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Abstract: The visual object tracking problem seeks to track an arbitrary object in a video, and
many deep convolutional neural network-based algorithms have achieved significant performance
improvements in recent years. However, most of them do not guarantee real-time operation due to
the large computation overhead for deep feature extraction. This paper presents a single-crop visual
object tracking algorithm based on a fully convolutional Siamese network (SiamFC). The proposed
algorithm significantly reduces the computation burden by extracting multiple scale feature maps
from a single image crop. Experimental results show that the proposed algorithm demonstrates
superior speed performance in comparison with that of SiamFC.
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1. Introduction

The objective of visual tracking is to track an arbitrary object in a video, where the ground-truth
bounding box is given in the first frame [1–3]. It is one of the essential computer vision tasks for many
application areas such as video surveillance, autonomous navigation, and self driving [4–6]. The visual
object tracking problem is challenging because the appearance of the target object is given in the first
frame only. Moreover, the motion of the object and camera in the video incur appearance change,
motion blur, occlusion, scale change, and poor illumination, which make the problem much harder.

There are two major approaches for visual object tracking: correlation filter-based approaches and
deep convolutional neural network-based approaches. The tracking algorithms based on the correlation
filter train a regressor from a set of training samples by updating the weights of filters, and the operation
is performed in the Fourier domain using the fast Fourier transform [7–9]. Although the correlation
filter-based methods are computationally efficient, they suffer from boundary effects, which cause an
inaccurate representation of image content. This reduces the discriminative ability of the trained filter
and limits the target search region. Recently, deep features have been utilized for correlation filter-based
approaches to track more robust and semantic features of the targets [10–12]. However, since the
correlation filters must be updated during tracking and the training of the convolutional neural
networks requires heavy computation, they suffer from speed degeneration. The deep convolutional
neural network-based approaches take advantage of end-to-end training by applying convolutional
neural networks (CNNs) for deep feature extraction and object localization [13–15]. These can be
divided into online and offline approaches depending on the training methodology. In the case of
the online training-based trackers, the target object is trained during test time [16,17]. Although the
domain specific information of the target is continuously updated during tracking, their tracking speed
is quite slow since CNNs require heavy computation in training. Thus, most of them are not applicable
for real-time tracking operation. In the case of the offline training-based trackers, the networks are
trained offline from a large number of available video datasets [18]. However, since the model is not
updated during tracking, they are not robust in a large deformation and occlusion of the target object.
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In recent years, fully convolutional Siamese network (SiamFC) and its variations have gained
increased attention due to their high performance in tracking speed and accuracy [19–21]. However,
SiamFC requires multi-scale tests for scale estimation such that image patches with different scales
per each image frame must be tested independently. This causes an increase of computation time
proportional to the number of image patches. In order to reduce computation overhead while
sacrificing little in precision, this paper proposes a single-crop SiamFC-based tracking framework.
The proposed approach uses only a single-cropped patch per each image frame to generate the feature
maps of multiple scales with less computation. This significantly improves tracking speed of SiamFC
with a negligible precision loss.

2. Related Work

A Siamese network consists of two CNN branches for extracting features from two images, and
one neural network to compare the features [22]. Due to its computational efficiency in estimation and
its excellent performance in accuracy and robustness, it has been widely used in various applications
such as face recognition, image matching, and one-shot recognition [23–25]. The Siamese networks
have also been widely used in visual object tracking [19,26,27]. GOTURN uses AlexNet [28] as two
CNN-based feature extraction branches. The feature maps from the previous and current image frames
are fed to the fully connected layers to estimate the bounding box of the target [26]. In Re3, a recurrent
neural network is applied to the Siamese network to improve tracking performance when the target is
occluded by other objects [27]. However, both approaches use fully connected layers to combine the
CNN branches, and thus require large number of training parameters as well as heavy computation.
SiamFC, on the other hand, only uses a fully convolutional neural networks and introduces a novel
cross-correlation layer to connect the two branches [19]. SiamFC computes the similarity between
multiple search images and the target exemplar image, which is cropped from the padded ground-truth
bounding box from the first image frame. The output is a scalar-valued score map and the position of
the tracking object is determined by selecting the location with the maximum score.

The SiamFC has drawn considerable attention in visual object tracking community as the CFNet,
which incorporates the SiamFC with the correlation filter, won the Visual Object Tracking (VOT)
2017 real-time challenge [14,29]. There are many visual object tracking architectures that use the
SiamFC as the baseline network. MBSiam combines SiamFC with a bounding box regression network,
which uses SSD-MobileNet [30,31]. By adding the bounding box regression network, MBSiam can
estimate tight bounding box of the target object. SiamRPN consists of two sub-networks, one for
feature extraction and the other for region proposal, and two branches, a classification branch and
regression branch [32]. For online tracking, the correlation layers are formulated as convolutional
layers. DaSiamRPN is an extended version of SiamRPN for long-term tracking with effective sampling
strategy to control the imbalance sample distribution [33]. SA-Siam uses two Siamese networks, a
semantic branch for high-level feature extraction and an appearance branch for low-level feature
extraction [34]. The two branches are trained separately to keep their heterogeneity and the estimation
results from two branches are combined after the similarity score from each network is obtained.
SiamVGG is based on the structure of SiamFC and extract features from a target patch and the search
region by using a modified VGG-16 network [35]. SINT combined the optical flow with SiamFC to
achieve better performance by focusing more on moving objects [36].

Most of the SiamFC-based approaches combine additional algorithms, such as a box regression
network and optical flow, to improve accuracy and robustness of SiamFC. However, they still require
multiple scales of search images for robust scale estimation of the target object. As a result, although
they outperform the original SiamFC with respect to accuracy and robustness in object tracking, they
require higher computation time for their additional algorithms as well as multi-scale processing.
Such computational overhead makes them less practical for real-time applications that use embedded
systems. The proposed single-crop SiamFC framework in this paper differs from aforementioned
algorithms in that it only uses a single-cropped image patch in each frame and creates multiple feature
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maps with different scales to minimize computation time while maintaining the performance quality
of SiamFC.

3. Single-Crop SiamFC Framework

3.1. Framework Overview

The feature map extraction process of baseline SiamFC and the proposed framework are shown
in Figure 1a,b, respectively. In the case of SiamFC, multiple search images are generated by cropping
different scales of image patches as shown in Figure 1a. The search images are separately fed into the
convolutional embedding function, which is denoted as Φ, to generate the feature maps with different
scales. Since the feature extraction process in Φ takes most of the computation time, the inference
process time is increased in proportional to the number of search images.

(a) (b)

Figure 1. The feature map extraction process of fully convolutional Siamese network (SiamFC) (a) and
the proposed framework (b).

In the case of the proposed approach, on the other hand, only uses a single search image as
shown in Figure 1b. Inspired by the region proposal network in the Faster R-CNN [37], which extracts
proposals directly from the feature map instead of the image, the proposed framework crops feature
maps with different scales and resizes them to generate different-scale feature maps. Although multiple
feature map cropping strategy could reduce some amount of tracking precision, it significantly speeds
up the tracking process, which is essential for embedded vision applications. The rest of the process,
such as cross correlation with the feature map from the exemplar image and bounding box estimation
from the score maps, are the same as the baseline SiamFC.

3.2. Multi-Scale Feature Extraction

For the bounding box of the target with the size (w, h) in the image frame, the size (width, height)
of the bounding box for the exemplar image, (bI

z, bI
z) is defined as

bI
z =

√
(w + 2p)(h + 2p) (1)

where p = (w + h)/4 is the amount of context margin around the target. The cropped image patch is
resized to the fixed size as (bE

z , bE
z ), which is defined as the exemplar image z. As shown in Figure 1a,
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the SiamFC searches the target in multiple scales by cropping different sized image patches. The ith
size of the bounding box for the image patch with n number of different scales, (bI

xi
, bI

xi
), is defined as

bI
xi
= bI

xαm(i) (2)

with
bI

x = bS
x

bE
z

bI
z, m(i) = i− n+1

2 , i ∈ {1, . . . , n} (3)

where bI
x is the size of the image crop with scale 1, bS

x is the fixed size of the search image, and α

is the scaling step. All the n cropped image patches are resized to (bS
x , bS

x) and used as the search
images, represented as x1, . . . , xn. As shown in Figure 1a, each of the search images pass through a
convolutional embedding function Φ such that the total n number of feature maps, Φ(x1), . . . , Φ(xn),
with a fixed size of (bF

x , bF
x ), are generated. This causes the linear increase of feature map computation

with respect to the number of scales. By contrast, the proposed approach only uses a single-crop from
the image frame, which corresponds to the search image of the largest scale, xn, and computes its
feature map, which is Φ(xn). The rest of the feature maps with different scales are cropped directly
from Φ(xn) and resized to (bF

x , bF
x ) as shown in Figure 1b. The ith bounding box to crop the ith of

feature map from Φ(xn), (bF
xi

, bF
xi
), is defined as

bF
xi
= bF

x αi−n (4)

where i ∈ {1, . . . , n}. After cropping, all the cropped feature maps are resized to (bF
x , bF

x ). Each of the
n number of feature maps from the search images and the feature map of the exemplar image are
cross-correlated (? operation in Figure 1). This generates the n number of scalar-valued score maps,
where each has the size of (bR

x , bR
x ). The scale of the target is determined by selecting the score map

which has the highest score value among the score maps. Then, the crop size of the exemplar and
search images for the next frame, b′ Iz and b′ Ix are updated as

b′ Iz = (1− γ)bI
z + γbI

zαi?b′ Ix = (1− γ)bI
x + γbI

xαi? (5)

where i? represents the index of the score map that contains the maximum score value, and γ (0 ≤
γ ≤ 1) is the update rate. Similarly, the width and height of the target in the next image frame, w′ and
h′, are updated as

w′ = (1− γ)w + γwαi?h′ = (1− γ)h + γhαi? . (6)

From the 2D location of the maximum score in the score map, the location of the target in the next
image frame, x′ and y′, are updated as

x′ = x + β?(bR
x /2− r?x)y′ = y + β?(bR

y /2− r?y) (7)

where r?x and r?y are the x and y locations of the maximum score in the score map, respectively, and
β? = b(xi?)

I/bR
x is the scaler that converts from the score map to the cropped image with the scale

of αi? .

4. Experiments

The proposed algorithm was implemented with Python 3.6.5 and TensorFlow 1.9.0 by modifying
the source code by the authors of SiamFC [19]. Both SiamFC and the proposed algorithm used the same
pretrained network from [19]. In the experiment, the Visual Object Tracking (VOT) 2014 challenge
dataset (25 videos) and VOT 2018 short-term (ST) challenge dataset (60 videos) were used [3,38].
The VOT 2015, 2016, and 2017 dataset heavily overlap with the VOT 2018 dataset, therefore, only the
VOT 2014 and 2018 datasets were used in the experiment. As shown in Figure 2, the two datasets
consist of sequences of various objects, such as ants, balls, and sports players. Each video was divided
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from one to six subsequences in the evaluation to correctly measure the tracking performance. For the
evaluation, four quantitative metrics, precision plot, area under curve (AUC), intersection over union
(IoU), and speed, were used. The precision plot represents the success frame rate (Number of success
frames/Number of total frames) with respect to the pixel location error threshold. The success frame
was increased by one at each frame if the pixel distance between the tracked target center and the
ground-truth position was less than the location error threshold. The AUC represents the area under
the curve of the precision plot and the IoU is the area of overlap over the area of union between the
tracked and the ground-truth bounding boxes. The algorithm speed represents the number of frames
that the algorithm can process per second (fps). The experiments were conducted with both CPU-only
and with-GPU cases. For CPU and GPU, Intel i7-6800K at 3.4GHz and NVIDIA Geforce GTX 1080Ti
were used, respectively.

(a)

(b)

Figure 2. Samples from the Visual Object Tracking (VOT) 2014 (a) and 2018 (b) challenge datasets.

The precision plots of VOT2014 and VOT2018 over the six subsequences are shown in Figure 3a,b,
respectively. The x axis is the location error threshold, which is from 0.5 to 25 pixels with the pixel
gap of 0.5, and the y axis is the average success frame rate of the algorithms over all the videos in the
dataset. As shown in the graphs, the tracking precision between SiamFC and the proposed algorithm
is almost the same. Tables 1 and 2 show the precision (with the local error threshold of 20 pixels), AUC,
and IoU of VOT2014 and VOT2018 over the six subsequences, respectively. The results from Figure 3,
Tables 1 and 2 indicate that extracting different scales of feature maps from the largest scale feature
map insignificantly degenerates the tracking performance with respect to precision, AUC, and IoU.
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(a)

(b)

Figure 3. The precision plot of (a) VOT2014 and (b) VOT2018.



Electronics 2019, 8, 1084 7 of 11

Table 1. The precision, area under curve (AUC), and intersection over union (IoU) of VOT2014.

Subsequence Measure SiamFC Proposed

1
Precision 71.85 69.81

AUC 25.88 25.79
IoU (%) 53.79 50.08

2
Precision 73.22 69.86

AUC 27.14 26.43
IoU (%) 54.34 51.39

3
Precision 70.47 68.86

AUC 25.98 25.83
IoU (%) 54.30 51.26

4
Precision 74.83 71.84

AUC 27.94 27.07
IoU (%) 56.34 52.82

5
Precision 70.56 67.24

AUC 26.63 25.39
IoU (%) 54.64 50.79

6
Precision 71.49 67.96

AUC 26.41 25.33
IoU (%) 54.33 51.39

Table 2. The precision, AUC, and IoU of VOT2018.

Subsequence Measure SiamFC Proposed

1
Precision 51.48 51.11

AUC 18.43 17.91
IoU (%) 34.17 32.10

2
Precision 53.61 54.41

AUC 19.45 19.28
IoU (%) 36.93 35.02

3
Precision 52.36 49.83

AUC 19.01 17.80
IoU (%) 37.05 33.56

4
Precision 53.95 53.79

AUC 19.69 19.10
IoU (%) 37.82 35.45

5
Precision 53.58 51.53

AUC 19.44 18.54
IoU (%) 37.84 34.82

6
Precision 54.16 52.35

AUC 19.68 18.78
IoU (%) 38.80 35.55

The average algorithm speed is shown in Figure 4. In the case of using only the CPU, the proposed
algorithm is about 2.2 times faster than SiamFC. The results demonstrate that the proposed algorithm
significantly improves the tracking speed with little tracking precision loss. In the case of using the
GPU, the proposed algorithm is about 1.3 times faster than SiamFC. The GPU can be used for parallel
computing of multiple feature maps, so the speed improvement is less than the CPU case. However,
for the embedded systems where GPUs are not available for computing deep features from the search
images, the proposed algorithm is more applicable than SiamFC. Figure 5 shows six snapshots of the
videos in the VOT2018 ST dataset and the bounding boxes of the proposed algorithm. As shown in the
figure, the proposed algorithm adjusts the scale changes of the objects during tracking.
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Figure 4. The tracking speed from CPU and GPU.

Figure 5. Screenshots of the tracking result from the proposed algorithm from VOT2018 dataset: bag
(a,b), helicopter (c,d), crossing (e,f), shaking (g,h), racing (i,j), and sheep (k,l).

5. Conclusions

In this study, a single-crop Siamese network was proposed to increase the speed of SiamFC in
visual object tracking. Instead of computing deep feature maps of multiple image crops for scale
estimation, the proposed algorithm only uses a single image crop and extracts multiple scales of
feature maps from a single deep feature map. The experimental results with VOT2014 and VOT2018
ST demonstrate that the proposed algorithm significantly improves the performance speed with little
precision loss. The proposed work can be applied to various SiamFC-based algorithms to improve
their speed. For future work, the proposed algorithm will be implemented on the embedded boards
for visual object tracking.
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Eldesokey, A.; et al. The sixth visual object tracking vot2018 challenge results. In Proceedings of the
European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 3–53.

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Single-Crop SiamFC Framework
	Framework Overview
	Multi-Scale Feature Extraction

	Experiments
	Conclusions
	References

