant of
0.3125 secs/MB (i.e., 1/3.2 MBps).
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In applied graph theory, an adjacency matrix is a matrix that represents the values of all edges
connected to the nodes in the graph. Consider the n×m adjacency matrix

B =
[
bi j

]
n×m

=


b11 b12 · · · b1m
b21 b22 · · · b2m

...
...

. . .
...

bn1 bn2 · · · bnm

, (1)

where the matrix elements bij for 1 ≤ i ≤ n and 1 ≤ j ≤ m are values representing the edges connecting
node i to node j. As we consider a 2-CN, 3-SN cloud system as depicted in Figure 6, the network
bandwidth between the nodes are as follows:

• SN1—CN1: 3.2 MBps;
• SN1—CN2: 6.0 MBps;
• SN1—CN3: 2.4 MBps;
• SN2—CN1: 16.0 MBps;
• SN2—CN2: 7.2 MBps; and
• SN2—CN3: 4.0 MBps;

Electronics 2019, 8, x FOR PEER REVIEW 8 of 16 

 

• SN1—CN2: 6.0 MBps; 

• SN1—CN3: 2.4 MBps; 

• SN2—CN1: 16.0 MBps; 

• SN2—CN2: 7.2 MBps; and 

• SN2—CN3: 4.0 MBps; 

 

Figure 6.A graph representation of the relationship between the data pieces and the storage nodes. 
The first sub-graph is a 2 × 1 bipartite while the other sub-graph is a 1 × 1 bipartite (or simply a 
connection between two nodes). 

Then the corresponding graph-theoretic representation will result in Figure5 having the 
adjacency matrix with row i representing the SN number and column j representing the CN number. 𝐁 , 3.2 16.06.0 7.22.4 4.0 MBps. (2)

Similar to the approach in the previous section, a graph-theoretic approach can also be used to 
represent the relationship between the data pieces and SNs. In order to consider an environment two 
data pieces, DP1 = 200 MB and DP2 = 100 MB are both stored at storage node SN1, while another 
data piece, DP3 = 500 MB, is stored in SN2. The resulting graph shall be composed of two 
sub-graphs: one graph representing the relationship between DP1 and DP2 to SN1, and the 
relationship between DP3 to SN2. Please take note that each sub-graph is also a bipartite as shown in 
Fig. 6. Since each data piece is stored only in a dedicated SN, it will be assumed in this architecture 
that the data piece is not shared between other SNs. Therefore, each sub-graph will only have one 
SN but can have multiple DPs. 

The entire interconnection between the DP and SN can also be represented by an adjacency 
matrix where the column q shall represent the SN number. Since there are 2 SNs, then the matrix will 
have n = 2 columns. The number of rows of the adjacency matrix shall be equal to the maximum 
number of data pieces in any SN. In this particular example, since SN1 has two data pieces, namely 
DP1 and DP2, the number of rows shall be equal to p = 2. The resulting adjacency matrix becomes  𝐃 , = d  = DP DPDP 0 =  200 500100 0 MB.  (3)

Consider for example a network bandwidth of b MBps. If data of size d MB willbe transmitted 
into the network, then the response time can be obtained through 𝑡 =  𝑑𝑏 𝑠𝑒𝑐 , 
where simply the data and bandwidth are being adjusted with respect to time 

(4)

Similarly, if the network bandwidth b is inverted resulting inthe time constant𝜏 = 1/b (secs./MB), 
then the response time can be calculated using 𝑡 = 𝑑 𝑀𝐵 . 𝜏 𝑠𝑒𝑐𝑀𝐵 𝑠𝑒𝑐 , 
where time and bandwidth are relating to resource requirements 

(5)

Figure 6. A graph representation of the relationship between the data pieces and the storage nodes.
The first sub-graph is a 2 × 1 bipartite while the other sub-graph is a 1 × 1 bipartite (or simply
a connection between two nodes).

Then the corresponding graph-theoretic representation will result in Figure 5 having the adjacency
matrix with row i representing the SN number and column j representing the CN number.

B3.2


3.2 16.0
6.0 7.2
2.4 4.0

MBps. (2)

Similar to the approach in the previous section, a graph-theoretic approach can also be used to
represent the relationship between the data pieces and SNs. In order to consider an environment two
data pieces, DP1 = 200 MB and DP2 = 100 MB are both stored at storage node SN1, while another data
piece, DP3 = 500 MB, is stored in SN2. The resulting graph shall be composed of two sub-graphs: one
graph representing the relationship between DP1 and DP2 to SN1, and the relationship between DP3 to
SN2. Please take note that each sub-graph is also a bipartite as shown in Figure 6. Since each data piece
is stored only in a dedicated SN, it will be assumed in this architecture that the data piece is not shared
between other SNs. Therefore, each sub-graph will only have one SN but can have multiple DPs.

The entire interconnection between the DP and SN can also be represented by an adjacency matrix
where the column q shall represent the SN number. Since there are 2 SNs, then the matrix will have
n = 2 columns. The number of rows of the adjacency matrix shall be equal to the maximum number of
data pieces in any SN. In this particular example, since SN1 has two data pieces, namely DP1 and DP2,
the number of rows shall be equal to p = 2. The resulting adjacency matrix becomes
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D2.2 = [dki]2×2 =

[
DP1 DP3

DP2 0

]
=

[
200 500
100 0

]
MB. (3)

Consider for example a network bandwidth of b MBps. If data of size d MB will be transmitted
into the network, then the response time can be obtained through

t =
d
b

[sec], (4)

where simply the data and bandwidth are being adjusted with respect to time.
Similarly, if the network bandwidth b is inverted resulting in the time constant τ = 1/b (secs./MB),

then the response time can be calculated using

t = d(MB). τ
( sec

MB

)
[sec], (5)

where time and bandwidth are relating to resource requirements
However, this expression is only valid for scalar quantities, i.e., if there is only one data piece

being processed by one CN through one SN. In fact, the notation “×” can be used here to represent
scalar multiplication.

First, consider the graphical representation of the merger between Bn,m and Dp,n as shown in
Figure 7. From the graphical representation, data flows between the SN and CN and DPs storage
location can be seen. Using graph theory [16], it is possible to graphically represent networks using
nodes and edges even if their quantities are different. The matrix can be defined as

Table 131: Greek Letters

α \alpha θ \theta o o τ \tau

β \beta ϑ \vartheta π \pi υ \upsilon

γ \gamma ι \iota $ \varpi φ \phi

δ \delta κ \kappa ρ \rho ϕ \varphi

ε \epsilon λ \lambda % \varrho χ \chi

ε \varepsilon µ \mu σ \sigma ψ \psi

ζ \zeta ν \nu ς \varsigma ω \omega

η \eta ξ \xi

Γ \Gamma Λ \Lambda Σ \Sigma Ψ \Psi

∆ \Delta Ξ \Xi Υ \Upsilon Ω \Omega

Θ \Theta Π \Pi Φ \Phi

The remaining Greek majuscules can be produced with ordinary Latin letters. The
symbol “M”, for instance, is used for both an uppercase “m” and an uppercase “µ”.

See Section 8.5 for examples of how to produce bold Greek letters.

The symbols in this table are intended to be used in mathematical typesetting.
Greek body text can be typeset using the babel package’s greek (or polutonikogreek)
option—and, of course, a font that provides the glyphs for the Greek alphabet.

Table 132: AMS Greek Letters

z \digamma κ \varkappa

Table 133: txfonts/pxfonts Upright Greek Letters

α \alphaup θ \thetaup π \piup φ \phiup

β \betaup ϑ \varthetaup $ \varpiup ϕ \varphiup

γ \gammaup ι \iotaup ρ \rhoup χ \chiup

δ \deltaup κ \kappaup % \varrhoup ψ \psiup

ε \epsilonup λ \lambdaup σ \sigmaup ω \omegaup

ε \varepsilonup µ \muup ς \varsigmaup

ζ \zetaup ν \nuup τ \tauup

η \etaup ξ \xiup υ \upsilonup

50

n×m =
[
τi j

]
n×m

(6)

where the values τi j represent the time constants between the SN and CN. Let us call this the time
constant matrix. Basically, the values in this matrix are just the reciprocals of the bandwidths, therefore
the following mathematical expression

[
τi j

]
n×m

=

[
1

bi j

]
n×m

(7)

where cross matrix multiplication ensures SN to CN matrix mapping shall apply for 1 ≤ i ≤ n and
1 ≤ j ≤ m. Given the data set matrix Dp,n we can now get the response times for each data piece in
various CNs.
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Figure 7. Graph representing entire cloud mapping.

The series of manual computations above are easily done due to the small dimensions of the cloud
system. Since real cloud systems have hundreds of thousands of SN and CN, it will be impossible for
us to have all the combinations and compute them manually. It is now important to have everything
done with a computer through linear algebra. In order to obtain the total response times tCN,1, tCN,2
and tCN,3 we need the following step:
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(1) Step 1: get the time constant matrix from the bandwidth matrix: Let

B3.2 =


3.2 16.0
6.0 7.2
2.4 4.0

 MBps (8)

be the bandwidth matrix of the cloud system. The time constants for each element in the matrix can be
obtained by simply getting the reciprocals of each element. The resulting matrix becomes

B3.2 =


1/3.2 1/16.0
1/6.0 1/7.2
1/2.4 1/4.0

 =


0.3125 0.6250
0.1667 0.1389
0.4167 0.2500

 sec /MB. (9)

(2) Step 2: get the transpose of the time constant matrix: Given the time constant matrix

Table 131: Greek Letters

α \alpha θ \theta o o τ \tau

β \beta ϑ \vartheta π \pi υ \upsilon

γ \gamma ι \iota $ \varpi φ \phi

δ \delta κ \kappa ρ \rho ϕ \varphi

ε \epsilon λ \lambda % \varrho χ \chi

ε \varepsilon µ \mu σ \sigma ψ \psi

ζ \zeta ν \nu ς \varsigma ω \omega

η \eta ξ \xi

Γ \Gamma Λ \Lambda Σ \Sigma Ψ \Psi

∆ \Delta Ξ \Xi Υ \Upsilon Ω \Omega

Θ \Theta Π \Pi Φ \Phi

The remaining Greek majuscules can be produced with ordinary Latin letters. The
symbol “M”, for instance, is used for both an uppercase “m” and an uppercase “µ”.

See Section 8.5 for examples of how to produce bold Greek letters.

The symbols in this table are intended to be used in mathematical typesetting.
Greek body text can be typeset using the babel package’s greek (or polutonikogreek)
option—and, of course, a font that provides the glyphs for the Greek alphabet.
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z \digamma κ \varkappa

Table 133: txfonts/pxfonts Upright Greek Letters

α \alphaup θ \thetaup π \piup φ \phiup

β \betaup ϑ \varthetaup $ \varpiup ϕ \varphiup

γ \gammaup ι \iotaup ρ \rhoup χ \chiup

δ \deltaup κ \kappaup % \varrhoup ψ \psiup

ε \epsilonup λ \lambdaup σ \sigmaup ω \omegaup

ε \varepsilonup µ \muup ς \varsigmaup

ζ \zetaup ν \nuup τ \tauup

η \etaup ξ \xiup υ \upsilonup

50

3.2,
its transpose can be obtained as
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T
3.2 =


0.3125 0.6250
0.1667 0.1389
0.4167 0.2500

 =

[
0.3125 0.1667 0.4167
0.6250 0.1389 0.2500

]
sec /MBT. (10)

(3) Step 3: multiply the data set matrix with the transposed time constant matrix: Given the data
set matrix

D2.2 =

[
200 500
100 0

]
MB. (11)

The response time matrix can then be obtained as follows

TR = D2.2

Table 131: Greek Letters

α \alpha θ \theta o o τ \tau

β \beta ϑ \vartheta π \pi υ \upsilon

γ \gamma ι \iota $ \varpi φ \phi

δ \delta κ \kappa ρ \rho ϕ \varphi

ε \epsilon λ \lambda % \varrho χ \chi

ε \varepsilon µ \mu σ \sigma ψ \psi

ζ \zeta ν \nu ς \varsigma ω \omega

η \eta ξ \xi

Γ \Gamma Λ \Lambda Σ \Sigma Ψ \Psi

∆ \Delta Ξ \Xi Υ \Upsilon Ω \Omega

Θ \Theta Π \Pi Φ \Phi

The remaining Greek majuscules can be produced with ordinary Latin letters. The
symbol “M”, for instance, is used for both an uppercase “m” and an uppercase “µ”.

See Section 8.5 for examples of how to produce bold Greek letters.

The symbols in this table are intended to be used in mathematical typesetting.
Greek body text can be typeset using the babel package’s greek (or polutonikogreek)
option—and, of course, a font that provides the glyphs for the Greek alphabet.

Table 132: AMS Greek Letters

z \digamma κ \varkappa

Table 133: txfonts/pxfonts Upright Greek Letters

α \alphaup θ \thetaup π \piup φ \phiup

β \betaup ϑ \varthetaup $ \varpiup ϕ \varphiup
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T
3.2 =

[
DP1 DP3

DP2 0

]
τ11 τ12

τ21 τ22

τ31 τ32

 =

[
DP1 DP3

DP2 0

][
τ11 τ21 τ31

τ12 τ22 τ32

]T

(12)

TR =

[
200 500
100 0

][
0.3125 0.1667 0.4167
0.6250 0.1389 0.2500

]
(13)

TR =

[
(t11 + t31) (t12 + t32) (t13 + t33)

(t21) (t22) (t23)

]
=

[
tR,11 tR,12 tR,13

tR,21 tR,22 tR,23

]
. (14)

One key characteristic of the network response time matrix TR is that if you get the sum of all
elements per column, you actually obtain the total response time for each and every CN. Each column
of TR represents each CN. Since, in this example, there are 3 CNs in the cloud system, TR results in
a matrix having 3 columns as well. If the matrix is denoted by

TR =

[
tR,11 tR,12 tR,13

tR,21 tR,22 tR,23

]
, (15)

The total response time per CN can be obtained using the expression

tCN,i =
∑n

j=1
tR, ji , (16)

Therefore,

tCN,1 =
∑n=2

j=1
tR,j1 = tR,11 + tR,21 (17)

tCN,2 =
∑n=2

j=1
tR,j2 = tR,12 + tR,22 (18)
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tCN,3 =
∑n=2

j=1
tR,j3 = tR,13 + tR,23 (19)

Real-world optimization issues can be implemented on cloud-based systems to involve multiple
conflicting objectives. Therefore, a vector-optimization problem in a standardized manner can be
represented as a standardized vector X = (x1, x1, . . . , xn). A Pareto-optimal solution [49,50] for
resource existence (when no other solution exists) is represented in Figure 8. This helps in ensuring
that one objective (resource allocation) can be improved without affecting the other objective.
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5. Performance Evaluation

In this section, we explain the simulations and experiments carried to evaluate the proposed
resource consolidation approach. We used a channel model approach similar to presented in [51,52],
which is widely used for mobile cloud and cellular networks. The testbed simulation consisted of two
storage nodes, three data sets, and three mobile hosts. The mobile devices map their resources by
using a graph-theoretic model as explained in previous sections and use SDN-based infrastructure
for controlling data and traffic behavior functions. In this regard, we implemented our algorithm on
CloudSim v 3.0. The Cloudsim is often used as an extensible simulation toolkit for simulation purposes.

Algorithm 1 VM Placement

1: CN denotes the Computes of cloud
2: tCN,i denotes the response time value of CNi
3: least denotes least response time value of CNs
4: j denotes CN having least response time value
5: For calculating tR for each CN, we have
6: tCN,i =

∑n
j=1 tR, ji

7: i←0
8: j←0
9: least←tCN,0
10: while i < n do
11: if least > tCN,i:then
12: least←tCN,i
13: j←i
14: end if
15: i←i+1
16: end while
17: Choose VM location at CN j
18: Exit
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We developed an algorithm (Algorithm 1) for virtual machine placement on a particular cloud
node. It works by calculating service response time of individual compute nodes and then selecting
VM with least response time. By using the proposed Algorithm 1, we compute the service response
time TR of individual CN and select a CN having least response time to host VM. We then calculated
the response time of these data loads using vmallocationpolicysimple algorithm [53,54]. We selected
the vmallocationpolicysimple algorithm because of two major reasons. Firstly, it does not implement
dynamic consolidation of VMs, and only places new VMs on hosts; fulfilling our scenario’s demand.
Secondly, it is the default VM placement strategy in CloudSim. Finally, we compared the service
response time of algorithm 1 with that of vmallocationpolicysimple algorithm for given workloads.
The evaluation setting is similar to emulate the environment presented in Figure 7.

Simulation results in Figure 9 show the service response time for tasks requesting DP1 data
load. In Figures 10 and 11, we illustrate the service response time for tasks requesting DP2 and DP3
respectively. The graphics illustrations reveal that our proposed scheme demonstrates improved
service response time to requests as compared to vmallocationpolicysimple algorithm. It is because the
presented algorithm clearly chooses a CN with reduced response time and shorter data access route
for VM allocation.Electronics 2019, 8, x FOR PEER REVIEW 12 of 16 
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can be completed in a relatively long period of time, the mapping scheme can adjust itself according 
to window time and accommodates more tasks as compared to the vmallocationpolicysimple 
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By observing the comparative results in Figure 12, it can be observed that the traffic intensity
for DP1, DP2, and DP3 exhibit the same behavior of variance with respect to mean response time.
However, the difference in values with respect to the vmallocationpolicysimple is different. This also
resulted in increased variance rates of bandwidth consumption. In order to retain the job queue waiting
time, we can manage the waiting-time window slot timing. If the received task arrives which can
be completed in a relatively long period of time, the mapping scheme can adjust itself according to
window time and accommodates more tasks as compared to the vmallocationpolicysimple strategy.
The same concept can be improved with the predictive analysis however we didn’t consider it due to
overhead costs incurred on VM loads.
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6. Conclusions and Future Work

Future mobile-oriented networks are taking the computing industry by storm. The recent
developments witnessed in the enhanced computational capability of mobile equipment led to the
concepts of mobile cloud computing. Taking this paradigm to another step, in this paper we presented
a case where cloud data centers are managed in a mobile cloud environment. We begin the paper by
explaining the importance of mobile future network architectures followed by the concepts of resource
management in mobile clouds using a vendor-agnostic approach (through SDNs).

To sum up the concept of the paper, we argue that the cloud computing concept involves the
availability of computing resources for data storage and processing. Due to increasing number of
network applications, number of users and their requirements, there is a dire need to develop tools to
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improve cloud computing performance. On the other hand, software-defined networking concept
allows cloud data center administers to manage cloud resource allocation function according to their
own needs via bypassing proprietary network peripherals. As SDN concepts discourage excessive
use of proprietary equipment, it is often referred as a bare-metal solution, off-the-shelf solution and
vendor-agnostic solution).

The paper relates SDN-based mobile cloud environment to propose a VM mapping policy using
a graph-theoretic approach. The reason for calling this technique vendor-agnostic is the use of
a vendor-agnostic platform (SDN-enabled H/W) for evaluation purpose.

In this paper, the simple representation of VM resource allocation and representation helped in
clearly determine the network management by the use of matrices. A vendor-agnostic-based approach,
therefore, offers several advantages over conventional approaches. These advantages can be seen
particularly in distributed systems like cloud computing environments. Therefore, we implemented
this approach to consolidate VM resources in a simplistic and well-organized way. We believe that
graphs can be represented using adjacency matrices where each element of the matrix denotes values
that show relationships between any two nodes. Therefore, we used a graph-theoretic approach to
achieve our consolidation approach. We developed a framework and compared its performance with
the vmallocationpolicysimple technique. Results demonstrate that our proposed framework can limit
the cloud topology scaling issues of VM placement in a more clearer and concise manner. We strongly
believe that a vendor-agnostic approach in data centers can be considered as the next step towards the
evolution of virtualization, mobile cloud computing, and future mobile-oriented networks.
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