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Abstract: Age progression is associated with poor performance of verification systems. Thus, there is
a need for further research to overcome this problem. Three-dimensional facial aging modeling for
employment in verification systems is highly serviceable, and able to acknowledge how variations
in depth and pose can provide additional information to accurately represent faces. In this article,
the impact of aging on the performance of three-dimensional facial verification is studied. For this
purpose, we employed three-dimensional (3D) faces obtained from a 3D morphable face aging
model (3D F-FAM). The proposed 3D F-FAM was able to simulate the facial appearance of a young
adult in the future. A performance evaluation was completed based on three metrics: structural
texture quality, mesh geometric distortion and morphometric landmark distances. The collection
of 500 textured meshes from 145 subjects, which were used to construct our own database called
FaceTim V.2.0, was applied in performance evaluation. The experimental results demonstrated that
the proposed model produced satisfying results and could be applicable in 3D facial verification
systems. Furthermore, the verification rates proved that the 3D faces achieved from the proposed
model enhanced the performance of the 3D verification process.

Keywords: facial verification; 3D facial modeling; facial aging simulation; biometrics; impact of
aging; forensics

1. Introduction

The human face, as a complex structure composed of diverse soft and hard tissue layers, is a
primary source of information for revealing a person’s age, gender and ethnicity. Human faces
have been thoroughly studied from different perspectives across several disciplines, including the
neuroscience, psychology, anthropometry, medical and computer science fields.

The mystery of human longevity has received much consideration to search for a better quality of
life for individuals. Facial aging has gained widespread popularity in recent years due to numerous
applications in biometrics, forensics, security, healthcare and in the search for missing children. Aging
is an inevitable and complex process that affects both the face shape and texture; however, it is neither
uniform nor linear. According to morphological studies, faces do not age homogeneously. The aging
process involves many dynamic components, which are associated with variations in all structural
layers of the face, including both hard craniofacial tissues and soft tissues—namely the skeleton,
muscle, fat, and skin [1]. The facial skeleton does not grow homogeneously as a result of aging; i.e.,
all of the different bones are not involved in the same growth pattern. Most facial muscle alterations
emerge from the loss of skeletal muscle mass and strength, which occurs during aging. In addition,
the pattern of fat deposition on the face undergoes specific alterations due to the aging process. Skin
is the most superficial and complex structural layer of the face, and its appearance is the primary
indicator of age. It changes in function and structure and becomes thinner with age [2]. In brief,
changes in the balance of facial layers cause the phenomenon of aging and inform facial aging models.
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The main challenge in aging simulation is that changes in facial features due to aging vary for
different individuals. Gender plays an important role in the aging process. By understanding the
aging process pattern and making predictions about an individual’s facial components according to its
specific growth curves, it may be possible to identify solutions which slow down the impact of aging.

In order to trace the aging pattern, an extension to third dimensional space (3D) is required,
as it provides additional information to compensate for variations in depth and pose. Hence, 3D
modeling is highly applicable in capturing aging patterns and is ostensibly the best type of modeling
to analyze for the purpose of obtaining realistic results. However, extracting reliable facial features in a
3D environment is a challenging task.

In the present study, 3D faces obtained from a fully automatic, robust and morphable face
age progression model were enrolled in a 3D facial verification process. The proposed model
aimed to mathematically predict and simulate an individual’s facial appearance in the forthcoming
years (up to 80 years of age) using a 3D facial textured mesh input at the current age. The results
were employed in a 3D facial verification system in order to analyze the impact of aging on the
system’s performance.

Early models for facial age progression date back to 1995 [3,4], where visual signs of age were
studied by creating facial prototypes from several faces in several age groups. Other research was based
on characterizing a pattern of variation for aging parameters [5]. Specifically, the curves of facial aging
parameters were obtained by measuring variation in predefined image parameters at two different ages.
The facial images were then manipulated using the obtained aging curves [6,7]. A locally-estimated
probability distributions method was introduced [8,9] to separate high and low-resolution information
by transforming images into a wavelet domain. Later, a statistical appearance model [10] was generated
to explain variations due to age and estimate the relationship between the age of a person and the
model’s parameters. A semi-automatic procedure in which principal component analysis was applied
to a set of faces was presented in Ref. [11] in order to construct shape and texture models. A linear
method was examined to predict the effects of aging; however, the results for small aging gaps can be
considered reliable for adults since their face shape does not change remarkably.

Other works include craniofacial growth of human faces during formative years [12,13], modeling
of wrinkles and skin aging [14], and caricaturing 3D face models [15,16]. A multi-resolution dynamic
model was defined by Suo et al. [17] to simulate face aging by using both geometrical and textural
information. In this model, they integrated global appearance changes in face shape, hair style,
wrinkle appearance, and deformation and aging effects of facial components in various facial zones.
A prototype-based approach, presented as illumination-aware age progression, was proposed by
Kemelmacher et al. [18]. Their method was able to compensate for illumination variation in the
tested prototypes. Knowing that the aging process should contain personalized facial characteristics,
a dictionary of aging patterns for several age groups was learned by a model in Ref. [19] to automatically
render aging faces in a personalized way based on a set of age-group-specific dictionaries.

Later, a two-layer approach using guidance vectors was proposed for the purpose of facial
aging [20]. More recent approaches apply decomposition of the facial input, such as the Robust
Face Age Progression [21] and Hidden Factor Analysis [22] methods. Consequently, an image can be
progressed to another age group by using a linear combination of the age and common components.
In Generative Adversarial Net (GAN) based methods for automatic face aging, which are imposed
on encoders and generators [23,24], identity-preserving optimization of GAN’s latent vectors and
conditional adversarial auto encoders (CAAE) that are able to learn face manifolds are introduced.
However, these GAN-based methods independently model the distribution of a single age group
without capturing the trajectory patterns of the natural face aging process.

The aforementioned methods come with certain limitations since they are mostly based on
two-dimensional representations [25]. On the contrary, 3D facial representations capture both shape
and texture information and are able to obtain pose invariance. In Ref. [26], a three-dimensional model
was used to build an age progression system for the faces of children from a small exemplar-image set.
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In this study, the basic assumption was that if two children look similar, they will continue to look
similar when they grow older. In Ref. [27], a different method in 3D aging was modeled as a weighted
average of all the texture and shape aging patterns in the training set. Similarly, texture and shape
were modeled separately in Ref. [28].

Notably, not all of the aforementioned methods were able to produce photorealistic results.
Moreover, a large number of them were studied in two-dimensional space. Table 1 lists notable
contributions to the facial aging modeling topic, sorted by date order.

In this study, the proposed approach presents a method for facial aging deformation in
three-dimensional space that considers depth information and pose variation, which is efficient
in time complexity. The most significant advantage of our model is simply its robustness in simulating
realistic faces while preserving facial identities by visualizing the biological aging trajectory through
the morphable 3D model. Here, we present our method for predicting facial aging, wherein the
output (predicted faces) was processed by a verification system to enhance its performance. This was
performed with consideration of the anthropometrical measurements and facial aging growth patterns
using 3D facial modeling [29,30].

Table 1. A list of notable contributions to the facial aging modeling topic.

Author Dimension Approach Texture Shape Database Year

Burt et al. [3] 2D Prototype-based Yes Yes 147 Caucasian males aged
between 20 and 62 1995

Rowland
et al. [4] 2D Prototype-based Yes Yes

Collection 1: 40 males aged
between 25 and 29

Collection 2: 20 males aged
between 50 and 54

1995

Wu et al.
[14] 2D Wrinkle model Yes No No learning database 1995

Pitanguy
et al. [5–7] 2D Numerical-based analysis No Yes 50 females aged between 25 and 65 1996 & 1998

O’Tool et al.
[15,16] 3D PCA-based Yes Yes 50 male and 50 female with the mean

age of 26.9 years 1999

Tiddeman
et al. [8,9] 2D Wavelet, prototype-based Yes Yes No learning database 2001 & 2005

Lanitis et al.
[10] 2D Statistical appearance-based Yes Yes 500 face images of 60 subjects 2002

Scandrett
et al. [11] 2D PCA-based Yes Yes

329 males and 329 females from
FG-NET{ TA \1 “FG-NET: Face and

gesture recognition network” \s
“FG-NET” \c 1 }

2006

Ramanathan
et al. [12,13] 2D Anthropometrical growth No Yes 233 images of 109 individuals 2006 & 2008

Scherbaum
et al. [31] 3D

Nonlinear SVR{ TA \1 “SVR:
Support Vector Machine

Regression” \s “SVR” \c 1 }
function

Yes Yes 3D scans of 125 males and 113
females 2007

Suo et al.
[32] 2D And-Or graph, Markov chain Yes Yes 50,000 photos of Asian adults aged

between 20 and 80 2010

Park et al.
[27] 3D Weighted average Yes Yes FG-Net and 132 scans of 4 subjects 2010

Tsai et al.
[20] 2D Guided prediction Yes Yes FG-NET 2013

Shen et al.
[26] 3D Metric learning Yes Yes No learning database 2014

Kemelmacher
et al. [18] 2D

IAAP{ TA \1 “IAAP:
Illumination-Aware Age

Progression” \s “IAAP” \c 1 }
Yes Yes 40K photos aged between 0 and 80 2014

Shu et al.
[19] 2D Dictionary learning Yes Yes 800 pairs for females and 800 pairs of

males aged between 0 and 80 2015

Sagonas et al.
[21] 2D Robust Age Progression Yes Yes 160,000 images aged between 1 and

70 2016

Yang et al.
[22] 2D Recurrent Neural Networks Yes Yes

FG-NET and IRIP{ TA \1 “IRIP:
Intelligent Recognition and Image

Processing” \s “IRIP” \c 1 }
2016
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Table 1. Cont.

Author Dimension Approach Texture Shape Database Year

Zhang et al.
[24] 2D

Deep learning-based (Conditional
Adversarial Auto encoder – CAAE{

TA \1 “CAAE: Conditional
Adversarial Auto encoder” \s

“CAAE” \c 1 })

Yes No 10,670 images aged between 0 and 80 2017

Sagonas et al.
[33] 2D

Deep learning-based (RJIVE{ TA \1
“RJIVE: Robust Joint and

Individual Variance Explained” \s “
RJIVE| \c 1 })

Yes Yes
MORPH and CACD{ TA \1 “CACD:

Cross-Age Celebrity Dataset” \s
“CACD” \c 1 }

2017

Antipov
et al. [23] 2D

Deep learning-based (Age-cGAN{
TA \1 “cGAN: conditional

Generative Adversarial Network”
\s “cGAN” \c 1})

Yes No

110K images of IMDB{ TA \1 “IMDB:
Internet Movie Data Base” \s

“IMDB” \c 1 }-Wiki{ TA \1 “Wiki:
World Internet Knowledge Index” \s

“Wiki” \c 1 } cleaned dataset

2017

The remainder of this paper is structured as follows. In Section 2, the method is defined and the
sub-sections describe each step of the approach. Section 3 describes the different performance evaluation
protocols used to assess the model perceptually, as well as morphometrically. Section 4 defines the
3D facial verification process in conventional and modified scenarios. The experimental results are
discussed thoroughly in Section 5 by presenting the renderings of 3D faces, analysis of performance
evaluation metrics, and comparison results from the facial verification process. The discussion is
presented in Section 6.

2. Materials and Methods

We developed a methodology to model the aging of a human face, enabling simulation of the
trajectory of the face aging process. This methodology consisted of (i) collecting a database for the
purpose of face template construction, (ii) consideration of the variation in the faces of both females
and males, where the aging process was perceptible, by measuring variations in shape and texture for
a period of time in a group of people, and (iii) the construction of the 3D facial aging model through
measurements based on personal features.

In the proposed approach, a polygon mesh of the 3D face indicated by a mesh-vector
M = (X1, Y1, Z1, X2, . . . , Yn, Zn)

t and a UV texture map specified by a texture-vector
T = (R1, G1, B1, R2, . . . , Gn, Bn)

t were defined while they were mapped point by point.
Each step involved in the construction of the model will be explained comprehensively in the

following sections.

2.1. Face Template Construction

Age-related effects and the aging (growth) trajectory are different from one person to another since
the aging process is under the influence of different factors like genetics, health and lifestyle. However,
there are common age-related aspects for faces in a specific age range which cannot be overlooked.

For the proposed approach, we started with the fact that there are a finite number of typical faces
in each age group, and there are certain characteristics which change in almost all faces of a given type
in each age category. As a result, face templates could be constructed. The template associated with
each age group was calculated by (separately) averaging male and female faces. Consequently, the 3D
template faces were constructed using a database of faces, m, each represented by its mesh-vector
Mi (M =

∑m
i = 1 aiMi) and texture-vector Ti (T =

∑m
i = 1 biTi), where

∑m
i = 1 ai =

∑m
i = 1 bi = 1.

Accordingly, a face template (Tp) could be interpreted as shown in Equation (1):

Tp(i) = (TpM(i); TpT (i)) (1)

The first phase of the proposed method involved selection of the appropriate template 3D face
model from the database representing the common facial characteristics in each age group. The aging
trajectory curve of the selected age was then applied to simulate the appearance of the person at a



Electronics 2019, 8, 1170 5 of 16

specific older age. Age-related facial alterations could be classified as geometrical or textural. Contrary
to the growth process during childhood, the geometric trajectory of adulthood aging encountered
insignificant changes, with most of the transformations classified as textural.

To apply geometrical face changes, which are delicate even after 18 years old, craniofacial
measurements in different age groups were required. Geometrically changing the facial age requires
transformation of the size and distance between facial components, as well as face shape and its
size. We started this process by studying craniofacial morphology and collecting information about
craniofacial development. One part of this collection of information involved understanding how
organs develop and change during the aging process. The result turned out to be useful for a better
perception of facial maturation, so the focus was shifted to changes in the magnitude of facial landmarks.
After collecting all the craniofacial measurements, they were filtered. First, measurements deemed
useful for facial modeling were kept, with information such as head length and width eliminated.
Second, those which could represent a component or its distribution were determined and retained.
For example, from inner canthal distance, outer canthal distance and interpapillary distance of the
two eyes, only the first element was retained, as it represents the distribution of the eyes in the
face, while the other two are redundant. To apply facial age transformation as a non-linear function,
the transformation curves of these measurements were employed.

All the aforementioned measures were achieved by calculating the average size of, and distance
between, facial components, obtained from all the face images in the different age groups of the
constructed database. The calculated component size and distance measures in the aging trajectory
for both genders, extracted as an average from all the database faces, is illustrated in Figure 1. This
figure shows the changing process of the components’ size and distribution from age 20 to 80, over the
different age groups.
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Figure 1. Facial components’ size and distance distribution.

For the per-vertex morphable model, texture information was used to assess textural alterations
in each age group, which was an appropriate method of representing the surface color of the skin.
The advantage is that the resolution was independent of the geometry. For this reason, we defined a
single texture UV map for the facial regions of the head. A texture average was considered to calculate
a single mean texture template for each age group as a UV texture map.

While human face aging during childhood is mainly reflected in craniofacial changes
resulting in shape changes, it is mostly represented by relatively large texture changes with skin
variations—including wrinkle appearance and minor shape changes—after entering adulthood. Based
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on this theory, approximation of coefficients is not the same for geometric meshes and perception
aspects due to the fact that most of the changes in the polygon mesh of the face occur during the
formative years until the beginning of the 20s [12], while textural changes take place when wrinkles
appear and facial muscles begin to lose their elasticity.

2.2. 3D Face Forward Aging Model (3D F-FAM)

The 3D face aging morphable model can be defined as in Equation (2):

F (i) = w1Tp(i) + w2ψ( f ( j)),


i = j + ∆

0.6 < w2 < 0.7
w1 + w2 = 1

(2)

where F (i) is the target face of age i, and Tp(i) is the face template at the same age consisting of
TpM(i) and Tp T (i). The non-linear transformation function ψ( f ( j)) is applied on the face f at age j to
adapt the geometrical changes of the face to the target age i, by keeping the entire identity of the input
face. To apply facial age transformation, craniofacial measurements in different ages are needed. Such
measurements have previously been completed by Hall et al. [34]. In addition, they calculated means
for all of the sizes and distances of facial components in each age group, creating a graph similar to
that presented in Figure 1. The function provided in Equation (2) is the combination of translating,
scaling and rotating extracted measurements on the original face, and contains all of the geometrical
modifications according to the extracted measurements. j is the input age, i is the target age and i > j.
∆ is the difference in age between the current input age and the target output age. Coefficients w1

and w2, associated with the face template and geometrical transformation function, respectively, are
specified such that the similarity measurement concerning personal characteristics between the current
age and target age can be retained as much as possible. The weight given to each input is crucial, as it
decides which face has more share in the result: the geometrically changed input or the face template.
In this work, the value of 0.6 < w2 < 0.7 for the weight of the geometrically changed input gave an
acceptable result.

Thus, aged faces for different genders were generated using the original face shape as an input,
while personal characteristics throughout all ages were retained to obtain realistic 3D facial appearance
results. Figure 2 illustrates a 3D face at the current age, which is the input to the model, and the textured
mesh after applying the transformation function, along with the textured mesh of an age-specific
face template. As can be seen, personal features of the input face, such as the structural texture and
color information, are maintained, while the output face is generated as a morph model between the
template face and the geometrically transformed face.
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Figure 2. (a) Original input three-dimensional (3D) face: f ( j); (b) 3D face inferred from the
transformation function: ψ( f ( j)); (c) 3D face template at the target age: Tp(i); and (d) the aged
3D face: F (i).

3. Performance Evaluation Protocol

To evaluate the performance of our proposed model, a generic perception-based mode (GPM)
was used to evaluate the visual quality of the 3D textured face meshes as a linear combination of
their structural texture quality, geometric distortion quality and morphometric landmarks. Such
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comparisons were carried out using the texture metric structural similarity (SSIM) [35], a 3D mesh
distortion metric (MSDM) [36] and a face landmarks metric (FLM) [37], respectively. All metric scores
were normalized to a value between 0 (exactly the same) and 1 (totally different), such that 0 represented
two faces that were identical and 1 indicated they were dissimilar. Our combined metric is thus defined
as follows in Equation (3):

GPM = α(SSIM(x, y)) + β(MSDM(x, y)) + γ(FLM(x, y))
{
α + β + γ = 1
α = β = γ

(3)

SSIM was used to compare structural texture similarity between the reference faces (considered
the ground truth faces) and the simulated faces (obtained from the proposed model) by measuring
perceptual image degradation changes in terms of luminance, contrast and structural information.

In order to compare local pixel intensities between two images x and y, SSIM(x, y) was defined
as in Equation (4).

SSIM(x, y) = l(x, y) × c(x, y) × s(x, y) (4)

where l is a luminance comparison function, c is a contrast comparison function and s is a structure
comparison function. To calculate SSIM, the computation was carried out over local windows of size
11 × 11, which moved pixel by pixel over the entire image.

MSDM was used to measure geometric distortion through comparison of the reference mesh
topology and the simulated face by calculating differences in the curvature statistics over local windows
for two face meshes, as given in Equation (5).

MSDM(x, y) = (α (L(x, y))3 + β(C(x, y))3 + γ(S(x, y))3)
1/3

(5)

where MSDM is the local distance between two local mesh windows x and y, which can be defined
by the luminance (curvature), contrast and structure comparison functions (L, C and S, respectively).
In this work, a local window was defined as a connected set of vertices belonging to a mesh with a
given radius; this radius was a parameter of the method, and was used in the performance evaluation.

Lastly, FLM was used to quantify the disparity between the extracted landmarks of corresponding
mesh pairs, which were the reference and simulated faces at the same age. To do so, an analysis
was implemented to locate nine landmarks in the eyes, nose, lip contour, chin and procerus center of
the face meshes by finding the maximum and minimum local curvatures. Such landmarks are best
suited for 3D facial comparison. The metric, FLM, was thus defined as follows (see Equation (6)),
and measured the Euclidean distance between the landmark point on the reference face PRe f

i and the
landmark point on the simulated face PSim

i .

FLM =
N∑

i = 1

d
(
PRe f

i , PSim
i

)
(6)

4. 3D Face Verification Process

In order to analyze the impact of aging on 3D facial verification, the performance of the conventional
verification process and that of the modified verification process was compared. This evaluation
investigated the process of verification by comparing the claimed identities with the enrolled faces.
As can be seen in Figure 3a, first, a verification between young adults (i.e., “inputs”) who were enrolled
in the initial enrollment and their older faces (i.e., “references”) was performed in the context of the
conventional verification process. Afterward (see Figure 3b), the faces which were enrolled initially
(i.e., the “input” faces) were aged by the proposed 3D F-FAM model, providing the set of “simulated”
faces. A modified verification process of the claimed identity was then executed which considered the
“simulated” older faces obtained from our model instead of the real old faces. The intention was to
assess the performance of the verification process in these two scenarios.
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For performance evaluation, we used a false acceptance rate (FAR), calculated as a fraction of the
impostor scores exceeding the threshold, and a false rejection rate (FRR), calculated as a fraction of
genuine scores falling below the threshold. Determining the FAR and FRR allowed us to consider an
equal error rate (EER), and thereafter the performance of the system. The lower the EER is, the better
the system performs.

5. Results

5.1. Database Collection

We collected two databases for this work. The first one was built from 900 facial images [38]
and was used to create the face template explained in Section 2.1. All images were constrained to the
frontal view with minor facial expression to minimize facial pose artefacts. They were split into five
different age groups for both genders, each spanning 10 years. Each defined age group contained
180 faces of Caucasian ethnicity, among which the number of female and male faces were kept equal.
It is worth noting that there are distinct differences between faces and the shape of their components
across ethnicities; however, this template can be used as a prototype in different age studies.

Some of the faces collected were directly captured in 3D and some were reconstructed from frontal
and profile views. All images were normalized geometrically and texturally, classified into five specific
age groups (26–35, 36–45, 46–55, 56–65, and 66–75 years old), and separated by gender. Figure 4
illustrates the face templates of each age group for both genders. The age groups were defined in such
a way that the aging differences between two continuous groups were distinctive. Table 2 explains the
demographics of each group.
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Table 2. The demography of the presented face database.

Ethnicity No. of Subjects
in Total

No. of Subjects in
Each Group Gender Age Range

Caucasian 900 180 90 Female
90 Male

26–75
years old

The second database was constructed to evaluate the proposed model. The Face Time-Machine
database (FaceTim V.2.0) consisted of 500 3D textured meshes from 145 subjects (75 females and
75 males) at different ages in the frontal view with minimum facial expression. It is worth noting
that for each subject, we collected at least three faces at three different ages. This database was
generated mostly by capturing 3D images and partly using the web and celebrities’ facial images,
as well as volunteers who agreed to contribute. Obviously 3D facial image acquisition of an adult
individual as a child was impossible, so we were obliged to collect photos of their past in 2D and then
reconstruct them in 3D. The collection of suitable data for testing the model was very challenging
considering the intricacy of acquisitions under specific conditions, such as illumination, expression,
pose, and resolution.

5.2. Face Renderings Using the Proposed 3D Model

Figures 5 and 6 illustrate the renderings of 5 females and 5 males after applying the 3D facial aging
morphable model. In the figures, column (a) is the input and represents the textured mesh face of a
young adult, while columns (b) and (d) are the simulated faces representing the output at any older
target age. The reference textured meshes, presented in columns (c) and (e), are considered the ground
truth faces, and were used for comparison and performance evaluation. Perceptibly, the textured
surface meshes appear similar to the reference textured mesh faces, and the renderings are quite
realistic. As demonstrated in columns (b) and (d), the face renderings are visually closer to the input
when the age difference is small. In some cases where there is facial expression (e.g., smiling), as in
female 5 at age 65, the simulated face looks slightly distorted. For the male rendering faces, shown in
Figure 6, we obtained realistic aged faces while maintaining the identity of the input face. However,
in some other cases (e.g., men with beard), we encountered less authentic renderings, for instance
male 1 at age 54.

5.3. Performance Evaluation Results

Table 3 demonstrates the mean MSDM scores resulting from the comparison between the simulated
aged textured mesh face and the reference textured mesh face for both genders. We considered different
radius values (R = 0.001, R = 0.01, R = 0.02, R = 0.05 and R = 0.1), in which a smaller radius value meant
a more accurate comparison (as the bounding box got smaller throughout the comparison process).
The metric value tended toward 1 when the measured objects were very different, and was equal to 0
for identical objects. As can be seen in Table 3, the calculated mean MSDM score for the set of evaluated
3D faces was 0.006 when R = 0.001 and 0.001 when R = 0.1. Thus, the scores were almost equal to
0, suggesting the compared meshes were identical. According to the trend illustrated in Figure 7,
increasing the radius value lowers the accuracy of the comparison, resulting in a smaller MSDM score
for both females and males. As can be seen, the model behaves the same for both genders, resulting in
a high similarity rate and low distortion between the 3D output and the corresponding reference faces
for both females and males. We can therefore conclude that our model does not generate significant
geometric distortion and is robust for both genders.
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Table 3. Mean 3D mesh distortion metric (MSDM) scores of females and males in the testing database
for five different radius values.

Females & Males
Radius

R = 0.001 R = 0.01 R = 0.02 R = 0.05 R = 0.1

MSDM 0.006 0.004 0.003 0.002 0.001
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In Table 4, the generic perception-based mode (GPM) is discussed comprehensively. As can be
seen, the age difference between the input and output in the testing phase is defined as ∆. We divided
∆ into four different age intervals of ∆ < 5 years, between 5 and 10 years, between 10 and 20 years and
∆ > 20 years. We can see that, for both genders, the mean scores for all metrics increase with increasing
∆. For instance, in the case of females, SSIM = 0.1737 in the interval ∆ < 5 and reaches 0.2414 in the
interval ∆ > 20 years. The trend is the same for the two other metrics, as well as for males. For instance,
in FLM—for which nine craniofacial features were extracted from the face meshes in order to compare
the disparity between corresponding mesh pairs (explained in Section 3)—we can see that the mean
scores increase as ∆ increases, suggesting that the results are less identical with an increase in ∆. This
indicates that simulating face aging effects is more challenging when the time period between input
and output is larger. According to the mean score values for ∆ > 20 years, we can conclude that the
method is still robust, even when there is a huge age difference between the input and output faces.

Table 4. Mean scores of generic perception-based mode (GPM) evaluation mode: structural similarity
(SSIM), face landmarks metric (FLM) and 3D mesh distortion metric (MSDM) for both genders.

Gender GPM ∆ < 5 years 5 < ∆ < 10 10 < ∆ < 20 ∆ > 20 years

Female
SSIM

MSDM
FLM

0.1737
0.2463
0.2305

0.1830
0.2622
0.2628

0.2117
0.2703
0.2712

0.2414
0.3064
0.2937

Male
SSIM

MSDM
FLM

0.2136
0.2739
0.1865

0.2690
0.2831

0.21516

0.2881
0.2936
0.2386

0.3034
0.3133
0.2639

Although the model behaves almost the same for both genders, a comparison of the mean score
values for females and males showed slightly higher mean scores for males. This difference may be
accounted for by the textural impact of the presence of a beard. According to Table 4, the mean scores
in all cases are slightly higher for males than those for females in all ∆ classes. This mode of variation
generates an increase in the size of the male face, especially in the nose, eyebrows, and chin. All in
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all, analysis of the Table 4 metrics shows that our model is robust regarding textural, geometrical and
landmark comparisons, and does not create considerable distortion in either gender.

5.4. Objective Comparison of 3D Facial Verification

For the purpose of objectively comparing the verification systems, reference faces of 90 adult
subjects from the Face Time-Machine database were used in the conventional verification process, while
3D aged results obtained from our model were employed in the modified verification process. To do
this, we used our model to simulate the input faces at an advanced aged, which could be used against
the real or ground truth faces. Then, we integrated the new module containing 90 simulated aged faces
to conduct a comparison study and to analyze the performance of the verification system. Figure 8
illustrates the receiver operating characteristic (ROC) curves of our system’s verification performance.
The curves represent the comparison of the system’s performance in both the conventional and modified
processes. As can be seen, the EER is 50% in the case where real faces were used in the conventional
verification process, while it is reduced to 35% when the simulated faces obtained from our proposed
3D aging morphable model were applied. This indicates that the system’s verification performance
improved by considering the simulated faces instead of the real ones (i.e., the references used as the
ground truth faces). It is worth noting that 35% does not indicate a great performance, but the purpose
was to highlight an error rate reduction while comparing the conventional and modified verification
processes. These results suggest that the performance of the verification process can be improved
using the 3D faces output by our model, rather than the real enrolled faces. Undeniably, by considering
all of the factors which may occur during the aging process, like gaining weight, or having a beard for
men and makeup for women, the EER value will decrease. Moreover, by extending the number of
faces in the testing database, a more accurate number for the EER of the system will be achieved.
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In addition to the database issues mentioned, the quality of the reference facial textured meshes
influence the evaluation results. This is because most of the references (the ground truth faces) do not
have the same pose, light conditions or, in some cases, facial expression as the final result.

In Table 5, a comparison of notable performance evaluation metrics used in state-of-the-art facial
aging models, specifying the name of the method, face model dimension, sensitivity to texture or shape,
score on the 3D F-FAM and score of the methodology from the literature, is shown in order to compare
these against our proposed model. As can be seen, GPM examines the model in both textural and
geometrical aspects. It should be noted that the proposed evaluation method has a higher similarity
rate compared to other methods, and it associates geometrical, textural and landmark distortion
measurements. As can be seen, except for the objective performance similarity rate of Ref. [39] in 2D,
which shows a higher rate than our model, only the texture-based method in Refs. [35,39] have a higher
rate. However, the evaluation phase of the latter studies [35,39] only considered 5 samples in their test
study, while our test was employed on 145 textured meshes.
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Table 5. Comparison of notable performance evaluation metrics used in facial aging models.

Method Representation Sensitivity 3D F-FAM Other Models

RMSE distance [11] 2D Texture 67% 55%
Mahalanobis distance [26] 3D Shape 72% 58%
Objective performance [39] 2D Texture 68% 78%

SSIM [35,40] 3D Texture 70% 78%
MSDM [36,39] 3D Shape 72% 64%

GPM 3D Texture & shape 74% -

6. Discussion and Conclusions

In this article, we have described the impact of aging on the 3D facial verification process.
We proposed a 3D facial aging morphable model (3D F-FAM) for creating detailed deformable models
from a set of 3D facial surface meshes. We have demonstrated how separate aging trajectories for
male and female subgroups can be modeled to simulate aging through a forward path, in which a 3D
facial textured mesh input transmits to its older target age (up to the 80s). This morphable 3D model
deals simultaneously with both 3D shape and texture deformations throughout the aging process.
The 3D rendering results show that our approach is subject specific; it retains the identity information
of the young face (input) and produces satisfactory results compared to the state-of-the-art and ground
truths. Further, we evaluated the proposed model using a generic perception-based mode to analyze
its performance in textural, geometrical and morphometrical aspects. Based on the results, the textural
measurement points to approximately 0.2 for females and 0.27 for males, which shows the model
represents plausible accuracy. In the geometrical measurement, the distance differences of the two
compared meshes and the landmark comparisons indicate score values tending toward 0, showing
that the model does not generate significant disparity.

We verified that aging impacts the performance of a 3D facial verification process, and that our
3D model improves the performance by reducing the EER rate. Although the verification performance
rate was not considerably high using our model, the reduction in the EER value (compared to using the
real enrolled faces) was noticeable. As a result, we can consider the applicability of this aging model
for 3D face verification and facial appearance prediction across aging. Indeed, by taking into account
some external factors in the process of aging, a better value can be obtained.

The extension of face modeling to the 3D domain allows for additional capabilities, particularly
in compensating for accuracy in the representation of faces. Computation of the proposed model
was roughly real-time and was efficient in time complexity. Further, it has widespread applications
in educational, medical and psychological fields, and can be considered as a potential solution in
biometrics, forensics and general computer vision applications. In future work, we would like to
extend our 3D database and adapt our model to account for different ethnicities and external factors.
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