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Abstract: Analog CMOS time-delay cells realized by passive components, e.g., lumped LC delay lines,
are inefficient in terms of area for multi-GHz frequencies. All-pass filters considered as active circuits
can, therefore, be the best candidates to approximate time delays. This paper proposes a broadband
first-order voltage-mode all-pass filter as a true-time-delay cell. The proposed true-time-delay cell
is capable of tuning delay, demonstrating its potential capability to be used in different systems,
e.g., RF beam-formers. The proposed filter achieves a flat group delay of over 60 ps with a pole/zero
pair located at 5 GHz. This proposed circuit consumes only 10 mW power from a 1.8-V supply.
To demonstrate the performance of the proposed all-pass filter, simulation results are conducted by
using Virtuoso Cadence in a standard TSMC 180-nm CMOS process.
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1. Introduction

All-pass filters as delay cells have a variety of applications in signal processing and communication
systems, like equalizers and analog/RF beam-formers [1–6]. In these circuits, the amplitude of the
input signal is constant over the desired frequency band, while creating a frequency-dependent delay.
There are several reported approaches to approximately realize delay, such as transmission lines and
lumped LC delay lines [7,8], which are passive components and, thus, are area inefficient, and also
phase shifters for narrow-band frequencies [9–14]. Apart from these circuits, an active RF all-pass filter
can be the best option to approximate delay due to its size and delay to area ratio [15,16].

There are many voltage-mode all-pass filters reported over the last one decade, which operate
in broadband frequencies and have different applications [15–21]. In some applications,
e.g., RF beam-forming, delay stages as delay cells are normally realized by cascading first-order
all-pass filters in order to achieve a desired delay [15–17]. However, there are just a few first-order
voltage-mode all-pass filters for wide frequency ranges in the literature [15–17,22]. This is because these
analog circuits should possess important specifications like wide bandwidth, efficient area, low cost,
and power consumption, and high delay amount to be considered as practical and efficient systems.
Furthermore, recent circuits have been taking advantage of tunability, since it is one of the key features
of signal processing and communication systems [15,16,18,23].

A broadband first-order voltage-mode all-pass filter as a true-time-delay cell is introduced in this
paper. The proposed all-pass filter is comprised of two transistors, two resistors, and one grounded
inductor. This circuit demonstrates a large amount of delay in a single delay cell through a wide
frequency band. The amount of delay can be controlled within the frequency range of interest.
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Moreover, circuit optimization is carried out to increase the operating frequency and improve the
performance of the filter, in particular, in high frequencies.

The structure of this paper is as follows: Section 2 describes the structure of proposed all-pass
filter and provides theoretical analyses. In Section 3, circuit optimization technique and tunability are
presented, and also the parasitic effects of the proposed filter are evaluated. Section 4 provides results
and ultimately a discussion is provided in Section 5.

2. Proposed First-Order All-Pass Filter

Figure 1 shows the block level of the first-order voltage-mode all-pass filter. As shown, a first-order
all-pass filter can be approximated by the combination of two sections: a low-pass section with a DC
gain of 2 and a unity gain section [24]. Therefore, its ideal transfer function is given as:

H(s) = e−sτ ≈ −2
1 + s(τ/2)

+ 1 = −1 − s(τ/2)
1 + s(τ/2)

, (1)

where τ is the time delay. Ideally, the gain of the transfer function is 1 and its phase is linear versus
the frequency.
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Figure 1. Block diagram of the first-order all-pass filter.

Figure 2 illustrates the block diagram and schematic of the proposed broadband first-order
voltage-mode all-pass filter. In this filter, transistor M1, inductor L, and resistor RL form the low-pass
part, while transistor M2 and resistor RL comprise the unity-gain part. In other words, M1 and M2 are,
respectively, common-source (CS) and common-gate (CG) configurations to convert the input voltage
signal into current. At the output node, the drain currents of M1 and M2 are subtracted to realize
an all-pass function. Then, the output signal will be converted back to voltage by the load resistor RL.
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Ignoring the parasitics of the transistors (the parasitic effects will be assessed in Section 3) for
simplicity, the transfer function of the proposed first-order all-pass filter can be determined by:

Vout

Vin
(s) = − gm1RL

1 + sLgm1
+ gm2RL = −RL(gm1 − gm2)·

1 − sL gm1gm2
gm1−gm2

1 + sLgm1
, (2)

where gm1 and gm2 are the transconductances of M1 and M2, respectively. If gm1 = 2gm2 and gm2RL = 1,
an all-pass structure will be realized with the same frequency of the left-plane pole and right-plane
zero, resulting in twice the phase and group delay responses of an all-pass circuit. As a consequence,
the transfer function in (2) can be simplified as:

Vout

Vin
(s) = −1 − sLgm1

1 + sLgm1
. (3)

The pole/zero frequency and phase response of the first-order all-pass filter can be given as:

∣∣ωp,z
∣∣ = 1

Lgm1
, (4)

φ(ω) = −2tan−1(ωLgm1), (5)

respectively, and, thus, group delay response is expressed by:

D(ω) = −∂φ(ω)

∂ω
= 2Lgm1·

1

1 + (ωLgm1)
2 , (6)

where ω is the angular frequency related to the frequency f through ω = 2π f . The group delay is
approximately equal to 2Lgm1 at low frequencies. However, this group delay is practically affected by
parasitic inductances stemmed from, e.g., bonding wire and PCB and, thus, its value will be increased.
The input impedance of the proposed all-pass filter can be simply approximated by considering the
Miller effect on the parasitic capacitances of the transistor M1 plus Cgs2 given as:

Cin ≈

(
Cgs1 + Cgd1

)
(3 + sLgm1)

1 + sLgm1
+ Cgs2, (7)

which its value affects the next delay stage for cascading purposes.

3. Circuit Optimization and Tunability

In order to contribute to the linearity and increase the operating frequency of the proposed
all-pass filter, a variable resistor (Rd) is added to the unity-gain path as shown in Figure 3. In this case,
a discrete tuning of delay can be carried out by changing the value of Rd and the bias voltage of M2

as well, which adjusts gm2. The Rd can be implemented by a switched resistors bank which can be
implemented by CMOS transistors, with great ease.

The transfer function of the CG transistor of M2 (the part inside the dotted box) is, therefore,
given as:

HCG(s) =
gm2RL

1 + sCgd2(RL + Rd)
. (8)

Its value for low and high frequencies is HCG,LF ≈ gm2RL and HCG,HF ≈ gm2RL/Cgd2(RL + Rd),
respectively. Hence, the Rd will affect the frequency response of the proposed filter at higher
frequencies. Note that gm2RL (i.e., the unity gain section) is no longer equal to 1 at high frequencies,
but via varying the bias voltage of M2, gm2 changes and, therefore, the two conditions gm1 = 2gm2 and
gm2RL = 1 will be satisfied.
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Non-Ideality Analysis

To analyze accurately the performance of the proposed all-pass filter in Figure 3 at high frequencies,
the finite output impedances (gds) and parasitic capacitances (Cgs and Cgd) of the transistors M1 and
M2 should be considered. Therefore, the transfer function in (2) can be rewritten as:

Vout

Vin
(s)

≈ −
RL(gm1 − gds1)− s

(
Lgm1gds1RL + Cgd1RL

)
sL(gm1 + gds1)

[
1 + gds1RL + RL

(
gds1 + sCgd1

)]
+ 1 + RL

(
gds1 + sCgd1

)
+

RL(gm2 + gds2)

sCgd2(RL + Rd) + 1 + gds2(RL + Rd)
.

(9)

If gm1,2 � gds1,2, gds1,2RL � 1, and gds2Rd � 1, the transfer function in Equation (9) can be
simplified as:

Vout

Vin
(s) = −

gm1RL

(
1 − s

Lgm1gds1+Cgd1
gm1

)
(

1 + sCgd1RL

)
(1 + sLgm1)

+
gm2RL

1 + sCgd2(RL + Rd)
, (10)

which includes additional parasitic poles and zero. These parasitic high-frequency poles stemmed
from Cgd1 and Cgd2, which are located at 1/Cgd1RL and 1/Cgd2(RL + Rd) respectively, are far beyond
the dominant pole in Equation (4) since the values of RL and Rd are small. Moreover, the additional
right-plane zero (gm1/Lgm1gds1 + Cgd1) is located at considerably higher frequencies, as well.

Additionally, small-signal analysis conducted on the proposed all-pass circuit indicates that the
third parasitic pole stemmed from Cgs1 will be located at:

ωp3 = −

[
gm1

(
1 +

√
1 − 4Cgs1

Lg2
m1

)]
2Cgs1

≈ − gm1

Cgs1
, (11)

which is far beyond the dominant pole in Equation (4). It can be noted that the order of the
proposed circuit will increase and convert to the second one if the absolute value of Cgs1, which is
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process-dependent, is large enough. Consequently, choosing an appropriate CMOS process can reduce
the effect of the Cgs1 on the frequency response of the circuit.

4. Results

The proposed first-order all-pass filter is designed in a standard 180-nm TSMC CMOS process
and results are obtained using Virtuoso Cadence. The proposed all-pass filter is simulated without and
with the Rd. The power consumption of the proposed broadband true-time-delay cell is only 10 mW
from a 1.8-V supply voltage.

Figure 4 shows the gain and phase responses of the proposed filter under different values of
the Rd. As it can be observed, the gain of the proposed filter without the Rd (i.e., Rd = 0 Ω) is almost
−0.5 dB due to the existence of the parasitic capacitors and finite output impedances of the transistors.
Furthermore, the proposed filter does not achieve desired (flat) gain responses at higher frequencies,
whereas by varying the value of the Rd, better gain responses are proved at these frequencies. As seen,
the pole/zero frequency of the proposed circuit with Rd = 120 Ω is 5 GHz (i.e., the point where
phase is 90◦), indicating a 14% bandwidth improvement compared to once Rd = 0 Ω (i.e., 4.4 GHz).
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Figure 4. Simulated results for (a) gain response and (b) phase response of the proposed first-order
all-pass filter under different values of the Rd.

The group delay responses of the proposed all-pass filter for different values of the Rd are shown
in Figure 5. As it can be seen, the delay can be controlled by varying the Rd. The group delay is
equal to about 59 ps, when Rd = 120 Ω. This group delay value is very close to the theoretical one in
Equation (6), with an error of around 11%.
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In Figure 6, the input-referred noise response of the all-pass filter is shown when Rd = 120 Ω.
The input-referred noise value is approximately 2.36 nV/sqrt (Hz) by the frequency of 1 GHz. Figure 7
shows the noise figure of the proposed all-pass filter with Rd = 120 Ω, which is <15 dB over the
frequency band. The input-referred 1-dB compression point (P1dB) and input-referred third-order
intercept point (IIP3) responses of the first-order all-pass filter with Rd = 120 Ω are shown in Figure 8.
The input-referred P1dB and IIP3 are −1.9 dBm and 16.6 dBm at 2.5 GHz, respectively.
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all-pass filter.

Since the amount of group delay is affected by the mismatch and is basically process, voltage,
and temperature (PVT) dependent, we should therefore consider the effect of these variations on
the proposed true-time-delay cell. Figure 9 illustrates Monte Carlo simulation results, which are
performed with a Gaussian distribution and 100 iterations, when Rd = 120 Ω. As it can be seen,
the difference between group delay responses due to the mismatch is very small. Although the gain,
P1dB, and IIP3 will be affected by the mismatch, these variations can be minimized by changing the
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bias voltage of M2. The group delay responses of the proposed filter with Rd = 120 Ω for different
supply voltages and temperatures are shown in Figure 10. The delay degrades by 15% because of the
temperature variations.
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A comparison between recently reported voltage/current all-pass filters and the proposed
true-time-delay cell is presented in Table 1. Comparing the results of the first-order voltage-mode
all-pass filters, the proposed filter has improved the frequency range compared to the filter in [15].
Moreover, the power consumption and delay tuning can be highlighted and compared with the filter
in [22], in which the delay could not be tuned.
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Table 1. Performance summary and comparison between broadband all-pass filters.

Reference Technology Mode Order Frequency
(GHz)

Max. Delay
(ps)

P1dB
(dBm)

IIP3
(dBm)

Power
(mW/V)

[15] 140-nm CMOS Voltage 1st 1–2.5 61 1 N/A N/A 10 2/1.5
[19] SiGe2RF HBT Voltage 2nd 3–10 75 −1 N/A 38.8/2.5
[20] 130-nm CMOS Voltage 2nd 6 55 −5.5 2 18.5/1.5
[22] 130-nm CMOS Voltage 1st 9 49 3 −2 8.5 20.4/1.5
[25] 130-nm CMOS Current 1st 0.3–5.1 82 N/A N/A 6.15/1.5
[26] 180-nm CMOS Voltage 2nd 3–12 8.5 14.6 22.6 12/1.8

This work 180-nm CMOS Voltage 1st 5 59 4 −1.9 16.6 10/1.8
1 A maximum delay of 550 ps was achieved by three fine and six coarse delays. 2 A maximum power of 90 mW was
consumed by three fine and six coarse delays. 3 Pre-layout group delay of 33 ps expected for the filter. 4 Simulated
group delay value can be increased by varying the value of variable resistor in the proposed filter.

5. Discussion

Compared to the bulky LC delay lines, active filters can be good alternatives to approximate
delays as these filters occupy smaller area. This paper presents a broadband first-order voltage-mode
all-pass filter as an active circuit. Via an optimization technique, 14% bandwidth extension is achieved.
The proposed first-order all-pass filter demonstrates a flat group delay of approximately 60ps through
a bandwidth of 5 GHz, while consuming merely 10 mW power. Unlike the active all-pass filter in [22],
the proposed filter has a DC-gain of 1 in its voltage transfer function and consequently there is no
need for the gain adjustment via additional circuits or components. Furthermore, the proposed circuit
proves a frequency range wider than that of the reported active filter in [15] (pre-layout pole frequency
of 2.63 GHz), however at a larger area. The proposed all-pass filter is almost linear and achieves the
input-referred P1dB of −1.9 dBm and the input-referred IIP3 of 16.6 dBm. We will employ the proposed
all-pass filter-based true-time-delay cell in analog RF beam-forming antennas for communication
applications in our future work (see Figure 11). In timed-array receivers, tunable true-time-delay cells
are exploited to align broadband signals received from a particular direction (θ).
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