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Abstract: This paper proposes a novel three-phase voltage source inverter dead-time compensation
strategy for accurate compensation in wide current regions of the inverter. In particular, an analysis
of the output voltage distortion of the inverter, which appears as parasitic components of the
switches, was conducted for proper voltage compensation in the low current region, and an on-line
compensation voltage controller was proposed. Additionally, a new trapezoidal compensation voltage
implementation method using the current phase was proposed to simplify realizing the trapezoidal
shape of the three-phase compensation voltages. Finally, when the proposed dead-time compensation
strategy was applied, the maximum phase voltage magnitude in the linear modulation voltage regions
was defined to achieve smooth operation even at high modulation index. Simulations and experiments
were conducted to verify the performance of the proposed dead-time compensation scheme.

Keywords: dead-time compensation strategy (DTCS); dead-time compensation; trapezoidal
compensation voltage; dead-time effects; three-phase voltage source inverter (VSI) compensation

1. Introduction

Dead-time is an efficient strategy which adds blank time within complementary switching signals
to prevent arm-short. The series two switches circuit, sharing a DC-link such a half-bridge, is operating
complementary to avoid arm-short condition. However, in the actual switch, a delay occurs within
on/off operating due to the parasitic components, and the series switches appear to be shorted with a
DC-link. The short circuit allows excessive current through the series switches, causing serious system
failure. Therefore, the reliability of the system can be guaranteed by injecting enough dead-time (Td)
until the switch reaches a steady state [1,2].

Especially, as shown in Figure 1a, a circuit structure such as a typical three-phase VSI in which
three legs share a DC-link must ensure reliability of the system by applying dead-time. Figure 1b shows
the operation of a single leg over time during one switching period. Q∗1s, Q

∗

1s are ideal complementary
switches on/off signals, Q1s, Q1s are real switch on/off signals adapted to the dead-time Td and the
subscripts a,b,c indicate each phase. For example, ia, ib, ic are a-, b- and c-phase current and R, L, e are
phase resistor, inductor and voltage source, respectively. Since the dead-time cannot control actively, it
causes not only serious voltage distortions in inverter output voltage as shown Figure 1b, but also
adverse effects on the all algorithms using a voltage reference [3,4]. Figure 2a shows a pole voltage
reference of a-phase in the three-phase VSI and (Figure 2b) shows current waveforms applied the
dead-time to compare the ideal current waveform. Here, in the current waveform to which the dead
time is applied, it can be seen that serious current distortion occurs near the zero point and near the
peak area. Various types of dead-time compensation strategies have been published to analyze and
compensate for the dead-time defects. In [1,2,5], the dead-time and the switch on/off delay were
analyzed and the dead-time compensation method via ideal parameters was suggested. However, since
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the switch parameters are fluctuated with external factors, it is difficult to compensate accurately in all
inverter operating areas by using fixed variables. In some papers [6–8], the distortions of inverter output
voltage by switch’s output capacitors were studied and compensation strategies with the look-up table
containing the switch-off times according to the magnitude of the current were suggested. Although, a
disadvantage is that it is difficult to compensate the precise dead-time in various environments since
the table is limited to the experimental environment. The papers [9,10] proposed an on-line dead-time
compensation method which modifies the dead-time compensation voltage (DTCV) by feeding back
current distortions. However, the strategies extracting the current distortions are complicated, and
have drawbacks near the current zero-crossing points. In [11], the dead-time compensation algorithm
using a filter has been suggested. However, due to the lowpass-filter characteristics, the bandwidth of
the current controller can be limited. In [12], a scheme which compensates the sixth-order harmonic in
d-q axis currents on the synchronous reference frame using a bandpass filter is suggested. However,
the performance of the dead-time compensation algorithm is limited by the characteristic of the
current controller, making it difficult to compensate for all the dead-time effects of wide harmonics.
References [13,14] offer compensation strategies using an observer which is feeding back d-q axis
currents on synchronous reference frame. However, since it is utilizing an ideal-model, the observer
regards not only the dead-time distortions but also various parasitic components as dead-time errors.
Thus, it is impossible to accurately estimate the real output voltage of the inverter. In [15,16], the
on-line dead-time compensation algorithms having a trapezoidal shape compensation voltage and
a modulator for slope have been proposed. However, it is difficult to completely compensate for
the non-linearities of the switch, especially in the low current region. The repetitive controller for
dead-time compensation is proposed. Since it is based on the permanent magnet synchronous motor
(PMSM) position not constant time like the conventional repetitive controller, it is robust at the variation
of the motor speed. However, the d-axis current on the synchronous reference frame affects to the
position information, and as a result, precise dead-time compensation is impossible [17]. A method
to compensate the output voltage error of the inverter using the information of the terminal voltage
of the inverter is suggested, but it requires additional hardware to sense the terminal voltage, so it is
difficult to apply it to the existing three-phase VSI which may lead to an increase in cost [18,19].

Electronics 2019, 8, x FOR PEER REVIEW 2 of 29 

 

published to analyze and compensate for the dead-time defects. In [1,2,5], the dead-time and the 
switch on/off delay were analyzed and the dead-time compensation method via ideal parameters 
was suggested. However, since the switch parameters are fluctuated with external factors, it is 
difficult to compensate accurately in all inverter operating areas by using fixed variables. In some 
papers [6–8], the distortions of inverter output voltage by switch’s output capacitors were studied 
and compensation strategies with the look-up table containing the switch-off times according to the 
magnitude of the current were suggested. Although, a disadvantage is that it is difficult to 
compensate the precise dead-time in various environments since the table is limited to the 
experimental environment. The papers [9,10] proposed an on-line dead-time compensation method 
which modifies the dead-time compensation voltage (DTCV) by feeding back current distortions. 
However, the strategies extracting the current distortions are complicated, and have drawbacks near 
the current zero-crossing points. In [11], the dead-time compensation algorithm using a filter has been 
suggested. However, due to the lowpass-filter characteristics, the bandwidth of the current controller 
can be limited. In [12], a scheme which compensates the sixth-order harmonic in d-q axis currents on 
the synchronous reference frame using a bandpass filter is suggested. However, the performance of 
the dead-time compensation algorithm is limited by the characteristic of the current controller, 
making it difficult to compensate for all the dead-time effects of wide harmonics. References [13,14] 
offer compensation strategies using an observer which is feeding back d-q axis currents on 
synchronous reference frame. However, since it is utilizing an ideal-model, the observer regards not 
only the dead-time distortions but also various parasitic components as dead-time errors. Thus, it is 
impossible to accurately estimate the real output voltage of the inverter. In [15,16], the on-line dead-
time compensation algorithms having a trapezoidal shape compensation voltage and a modulator 
for slope have been proposed. However, it is difficult to completely compensate for the non-
linearities of the switch, especially in the low current region. The repetitive controller for dead-time 
compensation is proposed. Since it is based on the permanent magnet synchronous motor (PMSM) 
position not constant time like the conventional repetitive controller, it is robust at the variation of 
the motor speed. However, the d-axis current on the synchronous reference frame affects to the 
position information, and as a result, precise dead-time compensation is impossible [17]. A method 
to compensate the output voltage error of the inverter using the information of the terminal voltage 
of the inverter is suggested, but it requires additional hardware to sense the terminal voltage, so it is 
difficult to apply it to the existing three-phase VSI which may lead to an increase in cost [18,19]. 
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Figure 1. Three-phase VSI and dead-time switching patterns of a-phase leg: (a) Typical three-phase 
VSI configuration; (b) switching patterns and current flow direction of the one phase leg during the 
dead-time. 
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Figure 1. Three-phase VSI and dead-time switching patterns of a-phase leg: (a) Typical three-phase
VSI configuration; (b) switching patterns and current flow direction of the one phase leg during
the dead-time.



Electronics 2019, 8, 92 3 of 29Electronics 2019, 8, x FOR PEER REVIEW 3 of 29 

 

 
(a) (b) 
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Figure 2. Effects of the dead-time in Figure 1a ( fsw = 20 kHz, Vdc = 100 V, Ls = 0.01 mH, Rs = 10 Ω);
(a) an a-phase pole voltage reference as space vector PWM (SVPWM); (b) comparing dead-time effects
with equal voltage reference with (a).

In this paper, a novel DTCS for accurate dead-time compensation in all output regions of
the inverter is proposed. In particular, with the dead-time compensation algorithm using passive
calculation it is difficult to accurately compensate all areas of the inverter output because increased
switch turn-off delay effects occur due to the parasitic components of the switch in the low current
region. Therefore, in this paper, a new controller that can actively compensate for voltage distortion due
to the switch parasitic components and a new method that can more easily implement the three-phase
trapezoidal compensation voltage (TCV) is presented. In Section 2, the inverter output voltage error by
the dead-time and the switch’s non-linearities are analyzed. In Section 3, a novel three-phase TCV
implementation strategy and the on-line TCV controller revising its amplitude and slope is presented.
In Section 4, the output voltage distortions of the three-phase VSI and the maximum linear-modulation
phase voltage (MMPV) are analyzed on the space vector area. Finally, in Section 5, the simulation
and the experiment are implemented to verify the proposed DTCS. The performance of the DTCS is
evaluated with phase current total harmonic distortion (THD).

2. Analysis of the Dead-Time Effects

In this paper, the dead-time Td of Equation (2) includes the ON/OFF propagation delay in order to
be simply expressed as Vd. Additionally, the conduction voltage drops across the diode and switch are
excluded from the effect of dead-time because they are negligible compared to the DC-link voltage level.

2.1. The Three-Phase VSI Output Voltage Errors by the Dead-Time

In Figure 1b, an a-phase single leg output voltage van is varied according to the phase current ia
direction during the dead-time. When the current direction is positive, the current flows through the
body diode D2 in the lower switch Q1, so that the van comes to be −Vdc/2. On the other hand, when
the current direction is negative, the current flows through the body diode D1 in the upper switch Q1,
thus the output van becomes Vdc/2. Therefore, the a-phase pole voltage errors due to the dead-time
can be expressed as

∆verr
an =

{
−Vd (ia > 0)
Vd (ia < 0)

, (1)

Vd =
Ton + Td − To f f

Ts
Vdc. (2)

In Equation (2), the Vd is average pole voltage error (APVE) that occurs during a single switching
period, and it contains switch turn on/off delays Ton, To f f as well as dead-time Td [2]. The a-phase
APVE can be expressed according to the direction of current as shown Equation (1). In addition, the
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other phases, b and c, can be expressed in the same approach via each current polarity [1]. The APVEs
of three-phase can be represented by the voltage errors on the synchronous reference frame d-q axis
as follows. 

∆verr
as

∆verr
bs

∆verr
cs

 = 1
3


2 −1 −1
−1 2 −1
−1 −1 2
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∆verr
cn

, (3)
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cos(6nωet+δ)

(6n+1)

}


(4)

Equation (3) is expressed as the average phase voltage error by APVE [2], and Equation (4)
represents the average phase voltage error due to the dead-time on the synchronous reference frame d-q
axis by the Fourier series expansion [5,11], where θe,ωe are electrical angle, electrical angular velocity,
id, iq are d-, q-axis current respectively and δ is the phase angle between q-axis and three-phase current
vector Is as shown Figure 3.
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The d-q axis voltage error contains both the fundamental and the 6nth harmonics distortions, as in
Equation (4). Theses voltage errors cause discordance between the real output voltage of three-phase
VSI and the voltage commands. Furthermore, the distortion components cause harmonic currents,
which degrade the performance of the VSI. Therefore, in order to compensate the voltage distortions
due to the dead-time, the opposite voltages of the error voltages can be generated using the Equation
(1). The average compensation pole voltage (ACPV) can be expressed as follows.

∆van = Vdsign(ia), (5)

sign(ia) =

1 (ia > 0)

−1 (ia < 0)
. (6)

The ACPVs of the b- and c-phase can be described in a similar way as Equations (5) and (6) which
is a-phase AVPC [1,2]. Using the three-phase ACPVs and d-q axis transformation matrix (4), the d-q
axis dead-time compensation voltage waveforms can be illustrated as Figure 4. Figure 4a shows the
a-phase current and Figure 4b,c reveals the average compensation pole voltage of the a-phase and the
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average compensation phase voltage of the a-phase, respectively. Figure 4d presents the dead-time
compensation voltage converted to the α− β axis, and Figure 4e shows the dead time compensation
voltage on the d-q axis when δ = 0.
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Figure 4. Dead-time compensation voltage waveforms; (a) a-phase current; (b) average compensation
pole voltage (ACPV) of a-phase; (c) the average compensation phase voltage of a-phase; (d) dead-time
compensation voltages on stationary reference frame α− β axis; (e) dead-time compensation voltages
on the synchronous reference frame d− q axis.

2.2. The Effects of Switch Parasitic Components

The real switch contains diverse parasitic components and the output capacitor of the switch is a
critical factor in compensating the distorted output voltage of three-phase VSI because it seriously
affects the switch off delay time, To f f , depending on the magnitude of the phase current [6]. Figure 5
exposes the output capacitors C1, C2 connected in parallel with the switches and the charging and
discharging process when the phase current ip flows in the positive direction.

In Figure 5a, the dc-link voltage
(
vC1 = Vdc

)
is charging to the capacitor C1 while the upper switch

is turning on. At that moment, the discharging current −iC1 flows to the node ‘p’ due to the potential
difference and is charging the capacitor C2 of the lower switch so that the voltage vC2 of the lower
switch parasitic capacitor C2 is rapidly charged to Vdc. Consequently, when the upper switch is turning
on, the output pole voltage vpn of the half-bridge is hardly affected. On the contrary, when the both
upper and lower switches are turned off (during the dead-time), as shown in Figure 5b, the capacitor C2

of the lower switch is discharged and the voltage of vC2 arrives at zero. At this time, the current ip can
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be expressed by the sum of the charging current iC1 of the upper output capacitor and the discharging
current iC2 of the lower output capacitor.

ip = −iC1 + iC1 . (7)

Assuming that the capacitances C1, C2 and the charging/discharging potentials are equal, the turn
off delay time To f f required for discharging vC2 can be formulated as follows.

C1 = C2 = C12, (8)

∣∣∣iC2

∣∣∣ = ∣∣∣iC1

∣∣∣ = ∣∣∣ip∣∣∣
2

, (9)

vC2

(
To f f

)
=

1
C12

∫ To f f

0
−iC2(t)dt + vC2(0). (10)

From the Equation (10), when the initial value is Vdc, the following Equations (11), (12) can
be obtained.

−Vdc =
1

C12

∫ To f f

0
−

∣∣∣ip∣∣∣
2

dt, (11)

∴ To f f =
2C12Vdc
|ip|

(
Td ≥ To f f

)
. (12)

If the current ip flows in the opposite direction, the switch turn off delay occurs in the upper switch
in a similar way when the current is flowing in the positive direction, as shown Figure 5. Thus, the
upper switch turns off delay is the same as in Equation (12) [20]. Figures 6 and 7 show the simulation
waveforms and the results verify the previously defined equations in Section 2.2. The graph of Figure 6
compares the simulation results of Figure 7 with Equation (12), where Tsim

o f f is the turn off delay times

measured using the simulation results in Figure 7, and Teq
o f f is the turn off delay times calculated using

the Equation (12) respectively. Here, the simulation circuit configuration of Figure 7 is arranged such
as Figure 5a, and the lower switch is maintaining the turning off condition while the upper switch is
turning on and off. Figure 7a shows the gate-source voltage of the upper switch, and the lower switch
waveform is omitted because it only applies the off signal. Figure 7c displays the pole voltage, and
voltage distortion due to the output capacitor can be confirmed.
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i  of the lower output capacitor. 

1 1p C Ci i i= − + . (7) 

Assuming that the capacitances 1 2,C C  and the charging/discharging potentials are equal, the 
turn off delay time offT  required for discharging 

2C
v can be formulated as follows. 

1 2 12C C C= = , (8) 

2 1 2
p

C C

i
i i= = , (9) 

( ) ( )
2 2 20

12

1 ( ) 0offT

C off C Cv T i t dt v
C

= − + . (10) 

From the Equation (10), when the initial value is dcV , the following Equations (11), (12) can be 
obtained. 

0
12

1
2

offT p
dc

i
V dt

C
− = − , (11) 

( )122 dc
off d off

p

C V
T T T

i
∴ = ≥ . (12) 

If the current pi  flows in the opposite direction, the switch turn off delay occurs in the upper 
switch in a similar way when the current is flowing in the positive direction, as shown Figure 5. Thus, 
the upper switch turns off delay is the same as in Equation (12) [20]. Figures 6 and 7 show the 
simulation waveforms and the results verify the previously defined equations in Section 2.2. The 
graph of Figure 6 compares the simulation results of Figure 7 with Equation (12), where sim

offT  is the 

turn off delay times measured using the simulation results in Figure 7, and eq
offT  is the turn off delay 

times calculated using the Equation (12) respectively. Here, the simulation circuit configuration of 
Figure 7 is arranged such as Figure 5a, and the lower switch is maintaining the turning off condition 
while the upper switch is turning on and off. Figure 7a shows the gate-source voltage of the upper 
switch, and the lower switch waveform is omitted because it only applies the off signal. Figure 7c 
displays the pole voltage, and voltage distortion due to the output capacitor can be confirmed. 
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Figure 5. Charging and discharging process of the output capacitors
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ip > 0

)
; (a) the upper switch is

turning on; (b) the upper switch is turning off.
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Figure 6. Comparing Teq
o f f with Tsim

o f f .

Figure 6 demonstrates that the turn-off delay time To f f increases very nonlinearly with current
magnitude. The characteristics of these output capacitors indicate that compensation strategies that can
be actively controlled by considering switch parasitic components are essential for accurate dead-time
compensation in wide current ranges.

When the current ip is positive direction, the output pole voltage of the half-bride represented as

vpn = −
Vdc
2

+ vC2 . (13)

Here, the vC2 affects the output of the inverter since it is discharged with a slope depending on the
level of

∣∣∣ip∣∣∣ as shown in Figure 7. Therefore, the vC2 should be properly compensated because it cannot
be actively controlled.
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Figure 7. Simulation results of Figure 5; (a) gate voltage vQ1 ; (b) lower output capacitor voltage vC2 ;
(c) inverter pole voltage vpn.
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Figure 8 shows the actual waveform of vC2 , which varies with current magnitude, compared with
Figure 7, which is the simulation result.
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Equation (2) is applicable when the current level is enough to saturate To f f and the voltage of the
output capacitor is rapidly falling or rising. Therefore, it is necessary to redefine the compensation
voltage considering the slope of the output capacitor voltage, especially for the low current region
where To f f is not saturated.

The regions A, B and C are non-controllable voltages caused by the output capacitors in Figure 9,
and require appropriate voltage compensation to get the ideal inverter output. The voltage region
∆vC2 made by the output capacitor can be described as

∆vC2 = A− (B + C), (14)

A =
1
2

(
Vdc
2

To f f

2Ts

)
, (15)

B =
1
2

(
−

Vdc
2

To f f

2Ts

)
, (16)

C = −
Vdc
2

To f f

2Ts
, (17)

∆vC2 =
To f f

2Ts
Vdc. (18)
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3. The Proposed DTCS 

As mentioned above, the voltage error not only caused by dead-time distortion, but also caused 
by switch parasitic components, should be compensated to obtain the ideal three-phase VSI output. 
In Equation (19), generally the dead-time dT  is fixed value, but the delay time offT  is not. Hence, 

the precise offT  has to be calculated according to the phase current levels in real-time for correct 

compensation. In this paper, to simplify the variation of offT , TCV is adopted [8,15]. In addition, the 
novel three-phase TCV implementation strategy is proposed to simplify the realized trapezoidal 
shape, and the novel on-line TCV controller is also proposed to flexibly respond with the variation 
of the parameters. 

3.1. Implementation of the TCV Based on the Current Position 

The proposed DTCS uses a synchronous reference frame transformation matrix and limiter 
function to simplify realizing the TCV. Figure 10 displays the triangle waveform function ( )f t , the 

sinusoidal waveform function ( )g t  with peak value k  and the trapezoidal waveforms to compare 
the waveform outlines. In Figure 3, the position dθ  of the three-phase current can be calculated as 
follows using the d-q axis currents. 

1tan d

q

i
i

δ −
 

=   
 

, (20) 

A

BC
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Equation (2) can be redefined as Equation (20) in order to properly compensate the repercussions
of the output capacitor in the low-power area, in which the turn off delay of the switch has the greatest
influence on the inverter output.

∴ Vd =
Ton+Td−

To f f
2

Ts
Vdc

(
Td ≥ To f f

)
. (19)

3. The Proposed DTCS

As mentioned above, the voltage error not only caused by dead-time distortion, but also caused
by switch parasitic components, should be compensated to obtain the ideal three-phase VSI output.
In Equation (19), generally the dead-time Td is fixed value, but the delay time To f f is not. Hence,
the precise To f f has to be calculated according to the phase current levels in real-time for correct
compensation. In this paper, to simplify the variation of To f f , TCV is adopted [8,15]. In addition,
the novel three-phase TCV implementation strategy is proposed to simplify the realized trapezoidal
shape, and the novel on-line TCV controller is also proposed to flexibly respond with the variation of
the parameters.

3.1. Implementation of the TCV Based on the Current Position

The proposed DTCS uses a synchronous reference frame transformation matrix and limiter
function to simplify realizing the TCV. Figure 10 displays the triangle waveform function f (t), the
sinusoidal waveform function g(t) with peak value k and the trapezoidal waveforms to compare the
waveform outlines. In Figure 3, the position θd of the three-phase current can be calculated as follows
using the d-q axis currents.

δ = tan−1
(

id
iq

)
, (20)

θd = (θe − δ). (21)

The three-phase sinusoidal waveforms, which is in phase with the three-phase current vector Is,
can be defined as follows. The α− β axis voltage g(∆vα), g

(
∆vβ

)
with peak value k on the stationary

reference frame expressed as:
g(∆vα) = −k sinθd

g
(
∆vβ

)
= k cosθd

(22)
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g(∆vα), g
(
∆vβ

)
is transferred to a three-phase stationary coordinate and the amplitude is limited

to ±Vd, as in Equation (23), to generate the TCV as shown in Figure 10b.
g(∆van) = g(∆vα) (−Vd ≤ g(∆van) ≤ Vd)

g(∆vbn) = −
(g(∆vα)−

√
3g(∆vβ))

2 (−Vd ≤ g(∆vbn) ≤ Vd)

g(∆vcn) = −
(g(∆vα)+

√
3g(∆vβ))

2 (−Vd ≤ g(∆vcn) ≤ Vd)

. (23)

As can be seen in the Figure 10b, if the peak level k is large enough to approximate a linear slope
between Vd and −Vd, then the waveforms can be reckoned as f (∆van) ≈ g(∆van). Next, as illustrated
in Figure 11, the peak value k for implementing the TCV having slopes of the width φ can be defined
as follows.
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Figure 10. Proposed TCV implementation strategy; (a) triangle waveform function f (t) and sinusoidal
waveform function g(t) with peak k; (b) TCV shapes comparison.
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The function g(t) can be expressed as g(t) = k sin(ωt), and at the point tφ when g(t) has a slopes
of the width φ defines as tφ, then the time tφ can be derived as:

tφ =
φ

ω
. (24)

Assuming that the output of g(t) is |Vd| at the time tφ, the g(t) rewritten as:

k sin
(
ωtφ

)
= |Vd|, (25)

∴ k =
|Vd|

sin(φ)
. (26)

The adjustable TCV having a desired compensation voltage amplitude |Vd| and the compensation
voltage slopes of the width φ can be realized with Equations (23) to (26).

3.2. The On-Line TCV Controller

It can be seen from Figure 6 and Equation (19) that the amplitudes and slopes of APVEs are
changing according to the amount of the current flowing in the phase. Especially, when the VSI operates
in the low current region, the magnitudes of the APVEs are decreased and the slopes of the TCV are
increased. For these reasons, for smooth dead-time compensation in wide current regions, both the
scale of the APVE and the slope of the TCV must be modulated to the optimum value corresponding
to the inverter operating environment.

Using the previously defined Equations (12), (19) and (26), it might be possible to vary the
amplitudes and the slopes of APVEs by responding to To f f . However, there are limitations to actively
changing conditions. Therefore, the on-line TCV controller using the errors is proposed to implement
robust dead-time compensation even at parameters with mismatching conditions.

While the influence of the dead-time appears 6nth harmonics in the synchronous reference frame
as Equation (4), the TCV errors can be obtained through them [16]. Although the 6nth harmonics
appear on both d-q axis, the TCV error extracting axis can be selected as a d-axis since the d-axis has
a larger voltage error than the q-axis. However, if there is a d-axis current (δ , 0), the fundamental
component of the harmonic voltages is moving to the q-axis as shown in Equation (4). Thus, to
obtain a constant error regardless of the amount of d-axis current, the synchronous reference frame
transformation based the three-phase current vector Is should be carried out. In this case, if the phase of
the three-phase current vector Is is simply obtained by using the Equations (21) and (22), the harmonic
components do not appear in the d-axis current because the harmonic component of the current affects
δ. For this reason, the ideal phase of three-phase current vector Is can be obained by d-q axis current
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commands i∗d,i∗q as following Equations (27) and (28), assuming that the actual currents do not deviate
for the current commands.

δ∗ = tan−1

 i∗d
i∗q

, (27)

θ∗d = (θe − δ
∗). (28)

Figure 12 demonstrates the proposed on-line TCV controller scheme. To adjust the turn off

delay time and slopes of the TCV, the integrators are designed, and for faster dynamics, T f f (12) is
feedforwarded. The controller error idd of Figure 12 is calculated from the d-q axis transformation
matrix Equation (4) and the phase of ideal three-phase current vector Is Equation (28).
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Figure 12. Proposed on-line TCV controller scheme.

The d-axis current (controller error) idd based on θ∗d includes the current distortion of the 6nth
harmonic according to the influence of the dead time, and the polarity of the compensation voltage
error can be determined by multiplying each harmonic order implemented using θ∗d [16]. As the T∗o f f

is a factor controlling the maximum value of APVE, the phase current
∣∣∣ip∣∣∣ in Equation (12) must be

altered as the magnitude of the three-phase current vector Is.
Figure 13 indicates the fast Fourier transform (FFT) results for two types of the DTCV errors.

Figure 13a shows the voltage waveform of the Vd amplitude error. Additionally, the FFT result of the
Vd error has a prominent component in the 6th harmonic as seen in Figure 13b. Figure 13c shows
the voltage waveform of the slopes error of TCV. In addition, the FFT result of the slopes error has
noticeable elements in the 12th and 18th harmonics, as seen in Figure 13d.

By utilizing the results of the Figure 13, the 6th and 18th can be selected as the multiplying
frequency of To f f and φ, respectively, such as in Figure 12. In fact, the multiplying frequency for φ can
be selected for both the 12th and the 18th as shown in Figure 13d. However, to minimize the influence
of the To f f error, the 18th is chosen instead of the 12th.
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Figure 13. Analysis of DTCV error characteristics on d-axis; (a) error voltage waveform of Vd; (b) fast
Fourier transform (FFT) result of Figure 13a; (c) error voltage waveform of slopes of DTCV; (d) FFT
result of Figure 13c.

4. The Analysis of the Linear Modulation Region of the Three-Phase VSI with Proposed DTCS

The proposed DTCS is the method feedforwarding DTCV at the controller output, which is the
voltage references. Thus, when the correct DTCV is applied, the controller side can consider that
the inverter is ideal. However, if the controller outputs a voltage command exceeding the inverter
output capable, the feedforwarded compensation voltage will not be able to suitably compensate due
to physical constraints of the hardware. Therefore, it is required to limit the voltage reference of the
controller by applying the proper physical voltage limit to the controller in order to perform normal
operating of the DTCS.

4.1. Definition of the MMPV of the Three-Phase VSI

Table 1 and Figure 14 express the voltage vectors of the three-phase VSI in Figure 1. The hexagonal
region<i using the six active voltage vectors is the ideal voltage region. The switching operation state
function Q(Qn, Qn, Qn) of each leg in Figure 14 is shown as

Q(Q1, Q2, Q3)

Qn = 1 : Qn = on, Qn = o f f

Qn = 0 : Qn = on, Qn = o f f
. (29)

In Figure 14, Vi
smax is the magnitude of the MMPV in the ideal voltage region <i. When an

arbitrary voltage reference V∗ exists at 0◦ ≤ θ ≤ 60◦, it can configure with the neighboring active
voltage vector Vi

1,Vi
2 and zero voltage vector O during the switching period Ts.∫ Ts

0
V∗dt =

∫ T1

0
Vi

1dt +
∫ T1+T2

T1

Vi
2dt +

∫ Ts

T1+T2

Odt, (30)
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where T1, T2 represent the interval for which the vectors Vi
1, Vi

2 is applied, respectively. The maximum
active voltage vector with Vi

1, Vi
2 is

V∗Ts = Vi
1T1 + Vi

2T2. (31)

The reference vector V∗ projected on the Vi
1 and Vi

2 vectors, respectively, can be given as

Vi
1T1 = V∗Ts cosθ−Vi

2T2 cos 60◦, (32)

Vi
2Ts = V∗Ts

sinθ
cos 30◦

, (33)

T1 = γTs cosθ− γTs
√

3
sinθ

(
where γ = 3

2
V∗
Vdc

)
, (34)

T2 =
2γTs
√

3
sinθ. (35)

Here, since T1 + T2 ≤ Ts, Equations (34) and (35) can be derived as Equation (36).

V∗
(
cosθ+

1
√

3
sinθ

)
≤

2
3

Vdc, (36)

V∗ ≤
Vdc
√

3

1
sin(θ+ 60◦)

, (37)

∴ Vi
smax =

Vdc√
3

(where θ = 30◦) . (38)

Accordingly, the MMPV amplitude Vi
smax at θ = 30◦ in the ideal three-phase VSI can be defined

as Equation (38).

Table 1. The phase voltages and space voltage vectors of the typical three-phase VSI.

Vector
Phase Voltage Space Voltage Vector

vas vbs vcs

Vi
1

2
3 Vdc −

1
3 Vdc −

1
3 Vdc

2
3 Vdc/0◦

Vi
2

1
3 Vdc

1
3 Vdc −

2
3 Vdc

2
3 Vdc/60◦

Vi
3 −

1
3 Vdc

2
3 Vdc −

1
3 Vdc

2
3 Vdc/120◦

Vi
3 −

2
3 Vdc

1
3 Vdc

1
3 Vdc

2
3 Vdc/180◦

Vi
5 −

1
3 Vdc −

1
3 Vdc

2
3 Vdc

2
3 Vdc/240◦

Vi
6

1
3 Vdc −

2
3 Vdc

1
3 Vdc

2
3 Vdc/300◦

O 0 0 0 0/0◦
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4.2. Analysis of the Linear Modulation Region with Dead-Time and When the Proposed DTCS is Applied

The distortion voltage from the dead-time can be derived by using Equations (3) to (6) and it
is illustrated in Figure 4. In this case, the affection of the distorted voltage caused by the dead-time
depends on the phase ψ of the current. Thus, the distortion voltage ∆verr

α (ψ), ∆verr
β (ψ) can be defined

as the function of ψ on the α − β axis. Where the maximum three-phase VSI output with six active
voltage vectors is vi

α, vi
β, the distorted three-phase VSI output vr

α, vr
β can be expressed as

 vr
α

vr
β

 =  vi
α

vi
β

+  ∆verr
α (ψ)

∆verr
β (ψ)

. (39)

The Figure 15 shows example of the phase ψ between the voltage reference and phase current.
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Figure 15. The current phase ψ with a-phase voltage reference v∗as and a-phase current ia.

Figure 16 illustrates the distorted three-phase VSI output voltage waveforms vr
α, vr

β on the stationary
reference frame α− β axis according to the phase ψ. Figure 17 displays vr

α, vr
β regions on the x-y plot

using the waveforms of Figure 16 and Equation (39), and the right side of each voltage region reveals
the sector 1O in detail for more accurate analysis.
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Figure 16. vi
α, vi

β and vr
α, vr

β waveforms on the stationary reference frame according to the phase ψ;
(a) ψ = 0◦; (b) ψ = 30◦; (c) ψ = 60◦; (d) ψ = 90◦.

Figure 17a–d was divided into four regions along the voltage region forms. In the case of ψ
being a negative phase value (leading condition), it has the same form with a positive phase value
as Figure 17, since the distortion voltage is an even function. Therefore, the MMPV magnitudes are
arranged in Table 2 instead of illustrating the regions about the negative phase value. <i, <r and
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<
c are the output voltage region of the ideal three-phase VSI, the output voltage of the three-phase

VSI distorted by the dead-time, and the output voltage region of the three-phase VSI applied to the
proposed DTCS, respectively. As the dead-time physically limits the turn on period of the switch, even
if the dead-time compensated theoretically, the physical limits of the inverter cannot be recompensed.
Consequently, when the proposed DTCS is applied, the compensated voltage region<c is inscribed
within the dead-time voltage region<r.
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Table 2. The compensated MMPV Vc
smax when the proposed DTCS applied.

Phase Delay of the Current MMPV Vc
smax Magnitude

ψ = 0◦ from Equation (42) Vdc−2Vd√
3

0◦ < ψ < 60◦,−60◦ < ψ < 0◦ from Equation (43) Vdc−2Vd√
3

ψ = 60◦, ψ = −60◦ from Equation (46)
√

3
2

∣∣∣Vc
1

∣∣∣
60◦ < ψ ≤ 90◦, −90◦ ≤ ψ < −60◦ from Equation (50) Vdc√

3

4.2.1. Where ψ = 0◦

When the output voltage is in phase with phase current, the voltage distortion exactly coincides
with the six active voltage vectors as in Figure 16a. Hence, by using the above Equations (31) to (39),
the arbitrary voltage reference V∗ in the sector 1O can be expressed as follows using the neighboring
real voltage vectors Vr

1,Vr
2. ∣∣∣Vr

1

∣∣∣ = ∣∣∣Vc
1

∣∣∣ = ∣∣∣Vi
1

∣∣∣− 4
3 Vd∣∣∣Vr

2

∣∣∣ = ∣∣∣Vc
2

∣∣∣ = ∣∣∣Vi
2

∣∣∣− 4
3 Vd

, (40)
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V∗
(
cosθ+

1
√

3
sinθ

)
≤

2
3
(Vdc − 2Vd), (41)

∴ Vr
smax =

Vdc−2Vd√
3

(where θ = 30◦) , (42)

∴ Vr
smax = Vc

smax =
Vdc−2Vd√

3
(where θ = 30◦) . (43)

4.2.2. Where 0◦ < ψ < 60◦

The proportions of the voltage vectors in Figures 17b and 16b can be expressed as:

Vr
12 =

2
3
(Vdc −Vd) + j

2

3
√

3
Vd, (44)

∣∣∣Vr
1

∣∣∣ = ∣∣∣Vc
1

∣∣∣ = 2
3
(Vdc − 2Vd). (45)

Since the distorted real voltage vector Vr
12 does not affect to the active voltage vector and output

voltage region in Figure 17b, Vc
smax can be derived as:

∴ Vr
smax = Vc

smax =
Vdc−2Vd√

3
(where θ = 30◦) . (46)

4.2.3. Where ψ = 60◦

In Figure 17c, the distorted voltage vector Vr
12 affects the real output voltage region. It can be

expressed as following, using Figure 16c:

Vr
12 =

2
3
(Vdc −Vd) + j

2
√

3
Vd. (47)

In addition, the angle ε between Vr
12 and Vi

1 is:

ε = tan−1


2
√

3
Vd

2
3 (Vdc −Vd)

, (48)

∣∣∣Vc
1

∣∣∣ = 2
3
(Vdc −Vd) −

2
√

3
Vd

1

tan
(
π
3 + ε

) , (49)

∴ Vc
smax =

√
3

2

∣∣∣Vc
1

∣∣∣. (50)

4.2.4. Where 60◦ < ψ ≤ 90◦

In Figure 17d, the voltage vectors Vr
12, Vr

21 that have arisen with dead-time can be expressed as
follows, as in Figure 16d:

Vr
12 =

2
3
(Vdc −Vd) + j

2
√

3
Vd, (51)

Vr
21 =

2
3
(Vdc + Vd) + j

2
√

3
Vd. (52)

The degree ∠Vr
21Vc

1a is always 60◦ according to the Equation (53):

tan−1
(

2/
√

3
2/3

)
= 60◦. (53)
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As the segment Vr
12Vr

21 is parallel to the voltage vector Vi
1, the additional voltage region ∆Vr

12Vr
21Vi

1
generated by the dead-time forms a regular triangle so that the voltage vector Vr

12 is always adjoined
with ideal voltage region<i. Therefore, the compensated MMPV vector Vc

smax has equal magnitude
with ideal modulation phase voltage vector Vi

smax.

∴ Vc
smax = Vi

smax =
Vdc
√

3
. (54)

5. The Results of the Simulation and Experiment of the Proposed DTCS

The Figure 18 is a simplified block diagram of three-phase VSI controller including the proposed
DTCS. Since the DTCV is feedforwarded at the controller output, there is no need to compensate for
the dead-time into the current controller. Therefore, the error between the voltage reference of the
current controller and the output voltage of the three-phase VSI can be minimized, and it makes it easy
to design the algorithms using the voltage reference v∗dL, v∗qL. As mentioned above, unless the output
of the current controller is appropriately limited, normal dead-time compensation is not possible, so
the current controller output v∗d, v∗q should be restricted as shown in block (b) in Figure 18. Here, the
voltage limit can be defined according to the phase of the current in Table 2. The outside of the current
controller of Figure 18 can be designed along the employed applications.
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Figure 18. The control block diagram of three-phase VSI with proposed DTCS.

Figure 19 shows a detailed block diagram of the proposed DTCS of Figure 18a. The TCV contains
the position calculating block which calculates and outputs current angles θd, θ∗d and the on-line TCV
controller block which regulates φ, To f f and outputs the references φ∗, T∗o f f and compensation voltage
calculator block which realizes TCV.
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Figure 19. The specific block diagram of Figure 18a.

5.1. Simulation Results

The proposed DTCS was verified using the simulation software Psim. The three-phase VSI and
DTCS were designed the same as in Figure 18, and the current controller was performed alone without
outer control loop. The circuit uses a three-phase VSI as shown in Figure 1. In order to maximize the
effect of dead-time, the load was composed of only the inductors and the resistors without the back
electromotive force or the voltage sources. The switches modeled in SKM50GB063D manufactured by
the SEMIKRON were used to observe the effects of the output capacitors into the simulation result.
Detailed simulation specifications are shown in Table 3.

Table 3. The specifications of the simulation.

Parameters Description Value Parameters Description Value

Vdc Dc-link voltage level 310 V Vce
Maximum collector-emitter
voltage rating 600 V

Rs Phase resistance 0.5 Ω vGth Gate threshold voltage 4.5 V
Ls Phase inductance 10 mH t f Fall time of the current 300 ns
fsw Switching frequency 10 kHz Cies Input capacitance 2.2 nF
Td Dead-time 5.0 µs Coes Output capacitance 2.2 nF
fm Fundamental frequency 50 Hz Rce_on On resistance 28 mΩ

Figure 20 demonstrates the simulation results of the proposed DTCV with the above specifications.
Figure 20a shows the compensated three-phase current waveforms and Figure 20d displays the
compensation voltage on the synchronous reference frame d-q axis. It can be confirmed that the
magnitudes of compensation voltages g(∆vd), g

(
∆vq

)
change according to the magnitude of the current

vector Is and the fundamental component of the dead-time compensation voltage shifts to d-axis along
d-axis current level. Figure 20e presents the position information of the three-phase current vector Is

using the control position θe and Equation (21). It can validate that the position θd of the Is is changed
along d-q axis current amounts.



Electronics 2019, 8, 92 21 of 29

Electronics 2019, 8, x FOR PEER REVIEW 20 of 29 

 

TCV controller block which regulates φ , offT  and outputs the references *φ , *
offT  and 

compensation voltage calculator block which realizes TCV. 

 
Figure 19. The specific block diagram of Figure 18a. 

5.1. Simulation Results 

The proposed DTCS was verified using the simulation software Psim. The three-phase VSI and 
DTCS were designed the same as in Figure 18, and the current controller was performed alone 
without outer control loop. The circuit uses a three-phase VSI as shown in Figure 1. In order to 
maximize the effect of dead-time, the load was composed of only the inductors and the resistors 
without the back electromotive force or the voltage sources. The switches modeled in SKM50GB063D 
manufactured by the SEMIKRON were used to observe the effects of the output capacitors into the 
simulation result. Detailed simulation specifications are shown in Table 3. 

Table 3. The specifications of the simulation. 

Parameters Description Value Parameters Description Value 

dcV  Dc-link voltage level 310 V ceV  
Maximum collector-
emitter voltage rating 

600 V 

sR  Phase resistance 0.5 Ω thG
v

 Gate threshold voltage 4.5 V 

sL  Phase inductance 10 mH ft  Fall time of the current  300 ns 

swf  Switching frequency 10 kHz iesC  Input capacitance 2.2 nF 

dT  Dead-time 5.0 µs oesC  Output capacitance 2.2 nF 

mf  Fundamental frequency 50 Hz _ce onR
 On resistance 28 mΩ 

Figure 20 demonstrates the simulation results of the proposed DTCV with the above 
specifications. Figure 20a shows the compensated three-phase current waveforms and Figure 20d 
displays the compensation voltage on the synchronous reference frame d-q axis. It can be confirmed 
that the magnitudes of compensation voltages ( )dg vΔ , ( )qg vΔ  change according to the magnitude 

of the current vector sI  and the fundamental component of the dead-time compensation voltage 
shifts to d-axis along d-axis current level. Figure 20e presents the position information of the three-
phase current vector sI  using the control position eθ  and Equation (21). It can validate that the 
position dθ  of the sI  is changed along d-q axis current amounts. 

 

On-line TCV 
controller

Compensation 
Voltage 

Calculator

Current 
Position 

Calculator

3-
Ph

as
e 

Cu
rre

nt
 (A

)

Electronics 2019, 8, x FOR PEER REVIEW 21 of 29 

 

(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 20. Simulation results of the proposed DTCS; (a) three-phase currents; (b) TCV of the a-phase; 
(c) d-q axis currents on the synchronous reference frame; (d) DTCV on the synchronous reference 
frame d-q axis; (e) positions. 

Figure 21 indicates the simulation result when any DTCS is not applied under the condition of 
Figure 20, comparing the performance of the proposed DTCS. Figure 21a is the three-phase currents 
and Figure 21b is the d-q axis current on the synchronous reference frame. It can be seen the amount 
of the current decreases, and the harmonic distortions of the current become smaller. This is caused 
by the fact that as the switch turn off delay offT  is increased in the low current region. However, when 

offT  is in the saturation region sufficiently, there is notable current distortions because the current 
controller cannot compensate the voltage distortion of high order harmonic distortions. As a result, 
the proposed DTCS applied three-phase currents has THD below 0.4%. In contrast, the three-phase 
currents which are not applied DTCS have a 5.4% THD that is about 10 times larger. 

 
(a) 

 
(b) 

Co
m

pe
ns

at
io

n
V

ol
ta

ge
(V

)
d-

q 
ax

is 
cu

rre
nt

 (A
)

Co
m

pe
ns

at
io

n
V

ol
ta

ge
(V

)
Po

sio
tio

n 
(ra

d)
3-

Ph
as

e 
Cu

rre
nt

 (A
)

d-
q 

ax
is 

cu
rre

nt
 (A

)

Figure 20. Simulation results of the proposed DTCS; (a) three-phase currents; (b) TCV of the a-phase;
(c) d-q axis currents on the synchronous reference frame; (d) DTCV on the synchronous reference frame
d-q axis; (e) positions.

Figure 21 indicates the simulation result when any DTCS is not applied under the condition of
Figure 20, comparing the performance of the proposed DTCS. Figure 21a is the three-phase currents
and Figure 21b is the d-q axis current on the synchronous reference frame. It can be seen the amount of
the current decreases, and the harmonic distortions of the current become smaller. This is caused by
the fact that as the switch turn off delay To f f is increased in the low current region. However, when
To f f is in the saturation region sufficiently, there is notable current distortions because the current
controller cannot compensate the voltage distortion of high order harmonic distortions. As a result,
the proposed DTCS applied three-phase currents has THD below 0.4%. In contrast, the three-phase
currents which are not applied DTCS have a 5.4% THD that is about 10 times larger.
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Figure 21. Simulation results without DTCS; (a) three-phase currents; (b) d-q axis currents on the
synchronous reference frame.

5.2. Experimental Results

The experiment to verify the proposed DTCS used three-phase VSI connected with DC-power
supply as shown Figure 22. To maximize the effects of dead-time, it applied the only inductors and
resistances as a load. Detailed specifications of the experiment environment are summarized in Table 4.
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Figure 22. Experiment setting; (a) the three-phase VSI; (b) DC-power supply for the DC-link
voltage source.

Table 4. Experiment specifications.

Parameters Description Value

Switch (Qn) Three-phase VSI switch SKM50GB063D
Gate driver Gate driver of VSI SKHI 22B
MCU Micro controller unit DSP 320F28335
DC power supply DC-link voltage source TP5H-10D
Vdc DC-link voltage level 310 V
Rs Phase resistance 5.5 Ω
Ls Phase inductance 20.5 mH
fsw Switching Frequency 10 kHz
Td Dead-time 5.0 µs

Figures 23–25 show the three-phase currents waveforms and dead-time compensation pole voltage
of the a-phase to compare the performance of the proposed DTCS. The three-phase current levels
kept around 1.4% of the switch current rating to perform in the region where the effects of the switch
parasitic are present. Figure 23 is the three-phase current waveforms without any DTCS, and it can be
seen that serious current distortions occurs near the zero crossing and peak area. Figure 24 illustrates



Electronics 2019, 8, 92 23 of 29

the three-phase current waveforms when a conventional DTCS considering only dead-time Td is
adapted. While the compensation voltage amplitudes that does not reflect the variation of To f f are
larger than the actual voltage errors. Hence, it confirmed that the current distortion is due to the
excessive compensation voltage. Figure 25 reveals the currents waveforms when the proposed DTCS
was applied, which shows very ideal sinusoidal current waveforms even in the low current region
where affected by To f f variation.
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Figure 25. Three-phase currents waveforms and a-phase dead-time compensation pole voltage
waveform when the proposed DTCS was applied.

The Figure 26 displays waveforms for confirming the effects of TCV. The compensating pole
voltage in Figure 26 has a rectangle shape, whereas amplitude is equal with Figure 25. Even if
it was compensating with proper compensation voltage level, the currents distortions still exist.
These experiment results prove that not only the amplitudes but also the slopes of the compensation
pole voltages are very important factors for correct dead-time compensation, especially in the
low-current region.
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Figure 26. Three-phase currents waveforms and a-phase dead-time compensation pole voltage
waveform when DTCS, considering only the proper voltage level, was applied.

The Figures 27–30 show α− β axis currents from above three-phase currents and also demonstrate
the α− β axis currents on the x-y plot that can compare the distortion of the current more intuitively.
The α− β axis current waveform on the x-y plot is closer to the ideal circle, and the more ideal currents.
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The α − β axis currents were displayed using the DAC and since the α-axis current is equal to the
a-phase current, both currents waveforms were overlapped for check the function of DAC.Electronics 2019, 8, x FOR PEER REVIEW 25 of 29 
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Figure 30. Stationary reference frame α− β axis and on the x-y plot current waveforms with Figure 26.

Figure 29 demonstrates the currents waveforms on the stationary reference frame when the
proposed DTCS is applied. The currents waveform on the x-y plot is closer to the ideal circle than
the waveforms in Figures 26 and 27. Additionally, the currents waveform in Figure 30 appear closer
to the circle than in Figures 27 and 28 but it is impossible to draw the ideal circular waveform as
proposed DTCS’s.

Figure 31 shows the currents’ THDs at various inverter output conditions to compare the
performance of the proposed DTCS. The currents’ THDs were compared with the magnitude of the
peak current and the control frequency, and the THD of the a-phase current was extracted. In Figure 31,
the square and circle symbols show the THD when the dead time compensation voltage is not applied
and the THD when the compensation voltage considering only Td is applied as shown in Figures 23
and 24, respectively. The triangle symbol is the THD when proposed DTCS is applied. The vertical
axis denotes the THD value of the a-phase current and the horizontal axis denotes the peak values of
the three-phase current.



Electronics 2019, 8, 92 27 of 29

Electronics 2019, 8, x FOR PEER REVIEW 26 of 29 

 

. 

Figure 29. Stationary reference frame α β−  axis and on the x-y plot current waveforms with Figure 25. 

 
Figure 30. Stationary reference frame α β−  axis and on the x-y plot current waveforms with Figure 26. 

 
(a)                         (b)                         (c) 

Figure 31. Comparing the a-phase current THD; (a) 10 Hz; (b) 30 Hz; (c) 50 Hz. 

It can be seen that the current distortion due to the compensating voltage error becomes serious 
in the low power period where the influence of offT  becomes very large when the compensation 
voltage considering only dT  is applied, and the current THD gradually decreases as the peak current 
increases. These results show that the application of the wrong compensation voltage has a greater 

Figure 31. Comparing the a-phase current THD; (a) 10 Hz; (b) 30 Hz; (c) 50 Hz.

It can be seen that the current distortion due to the compensating voltage error becomes serious in
the low power period where the influence of To f f becomes very large when the compensation voltage
considering only Td is applied, and the current THD gradually decreases as the peak current increases.
These results show that the application of the wrong compensation voltage has a greater adverse effect
than without. In the case where no DTCS is employed, the THD is low in the low current region since
the influence of the dead-time is cancelled out due to the To f f . However, as the magnitude of the
current rises, the influence of To f f is reduced, so that the current distortion gradually appears. If the
current magnitude increases until the duty ratio becomes relatively larger than the dead time ratio, the
influence of the dead time is reduced and the current THD is lowered. The proposed DTCS shows
much lower current THD in wide-current domains. In particular, applying the real-time adjusted TCV
using the on-line TCV controller shows higher performance than a general compensation algorithm in
a low-power section.

Figure 32 shows the current THD according to the current control frequency when the proposed
DTCS is employed. In Figure 32, it can be seen that the current THD increases as the current control
frequency increases, because it cannot synthesize the exact trapezoidal voltage waveform due to the
limit of the fixed switching frequency. Therefore, with increased control frequency, the current THD
increases due to the imperfect TCV.
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6. Conclusions

In this paper, the analysis of the output voltage distortion of the three-phase VSI due to the
dead-time and the output capacitor was carried out, and a novel DTCS for compensating the
nonlinearly varying voltage distortion was proposed. First, equations and strategies for simplified
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TCV implementation method were proposed. Secondly, a TCV controller was proposed to control
both the magnitude and slope of the TCV according to nonlinearly varying voltage distortion. Finally,
the linear output voltage limiting regions of the three-phase VSI when the proposed DTCS is applied
were defined and, also the maximum linear phase voltage magnitudes were analyzed to allow normal
compensation, even at high modulation index (MI). Simulation and experiments were performed
to verify the performance of the proposed DTCS, and the settable specifications of the simulation
were set equal to the experimental environment. Especially, the dead-time was set as an excessive
amount rather than the general condition in both the experiment and simulation to verify the proposed
DTCS performance in a severe environment. Experimental results show excellent performance in wide
current regions.
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