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Abstract: As a family of lightweight block ciphers, SIMON has attracted lots of research attention
since its publication in 2013. Recent works show that SIMON is vulnerable to differential fault analysis
(DFA) and existing DFAs on SIMON assume the location of induced faults are on the cipher states.
In this paper, a novel DFA on SIMON is proposed where the key schedule is selected as the location
of induced faults. Firstly, we assume a random one-bit fault is induced in the fourth round key KT−4

to the last. Then, by utilizing the key schedule propagation properties of SIMON, we determine the
exact position of induced fault and demonstrate that the proposed DFA can retrieve 4 bits of the last
round key KT−1 on average using one-bit fault. Till now this is the largest number of bits that can be
cracked as compared to DFAs based on random bit fault model. Furthermore, by reusing the induced
fault, we prove that 2 bits of the penultimate round key KT−2 could be retrieved. To the best of our
knowledge, the proposed attack is the first one which extracts a key from SIMON based upon DFA on
the key schedule. Finally, correctness and validity of our proposed attack is verified through detailed
simulation and analysis.
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1. Introduction

In 2013, a family of lightweight block ciphers called SIMON was presented by the National
Security Agency (NSA), based upon the Feistel structure. Compared with other ciphers, SIMON can
provide a better performance for both hardware and software. The block size of SIMON is denoted
as 2n (the n represents the word size) with n = 16, 24, 32, 48, or 64. For each block size, it supports 3
key sizes. Thus, SIMON can be implemented on a wide range of devices [1]. Since the publication
of SIMON, many cryptanalysis papers about it have been presented, such as integral attack [2,3],
differential attack [4–6], and linear attack [6,7]. In addition, other attacks, such as differential fault
analysis (DFA), have also been proposed to retrieve the secret keys from SIMON [8].

As one of the typical fault attacks (FA) [9], DFA was first proposed by Biham and Shamir in
1997 to obtain the secret key from DES cryptosystem [10]. The idea of DFA is to make use of some
erroneous calculations caused by inducing some unexpected faults to retrieve the secret keys of a
cipher algorithm. DFA has been greatly developed and poses a serious threat to the security of many
cipher algorithms, including block cipher algorithms [8,11–13].

In FDTC 2014, Tupsamudre et al. proposed DFA on SIMON family for the first time [8].
In this attack, the authors induced the faults into LT−2 (the left half input of the penultimate round)
and proposed two fault models: random bit fault model and random byte fault model. Through
theoretical analysis and experiments, they proved that it could retrieve 2 bits and one byte of the last
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round key KT−1 by using one random bit-flip and one-byte fault, respectively. Later, Takahashi et al.
proposed a random n-bit fault model against the SIMON family where the n represents the word
size. They successfully retrieved the entire key of SIMON family through both, that is, theoretical
computations and experimental simulations. For the data complexity (the data complexity refers to the
number of the fault injections), they also presented a detail analysis [14].

After that, Vasquez et al. proposed an improved DFA on SIMON family [15]. Similarly to [8],
they also assumed a random bit fault model. However, the location of induced fault is in LT−3. Because
more depth of induced fault lead to more efficient diffusion of the induced fault, this scheme can
retrieve 3.5 bits of KT−1 on average by inducing one-bit fault. Furthermore, by reusing the induced
one-bit fault, 2 bits of the penultimate round key KT−2 on average could be retrieved. As a result,
they could break the entire key of SIMON96/96 and SIMON128/128 using only one round faults.

In a following work, another improved DFA on SIMON family was presented by Chen et al.
in FDTC 2016 [16]. The authors injected faults into LT−m−1 based on a random byte fault model,
where the m represents the key words of SIMON family. They presented a detail analysis about the
data complexity in theory and shown that the entire key of SIMON could be recovered. For retrieving
the entire secret key of SIMON, they successfully break 6 instances of SIMON by using only one
round faults.

This paper proposes a novel DFA on SIMON family. Different from existing DFAs on SIMON
family where faults are induced into the cipher state, we induce faults into the key schedule for the
first time. Based on a random bit fault model, we prove that 4 bits of KT−1 and 2 bits of KT−2 could
be retrieved on average when inducing only one-bit fault into the fourth round key KT−4 to the last.
Compared to [8], which also uses random bit fault model, we can recover the entire key of SIMON
family through half number of the fault locations. Compared to the previous works, our contributions
in this paper are mainly as following:

1. Selection of the key schedule as the location of induced fault. Different from these existing DFAs
on SIMON family ([8,14–16]) where all select the cipher state as the location of induced fault,
our DFA on SIMON is the first one which selects the key schedule as the location of induced fault.
Thus, we have provided a new train of thought and method for using DFA to crack keys of the
SIMON family.

2. Compared with existing attacks based on the random bit fault model, our attack is more efficient.
For the random bit fault model, paper [15] is the only one which could retrieve two round keys
by using one induced round location. In other words, paper [15] can retrieve on average 3.5 bits
of KT−1 and 2 bits of KT−2 by using one-bit fault induced into the (T−3)th round. Up to now,
this is the most efficient method. However, selection of the key schedule especially KT−4 as the
location of induced fault, our attack can retrieve 4 bits of KT−1 and 2 bits of KT−2 on average using
one-bit fault.

The rest of this paper is arranged as follows. Section 2 presents some necessary notation and a
brief introduction for SIMON. Then Section 3 proposes and discusses our DFA on SIMON key schedule.
In this section, we present the assumption of the proposed attack, then discuss how to determine the
position of the induced fault and retrieve KT−1 as well as KT−2. Extended analysis includes the detailed
data complexity assessment and scheme to crack the entire secret key of the SIMON family. Simulation
results and comparisons are carried out in Section 4. Finally, concluding remarks are given in Section 5.

2. Preliminaries

2.1. Notation

• T: the round number of SIMON
• m: the key word size in SIMON
• n: the word size in SIMON
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• P: plaintext
• C, C *: ciphertext and faulty ciphertext
• Li, Ri: the left and right half input of the ith round, i ∈ {0, . . . , T−1}, the output of the cipher is

denoted by (LT, RT)
• Lj

i, Rj
i: the jth bit of Li, Ri

• Li *, Ri *: the left and right half faulty input of the ith round, i ∈ {0, . . . , T−1}
• Ki: round -key used in ith round, i ∈ {0, . . . , T−1}
• Ki *: faulty Ki when there is a fault in Ki

• x <<< a: left circular shift of x by a bits
• y >>> b: right circular shift of y by b bits
• &: bitwise AND
• ⊕: bitwise xor
• a%b: a remainder b

2.2. Description for SIMON Family

As a lightweight block cipher, SIMON applies a Feistel structure with a n-bit word and a m-bit
word key, which is denoted as SIMON 2n/mn. In the SIMON family, n should be 16, 24, 32, 48, or 64,
and m = 2, 3, or 4. The parameters of the SIMON family with different (n, m) combinations are described
in Table 1.

Table 1. Parameters of the SIMON family.

Cipher SIMON2n/mn Block Size 2n Key Size mn Word Size n Key Words m Const Seq Rounds T

SIMON 32/64 32 64 16 4 z0 32

SIMON 48/72
48

72
24

3 z0 36

SIMON 48/96 96 4 z1 36

SIMON 64/96
64

96
32

3 z2 42

SIMON 64/128 128 4 z3 44

SIMON 96/96
96

96
48

2 z2 52

SIMON 96/144 144 3 z3 54

SIMON 128/128

128

128

64

2 z2 68

SIMON 128/192 192 3 z3 69

SIMON 128/256 256 4 z4 72

2.2.1. Key Schedule Function

The SIMON key schedule generates a sequence of T key from an input key, where T is the round
number. For SIMON 2 n/mn, the T key words (K0, . . . , KT−1) depend on the value of m and it can
be generated using the formulas (1), where c is a constant value and c = 2n

− 4 = 0xff . . . fc. The zj
represents 5 constant sequences denoted as z0, z1, z2, z3 and z4, respectively. More detailed descriptions
about the key schedule function and zj can be obtained in [1].

m = 2 : Ki = c⊕ (z j)i−m ⊕Ki−2
⊕

(Ki−1 >>> 3) ⊕ (Ki−1 >>> 4)
m = 3 : Ki = c⊕ (z j)i−m ⊕Ki−3

⊕

(Ki−1 >>> 3) ⊕ (Ki−1 >>> 4)
m = 4 : Ki = c⊕ (z j)i−m ⊕Ki−4

⊕Ki−3
⊕

(Ki−3 >>> 1) ⊕ (Ki−1 >>> 3)
⊕(Ki−1 >>> 4)

(1)
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Figure 1. Fault propagation when the jth bit KT−3 is randomly corrupted. 
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(j-3)%n and (j-4)%n of KT−3 respectively, which are all corrupted by the j%n bit of KT−4. And the thick 
lines show the cipher states and round keys which are necessary to retrieve KT−1 and KT−2. The gray in 
cipher states and round keys represent the faulty intermediate states and faulty round keys, 
respectively. 
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Figure 1. Fault propagation when the jth bit KT−4 is randomly corrupted.

2.2.2. Round Function

The SIMON round function Rk(Li, Ri): GF(2)n
× GF(2)n

→ GF(2)n
× GF(2)n is defined as:

Rk(Li, Ri) = (Li+1, Ri+1) = (Ri
⊕ F(Li) ⊕Ki, Li)

where
F(Li) = (Li <<< 1)&(Li <<< 8) ⊕ (Li <<< 2) (2)



Electronics 2019, 8, 93 5 of 13

for i ∈ {0, . . . , T−1}. From (2), it can be known that the jth bit of Li affects 3 distinct bits of F(Li):

F(Li)( j+1)%n = (Li
j&Li

( j−7)%n) ⊕ Li
( j−1)%n

F(Li)( j+2)%n = (Li
( j+1)%n&Li

( j−6)%n) ⊕ Li
j

F(Li)( j+8)%n = (Li
( j+7)%n&Li

j) ⊕ Li
( j+6)%n

(3)

3. The Proposed Attack on SIMON Key Schedule

3.1. Assumption of the Proposed Attack

Different from these existing DFAs on SIMON, we assume the adversary induces a random one-bit
fault into the key schedule, and the exact position of the induced fault is in KT−4. (LT *, RT *) is denoted
as the faulty output when inducing fault. KT−4 is randomly corrupted by a random one-bit fault,
the fault propagation process is as shown in Figure 1.

In Figure 1, the red thick line in KT−4 represents the induced j%n bit of KT−4. Both the red thick
line in LT−3 and RT−2 represent the corrupted bits. The two yellow thick lines in KT−3 represent the
bit (j−3)%n and (j−4)%n of KT−3 respectively, which are all corrupted by the j%n bit of KT−4. And the
thick lines show the cipher states and round keys which are necessary to retrieve KT−1 and KT−2.
The gray in cipher states and round keys represent the faulty intermediate states and faulty round
keys, respectively.

3.2. DFA on The (T−4) Round Key

In FDTC 2014, Tupsamudre et al. proposed the following formula to retrieve KT−1:

KT−1 = LT−2
⊕ F(RT) ⊕ LT (4)

Thus, in order to make use of the induced random bit faults in KT−4 to retrieve KT−1, we need to
establish the relationship between induced faults and LT−2. We suppose the position of induced fault
is the jth bit of KT−4. From Figure 1, it can be deduced that:

LT∗ = F(LT−1∗) ⊕KT−1∗
⊕RT−1∗

= F(RT∗) ⊕KT−1∗
⊕ LT−2∗

= F(RT∗) ⊕KT−1∗
⊕KT−3∗

⊕ F(LT−3∗) ⊕RT−3
(5)

Therefore, we can derive the following equation from the xor of LT and LT *:

LT
⊕ LT∗ = F(RT) ⊕ F(RT∗) ⊕KT−1

⊕KT−1∗

⊕KT−3
⊕KT−3∗

⊕ F(LT−3) ⊕ F(LT−3∗)
(6)

If we move F(RT)⊕F(R *) in the Equation (6) to the left side, the Equation (6) can be rewritten as:

LT
⊕ LT∗

⊕ F(RT) ⊕ F(RT∗)

= KT−1
⊕KT−1∗

⊕KT−3
⊕KT−3∗

⊕ F(LT−3) ⊕ F(LT−3∗)

(7)

3.2.1. Determining the Position of Induced Fault

In this part, we will show how to determine the position of the induced fault based on Equation
(7). From Figure 1, the induced bit fault in KT−4 that will corrupt the same position bit in LT−3 can be
known, in other words, the jth bit of LT−3 is flipped. According to the Formula (3), we can identify that
3 distinct bits of F(LT−3) may be affected: (j + 1)%n, (j + 2)%n and (j + 8)%n. To further illustrate the
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affected bits, the function F(.) defined in Equation (2) needs further analysis. Assuming the jth bit of Li

is induced, according to the Formula (3), it can be deduced that:

F(Li∗)( j+1)%n = ((Li
j ⊕ 1)&Li

( j−7)%n) ⊕ Li
( j−1)%n

F(Li∗)( j+2)%n = (Li
( j+1)%n&Li

( j−6)%n) ⊕ Li
j ⊕ 1

F(Li∗)( j+8)%n = (Li
( j+7)%n&(Li

j ⊕ 1)) ⊕ Li
( j+6)%n

(8)

From the Equation (8), we can know that once the jth bit of Li is flipped, the (j + 2)%n bit of F(Li) is
also flipped. Due to the jth bit of LT−3 is flipped, it can be identified that the two bits (j + 1)%n and (j +

8)%n of F(LT−3) may be affected, and the bit (j + 2)%n of F(LT−3) must be affected.
According to the Formula (1) and the principle of the SIMON key schedule, we can obtain the

following equation no matter the value of m (that is m = 2, 3, or 4):

KT−3
⊕KT−3∗ = (KT−4 >>> 3) ⊕ (KT−4∗ >>> 3)

⊕(KT−4 >>> 4) ⊕ (KT−4∗ >>> 4)
(9)

Equation (9) shows that one fault bit of KT−4 will affect 2 distinct bits of KT−3. In other words,
the jth bit of KT−4 affects the bits (j − 3)%n and (j − 4)%n of KT−3.(

KT−3
⊕KT−3∗

)
( j−3)%n = KT−4

⊕ (KT−4
⊕ 1) = 1(

KT−3
⊕KT−3∗

)
( j−4)%n = KT−4

⊕ (KT−4
⊕ 1) = 1

(10)

Further, the bit (j − 3)%n of KT−3 will affect the bits (j − 6)%n and (j − 7)% of KT−2, the bit (j − 4)%n
of KT−3 will affect the bits (j − 7)%n and (j − 8)% of KT−2. As a result, the bits (j − 3)%n and (j − 4)%n of
KT−3 will affect the bits (j − 6)%n and (j − 8)% of KT−2. Through similar analysis, we can deduce the
affected bits in KT−1. The jth bit of KT−4 affects the bits of KT−3, KT−2 and KT−1 are given in Table 2:
For simplicity, (j − x)%n writes as j − x, where x ∈ {0, . . . ,n}.

Table 2. The jth bit of KT−4 affects the bits of KT−3, KT−2 and KT−1.

The Position of Induced Fault Key Words: m Affected Bits

jth bit of KT−4

4

KT−3: j − 3, j − 4

KT−2: j − 6, j − 8

KT−1: j, j − 1, j − 9, j − 10, j − 11, j − 12

3

KT−3: j − 3, j − 4

KT−2: j − 6, j − 8

KT−1: j, j − 9, j − 10, j − 11, j − 12

2

KT−3: j − 3, j − 4

KT−2: j, j − 6, j − 8

KT−1: j − 9, j − 10, j − 11, j − 12

By combining the Equation (7), Table 2 and the analysis above, it can be identified some bits value
in (LT

⊕LT*
⊕F(RT)⊕F(RT*)). For convenience, we write (LT

⊕LT*
⊕F(RT)⊕F(RT*)) as “LFR”, thus when

key words m = 4 (only take m = 4 for example, when m = 3 or 2, the processes of discussion remain the
same), we can get:
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LFR j%n = KT−1
⊕KT−1

⊕ 1 = 1
LFR( j−3)%n = KT−3

⊕KT−3
⊕ 1 = 1

LFR( j−4)%n = KT−3
⊕KT−3

⊕ 1 = 1
LFR( j−1)%n = KT−1

⊕KT−1
⊕ 1 = 1

LFR( j−9)%n = KT−1
⊕KT−1

⊕ 1 = 1
LFR( j−10)%n = KT−1

⊕KT−1
⊕ 1 = 1

LFR( j−11)%n = KT−1
⊕KT−1

⊕ 1 = 1
LFR( j−12)%n = KT−1

⊕KT−1
⊕ 1 = 1

LFR( j+2)%n = LT−3
j ⊕ LT−3

j ⊕ 1 = 1,

(11)

as well as the following equations:

LFR( j+1)%n = (LT−3
j &LT−3

( j−7)%n
)

⊕((LT−3
j ⊕ 1

)
&LT−3

( j−7)%n
)

LFR( j+8)%n = (LT−3
( j+7)%n

&LT−3
j )

⊕(LT−3
( j+7)%n

&(LT−3
j ⊕ 1))

(12)

Through the Equation (11), it can be seen that 4 contiguous bits (j − 9)%n, (j − 10)%n, (j − 11)%n
and (j − 12)%n of LFR are all 1. In fact, when m = 3, or 2, there are all 4 consecutive bits (j − 9)%n, (j −
10)%n, (j − 11)%n and (j − 12)%n be 1 in LFR. We present statistics on the value of bits in LFR under
different conditions in Table 3.

Table 3. The jth bit of KT−4 affects the bits of LFR.

The Position of Induced Fault Key Words: m The Value of Bits in LFR(LFR = LT⊕LT

*⊕F(RT)⊕F(RT*)

jth bit of KT−4

4
1: j, j − 1, j − 3, j − 4, j − 9, j − 10, j − 11, j − 12, j + 2

may be 1: j + 1, j + 8

3
1: j, j − 3, j − 4, j − 9, j − 10, j − 11, j − 12, j + 2

may be 1: j + 1, j + 8

2
1: j − 3, j − 4, j − 9, j − 10, j − 11, j − 12, j + 2

may be 1: j + 1, j + 8

As can be seen in Table 3, there exists only one group of 4 contiguous 1 in LFR no matter if m = 4,
3 or 2, and this is a very important property. In fact, the idea for deducing the position j is based on
this property.

To determine the position of induced fault, Algorithm 1 has been proposed. Here, the value of
constant A depends on the word size n: (A, n) = {(F400, 16), (F40000, 24), . . . }. F(.) represents the
non-linear function defined in Equation (2). The position of j can be determined by Algorithm 1,
in other words, we can accurately determine the position of induced fault: jth bit of KT−4.
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Algorithm 1 Deducing the position of induced fault j in KT−4

Input: (LT, RT), (LT *, RT *), the word size n, constant A
Output: deducing j.

1. LFR←LT
⊕LT*

⊕F(RT)⊕F(RT*)

2. for i = 0: n − 1

3. B← circshift(A,[0,−i]) % right circular shift for binary

4. C← LFR & B

5. if ( C == A)

6. if (i <8)

7. j%n← n-8 + i

8. else

9. j%n← i - 8

10. end

11. end

12. end

3.2.2. Retrieving LT−2 and KT−1

According to the formula (4), it is known that if someone wants to retrieve KT−1, she/he must
obtain LT, RT and LT−2 first. Because (LT, RT) is the output of SIMON which could be obtained directly,
so she/he only needs to obtain LT−2. From Figure 1, it can be deduced that:

RT∗ = F(LT−2∗) ⊕KT−2∗
⊕ LT−3∗ (13)

Therefore, the following equation could be derived from the xor of RT and RT *:

RT
⊕RT∗ = F(LT−2) ⊕ F(LT−2∗) ⊕KT−2

⊕KT−2∗

⊕LT−3
⊕ LT−3∗ (14)

From the discussion in Section 3.2.1, it is known that when the jth bit of KT−4 is flipped, the jth bit
of LT−3 will also be flipped, so the bit (j + 2)%n of F(LT−3) is flipped. Because LT−2* can be written as:

LT−2∗ = F(LT−3) ⊕KT−3∗
⊕RT−3, (15)

and the (j − 3)%n and (j − 4)%n of KT−3 are flipped (this conclusion can be obtained from Table 2),
so there must be 3 bits which are flipped in LT−2: (j + 2)%n, (j − 3)%n and (j − 4)%n. Thus, combined
the Equation (14) and the results from Table 2, the following equations could be obtained:

(RT
⊕RT∗)( j+4)%n = (LT−2

( j+3)%n & LT−2
( j−4)%n)

⊕(LT−2
( j+3)%n & (LT−2

( j−4)%n ⊕ 1)) ⊕ 1

(RT
⊕RT∗)( j+5)%n = (LT−2

( j+4)%n & LT−2
( j−3)%n)

⊕(LT−2
( j+4)%n& (LT−2

( j−3)%n ⊕ 1))

(RT
⊕RT∗)( j−2)%n = (LT−2

( j−3)%n& LT−2
( j−10)%n)

⊕((LT−2
( j−3)%n ⊕ 1) & LT−2

( j−10)%n) ⊕ 1

(RT
⊕RT∗)( j−3)%n = (LT−2

( j−4)%n & LT−2
( j−11)%n)

⊕((LT−2
( j−4)%n ⊕ 1) & LT−2

( j−11)%n)

(16)
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Through the Equation (16), we have made truth tables to illustrate the relationships between the
bits in LT−2 and the bits in (RT

⊕RT*).
From Table 4, it can be seen that if (RT

⊕RT∗)( j+4)%n= 0, then LT−2
( j+3)%n= 1, otherwise it is

0. This is independent of the value of LT−2
( j−4)%n. Besides, from Tables 5–7, it can be seen that if

(RT
⊕RT∗)( j+5)%n= 0, then LT−2

( j+4)%n= 0, otherwise it is 1; If (RT
⊕RT∗)( j−2)%n= 0, then LT−2

( j−10)%n= 1,

otherwise it is 0; If (RT
⊕RT∗)( j−3)%n= 0, then LT−2

( j−11)%n= 0, otherwise it is 1. As a result, we can obtain
the following equations:

LT−2
( j+3)%n = (RT

⊕RT∗)( j+4)%n ⊕ 1

LT−2
( j+4)%n = (RT

⊕RT∗)( j+5)%n

LT−2
( j−10)%n = (RT

⊕RT∗)( j−2)%n ⊕ 1

LT−2
( j−11)%n = (RT

⊕RT∗)( j−3)%n

(17)

Therefore, there are 4 bits (j + 3)%n, (j + 4)%n, (j − 10)%n and (j − 11)%n of KT−1 that could be
recovered according to the Equations (17) and (4):

KT−1
( j+3)%n = LT−2

( j+3)%n ⊕ F(RT)( j+3)%n ⊕ LT
( j+3)%n

KT−1
( j+4)%n = LT−2

( j+4)%n ⊕ F(RT)( j+4)%n ⊕ LT
( j+4)%n

KT−1
( j−10)%n = LT−2

( j−10)%n ⊕ F(RT)( j−10)%n ⊕ LT
( j−10)%n

KT−1
( j−11)%n = LT−2

( j−11)%n ⊕ F(RT)( j−11)%n ⊕ LT
( j−11)%n

(18)

Table 4. The relationship between the bit LT−2
( j+3)%n

and (RT
⊕RT∗)( j+4)%n.

LT−2
(j+3)%n LT−2

(j−4)%n LT−2
(j−4)%n⊕1 (RT

⊕RT*)(j+4)%n

0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0

Table 5. The relationship between the bit LT−2
( j+4)%n

and (RT
⊕RT∗)( j+5)%n.

LT−2
(j+4)%n LT−2

(j−3)%n LT−2
(j−3)%n⊕1 (RT

⊕RT*)(j+5)%n

0 0 1 0
0 1 0 0
1 0 1 1
1 1 0 1

Table 6. The relationship between the bit LT−2
( j−10)%n

and (RT
⊕RT∗)( j−2)%n.

LT−2
(j−10)%n LT−2

(j−3)%n LT−2
(j−3)%n⊕1 (RT

⊕RT*)(j−2)%n

0 0 1 1
0 1 0 1
1 0 1 0
1 1 0 0
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Table 7. The relationship between the bit LT−2
( j−11)%n

and (RT
⊕RT∗)( j−3)%n.

LT−2
(j−11)%n LT−2

(j−4)%n LT−2
(j−4)%n⊕1 (RT

⊕RT*)(j−3)%n

0 0 1 0
0 1 0 0
1 0 1 1
1 1 0 1

3.2.3. Retrieving KT−2

After retrieving KT−1, we can reuse LT−2 with similar operations to those described in Section 3.2.2
to retrieve KT−2.

Now we obtain LT−2, because RT−1 = LT−2 and LT−1 = RT, in other words the output of the T−2
round of SIMON: (LT−1, RT−1) is obtained. As shown in Figure 1, because KT−2 = F(RT−1) ⊕LT−1

⊕LT−3,
if LT−3 is known, then KT−2 could be recovered. Based on the Equation (12), there are 2 bits (j − 7)%n
and (j + 7)%n of LT−3 could be deduced, therefore two bits of KT−2 can be recovered when inducing
one-bit fault in KT−4.

3.3. Extended Analysis

According to the Equation (18), we can obtain 4 bits of KT−1 which could be retrieved in theory by
inducing one-bit fault in KT−4. Furthermore, 2 bits of KT−2 could be retrieved on an average by reusing
the induced one-bit fault. When considering the random bit fault model, paper [8] can recover only 2
bits of KT−1. Although paper [15] can also recover 2 bits of KT−2, but it can only recover 3.5 bits of KT−1

on average, Thus, our proposed one-bit fault attack for SIMON is more efficient.
As in the similar discussion in [15], when m = 2, the whole keys of SIMON (96/96 and 128/128)

might also be retrieved by using only one round key faults. Indeed, for m = 2 and k = i −2, according to
the Formula (1), we can obtain:

m = 2 : Kk = c⊕ (z j)k−m+2 ⊕Kk+2
⊕

(Kk+1 >>> 3) ⊕ (Kk+1 >>> 4)
(19)

So, for m = 2, by using only continuous two round keys of SIMON, the entire key of SIMON could
be retrieved. As discussed in Sections 3.2.2 and 3.2.3, KT−1 and KT−2 can be retrieved by inducing faults
in KT−4; thus we can retrieve the whole keys of SIMON (96/96 and 128/128) using only one round key
faults. Similarly, considering m = 3 and m = 4, the following equations by the Formula (1) could be
obtained:

m = 3 : Kk = c⊕ (z j)i−3+m ⊕Kk+3
⊕

(Kk+2 >>> 3) ⊕ (Kk+2 >>> 4)
m = 4 : Kk = c⊕ (z j)i−4+m ⊕Kk+4

⊕Kk+1
⊕

(Kk+1 >>> 1) ⊕ (Kk+3 >>> 3)
⊕(Kk+3 >>> 4)

(20)

From the Equation (20), for m = 3, we know that if we can obtain KT−2 and KT−3, then the entire
key of SIMON could be recovered. Therefore, we need to induce faults in two round keys: KT−4 and
KT−6. The first inducing faults in KT−4 are used to retrieve both KT−1 and KT−2, the second inducing
faults in KT−6 are used to only retrieve KT−3. For m = 4, we also need to induce faults in two round
keys: KT−4 and KT−6. However, it is different from the case when m = 3, in this case, we need to induce
faults in KT−6 to retrieve two round keys: KT−3 and KT−4. The key retrieving for SIMON family and
specific fault locations are shown in Tables 8–10.
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Table 8. Experiment results for the average number of the fault inductions to retrieve KT−1/LT−2.

Word
Size: n

Avg. No. of the Fault Inductions At least No. of the Fault Inductions in Theory:

Random Byte
Fault Model Random Bit Fault Model Random Byte

Fault Model Random Bit Fault Model

[8] [8] [15] This paper [8]: n/8 [8]: n/2 [15]: n/3.5 This Paper: n/4

16 6 25 15.26 11.12 2 8 4.57 4

24 9 43 29.70 19.82 3 12 6.86 6

32 13 62 44.19 29.25 4 16 9.14 8

48 21 104 77.02 49.67 6 24 13.71 12

64 30 150 110.81 71.61 8 32 18.29 16

Table 9. Comparison of the experimental results of the fault inductions.

SIMON 2n/mn

Avg. No. of the Fault Inductions

Random Byte Fault Model Random n-Bit Fault Model Random Bit Fault Model

[8] [16] [14] [8] [15] This Paper

SIMON32/64 24 12.20 101.72 50.85 50.32

SIMON48/72 27 9.91 130.78 87.19 62.78

SIMON48/96 36 13.22 174.37 87.19 85.86

SIMON64/96 39 31.57 10.45 189.44 126.29 91.57

SIMON64/128 52 13.93 252.58 126.29 124.72

SIMON96/96 42 35.08 7.46 210.24 105.12 104.00

SIMON96/144 63 50.84 11.19 315.36 210.24 153.64

SIMON128/128 60 50.55 7.82 299.68 149.84 148.51

SIMON128/192 90 72.88 11.73 449.52 299.68 220.15

SIMON128/256 120 104.82 15.64 599.36 299.68 297.02

Table 10. Comparison of the fault locations of differential fault analysis (DFA) on SIMON family.

SIMON2 n/mn

Fault Locations of DFA on SIMON Family

Random Byte Fault Model Random n-Bit Fault Model Random Bit Fault Model

[8] [16] [14] [8] [15] This Paper

SIMON32/64 L27, L28, L29, L30 L27 L27, L28, L29, L30 L27, L28, L29, L30 L27, L29 K26, K28

SIMON48/72 L32, L33, L34 L32 L32, L33, L34 L32, L33, L34 L32, L33 K30, K32

SIMON48/96 L31, L32, L33, L34 L31 L31, L32, L33, L34 L31, L32, L33, L34 L31, L33 K30, K32

SIMON64/96 L38, L39, L40 L38 L38, L39, L40 L38, L39, L40 L38, L39 K36, K38

SIMON64/128 L39, L40, L41, L42 L39 L39, L40, L41, L42 L39, L40, L41, L42 L39, L41 K38, K40

SIMON96/96 L49, L50 L49 L49, L50 L49, L50 L49 K48

SIMON96/144 L50, L51, L52 L50 L50, L51, L52 L50, L51, L52 L50, L51 K48, K50

SIMON128/128 L65, L66 L65 L65, L66 L65, L66 L65 K64

SIMON128/192 L65, L66, L67 L65 L65, L66, L67 L65, L66, L67 L65, L66 K63, K65

SIMON128/256 L67, L68, L69, L70 L67 L67, L68, L69, L70 L67, L68, L69, L70 L67, L69 K66, K68

4. Simulation Results and Comparisons

In this section, we performed simulations to verify the correctness and validity of our proposed
attack using C on a personal computer with a HP Intel® Core i5-7300HQ. We assumed the adversary
can induce a random one-bit fault in the round keys of SIMON.

Firstly, we randomly chose a set of plaintext and secret key to obtain the correct ciphertext (LT, RT).
Then we induced random one-bit faults in KT−4 to obtain the faulty ciphertexts (LT *, RT *). Finally, we
used the proposed attack to retrieve KT−1. For different word size n = 16, 24, 32, 48, and 64, we carried
out simulation experiments respectively. The experiment was repeated 100,000 times for every value
of n same as in [14–16]. Experimental results show that the proposed attack can recover the n-bit KT−1

successfully. For different n, the average number of the fault inductions are described in Table 8. For
retrieving the entire keys of the SIMON family, we make some comparisons with existing DFAs on
SIMON family, as described in Tables 9 and 10.
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As shown in Table 8, when considering the random bit fault model, our proposed attack needs
the least average number of fault inductions. Compared with the number of fault inductions in theory,
the average number of fault inductions is much more, this is because we assume the position of the
induced fault is random, so the faults can affect the same position many times. However, if we control
precisely the position of induced faults, then the average number of fault inductions is very close to the
number in theory.

As shown in Tables 9 and 10, comparing the fault locations between the proposed attack and
existing ones, our proposed attack is the only one which selects the round keys as the fault locations.
When considering the random bit model, the proposed attack requires only half number of the fault
locations compared with [8], and the numbers are as the same required in [15]. Except the random
n-bit model [14] and the random byte model [16], the number of the fault inductions required in the
proposed attack is least than required in [8,15]. Especially, when the key words m = 3, the number
required in the proposed attack is much less than required in [15], this is because we induce faults
in KT−6 to retrieve only KT−3 instead of retrieving both KT−3 and KT−4, so our proposed attack is
more efficient.

5. Conclusions

This paper proposes a novel DFA on SIMON family by exploiting the leaked information by the
AND operation used in the F(LT−3). We show how to retrieve 4 bits of KT−1 and 2 bits of KT−2 on
average based on only one-bit fault induced in KT−4. Furthermore, we have proved that the entire key
of SIMON96/96 and SIMON128/128 could be retrieved by using only one round faults.

Compared with existing works, the proposed attack in this paper is the first one which selects
the SIMON key schedule as the location of induced faults. Considering the random bit fault model,
our attack is the most efficient one up to data. When considering the random n-bit model [14] and
random byte model [16], our attack requires a higher average number of fault inductions; this is
because the different fault models are selected.

In the future, we will try to crack more bits by conferring whether the bit (j + 1)% and (j + 8)% of
LT−2 have been flipped. Further, we aim to explore the attack based upon different models such as the
random n-bit model and random byte model so as to further reduce the required average number of
fault inductions. Besides, how to apply our ideas on the block cipher SPECK will also be explored.
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