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Abstract: Deep-learning convolutional neural networks (CNNs) have proven to be successful in
various cognitive applications with a multilayer structure. The high computational energy and
time requirements hinder the practical application of CNNs; hence, the realization of a highly
energy-efficient and fast-learning neural network has aroused interest. In this work, we address the
computing-resource-saving problem by developing a deep model, termed the Gabor convolutional
neural network (Gabor CNN), which incorporates highly expression-efficient Gabor kernels into
CNNs. In order to effectively imitate the structural characteristics of traditional weight kernels, we
improve upon the traditional Gabor filters, having stronger frequency and orientation representations.
In addition, we propose a procedure to train Gabor CNNs, termed the fast training method (FTM).
In FTM, we design a new training method based on the multipopulation genetic algorithm (MPGA)
and evaluation structure to optimize improved Gabor kernels, but train the rest of the Gabor CNN
parameters with back-propagation. The training of improved Gabor kernels with MPGA is much
more energy-efficient with less samples and iterations. Simple tasks, like character recognition on the
Mixed National Institute of Standards and Technology database (MNIST), traffic sign recognition on
the German Traffic Sign Recognition Benchmark (GTSRB), and face detection on the Olivetti Research
Laboratory database (ORL), are implemented using LeNet architecture. The experimental result of
the Gabor CNN and MPGA training method shows a 17–19% reduction in computational energy
and time and an 18–21% reduction in storage requirements with a less than 1% accuracy decrease.
We eliminated a significant fraction of the computation-hungry components in the training process
by incorporating highly expression-efficient Gabor kernels into CNNs.

Keywords: deep learning; approximate computing; convolutional neural networks; Gabor kernels;
energy efficiency; multipopulation genetic algorithm

1. Introduction

Deep learning [1,2] has been used in a variety of detection [3–5], classification [6], and inference
tasks [7,8]. Convolutional deep features extracted from multiple layers, also known as “hypercolumn”
features [9], are the foundation of deep learning. However, the huge amounts of computational
energy and time required for regular trainable weight kernel learning hinders their extensive practical
application. The large-scale structure and training complexity of convolutional neural networks
(CNNs) necessitate the most computationally intensive workloads across all modern computing
platforms [10], so the implementation of energy-efficient kernels in neural networks is of interest.

A variety of hardware and software techniques have been proposed to achieve energy and
time efficiency [11–14]. One aspect involves reducing the testing complexity of the networks.
Another focuses on reducing the training complexity of a CNN [15,16]. The latter is an important
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challenge for convolutional networks as high computational energy and time are needed. Especially in
some online training applications in which the training time is included in the system action, reducing
the training complexity means reducing the whole real-time action. At the same time, the dependence
on platform can be reduced by the implementation of an energy-efficient network, which is important
to some simple platforms. CNN-based feature extraction is a purely data-driven technique that
can learn robust representations from data, but usually at the cost of high computational time
and energy requirements [17]. Trainable random kernels in CNNs are adjusted to the appropriate
value step-by-step through the continuous cycle iteration of samples to express the depth characters.
Sufficient training data and iteration times demonstrated that the training of regular trainable weight
kernels is a process that consumes considerable amounts of energy and time. Anisotropic filtering
techniques have been widely used to extract robust image representations [18,19]. The optimization
of anisotropic filters is much simpler. Anisotropic filters determined by a small part of samples
can often effectively express the common features of all samples. Hence, the combination of CNNs
with anisotropic filters is a valid process to reduce the computational energy and time consumption
of networks. Among them, Gabor filters have attracted attention due to their ability to provide
discriminative and informative features [20]. Compared with other filtering approaches, Gabor filters
are advantageous in spatial information extraction, including edges and textures [21]. Through the
deep convolution neural network visualization toolbox “Yo shin ski/Deep-Visualization-Toolbox” [22],
we can obtain convolutional kernels for each level by visualizing a pretrained CNN model, as shown
in Figure 1. The visualization of CNN kernels indicates that they are often redundant, and most of
the convolutional kernels are similar to some structural Gabor filters. This similarity and the inherent
error resiliency of the networks were the basis of incorporating Gabor kernels into CNNs.
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Figure 1. Convolutional kernels of each level by visualizing a pretrained convolutional neural network
(CNN) model.

Based on the inherent error resiliency of the networks and the similarity between convolutional
kernels and Gabor filters, we introduced Gabor kernels into CNNs, and propose Gabor CNNs to
reduce the computational energy and time required by networks, while maintaining a competitive
output accuracy. In order to effectively imitate the structural characteristics of traditional weight
kernels, we improved the two-dimensional Gabor filters by introducing parameters k1, k2, and k3

to adjust the oriented complex sinusoidal grating part. The improved Gabor filters have stronger
frequency and orientation representations. We trained standard CNNs with a few samples and epochs
as preliminary CNNs (or evaluation structures) to introduce and evaluate improved Gabor kernels
in the first convolutional layer. To optimize the Gabor kernels in the first convolutional layer of
preliminary CNNs, we designed a new multipopulation genetic algorithm (MPGA) [23,24] training
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method. In the iteration of MPGA, we optimized the Gabor kernels of the network by minifying global
samples error, based on a small portion of samples and the structure of neural networks. Through the
much simpler optimization of Gabor kernels, required computing resources were reduced, rather
than using a purely data-driven method. Simultaneously, we created a procedure to train Gabor
CNNs, termed the fast training method (FTM). In the FTM, we designed the Gabor convolutional
layer of the network using MPGA based on a small portion of samples, but trained the remaining
network structures using back-propagation [1] based on all samples. The FTM reasonably allocates
the energy consumption of each layer of the network. Given the structure of Gabor CNNs and the
MPGA training method, we eliminated a significant fraction of the computation-heavy components in
the training process, thereby producing a considerable reduction in computational energy and time
consumption required for training. The experimental results show that our proposed methodology is
energy-efficient and reduces storage requirements and training time, with minimal degradation of the
classification accuracy.

2. Related Work

2.1. Gabor Filters

After experiencing long-term evolution in nature, the biological vision system is one of
the best information processing systems with the most complete mechanism. Riaz et al. used
two-dimensional (2D) Gabor filters as a simple cell receptor field function to simulate its characteristics
and responses [25,26]. A circular 2D Gabor filter is a combination of a 2D Gaussian function and
an oriented complex sinusoidal grating. It is widely used to extract spatial local spectral features,
which are important for multiple pattern recognition. Many previous works have attempted to extract
important spatial information including edges and textures, with the advantage of Gabor filters
in sparse representation. Gabor filters have been successfully applied to face recognition [27,28],
fingerprint identification [29–31], and phase extraction [32] using Gabor atoms in sparse expression.
A 2D Gabor filter as expressed as:

Gσ,θ,λ,γ,ψ
(

x′, y′
)
= gσ,γ

(
x′, y′

)
· exp

{
i
(

2π
x′

λ
+ψ

)}
(1)

where i =
√

1, gσ,γ(x, y) is a Gaussian envelope defined as:

gσ,γ(x, y) =
1

2πσ2 · exp

{
−
(
x′2 + γ2y′2

)
2σ2

}
(2)

where x, y represents the coordinates of a pixel, x′ = x cos θ+ y sin θ, y′ = −x sin θ+ y cos θ, σ denotes
the standard deviation of a Gaussian envelope, λ denotes the wavelength of the span-limited sinusoidal
grating, θ denotes the orientation in the interval 0–180◦, γ represents the aspect ratio of the space, and
ψ represents the phase shift. A 2D Gabor filter Gσ,θ,λ,γ,ψ(x′, y′) can be decomposed into a real part
Rσ,θ,λ,γ,ψ(x′, y′) and an imaginary part Iσ,θ,λ,γ,ψ(x′, y′), as shown in the following equations:
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)
. (4)

A circular 2D Gabor filter is a combination of a 2D Gaussian function and an oriented complex
sinusoidal grating. The standard deviation of a Gaussian envelope σ controls the receptive field of
Gabor filters. λ and θ control the wavelength and orientation of Gabor filters, respectively. The phase
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shift ψ controls the distance between the center of the sinusoidal grating and the receptive field. Part of
the traditional Gabor filters with different parameters are shown in Figure 2.Electronics 2019, 8 FOR PEER REVIEW  4 of 18 
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Figure 2. Part of traditional Gabor filters with different parameters: (a) σ = 15, θ = 0–360◦ (from
left to right), λ = 2, 4, 10, 20 (from top to bottom), and ψ = 0; (b) σ = 5, θ = 0–360◦ (from left to
right), λ = 2, 4, 10, 20 (from top to bottom), and ψ = 0; (c) σ = 5, θ = 0 ∼ 360◦ (from left to right),
λ = 2, 4, 10, 20 (from top to bottom), and ψ = 5.

2.2. Convolutional Neural Network: Basics

The basic operation of CNNs consists of two stages: training and testing [33]. The testing process
is basically forward propagation [34,35] and is used to test random data inputs, which is much
simpler compared to training in terms of computational energy and time consumption. In the training
process, a large number of samples are circularly iterated in CNNs, and random parameters are
adjusted through gradient computation and weight update—both require considerable computation
and time [16]. In this paper, we propose a method to achieve energy efficiency in training by removing
a significant portion of the energy-hungry gradient computation and weight update operations with
MPGA optimization.

CNNs consist of convolutional [36,37], pooling [36,37], and fully connected layers [38].
The nonlinear activation function [39,40] is applied at the end of the convolutional and fully connected
layers. The convolutional layers are used to extract the depth features of the images [1,37]. The process
is shown in Equation (5):

Xl
j = f

 ∑
i∈Mj

Xl−1
i ⊗ Kernell

ij + Bl

. (5)

In Equation (5), Xl−1
i is the input, Xl

j is jth output feature map of the lth convolutional layer, f ( )

indicates the nonlinear activation function, Kernell
ij indicates the ith convolutional kernels of the jth

convolutional layer, and Bl represents the learnable bias added after the convolution operation before
entering the activation function. ⊗ indicates the operation of convolution. Mj represents all feature
maps in lth convolutional layer. Figure 3 represents a standard architecture of a deep-learning CNN.
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The main energy-hungry steps of CNN training (back-propagation) are gradient computation and
the weight updates of the convolutional and fully connected layers. In Sarwar et al. [16], the authors
proposed an energy model for quantifying the energy consumption of the network during training.
In a conventional CNN denoted by [784 6c 2s 12c 2s 10o] (784 input neurons, 6 and 12 feature maps
(6c and 12c) in the first and second convolutional layer, respectively, each followed by a pooling layer
(2s) of stride 2, and finally, a fully connected output layer of 10 neurons, 10o), the second convolutional
layer uses 27% of the overall energy consumption during training, whereas the first convolutional layer
consumes 20%. In order to reduce computation and ensure network accuracy, we replaced trainable
random kernels with Gabor filters. Because Gabor kernels do not require gradient computation and
weight updates, the computation and time consumption of the Gabor convolutional layers are reduced.

2.3. Combination of Gabor Filters and CNNs

Studies have reported work undertaken to combine Gabor filters and CNNs. Such work can be
divided into two main categories. In the first category, Gabor filters are used as a preprocessing step for
neural network training to increase the accuracy of the networks, using the advantage of Gabor filters
being similar to the simple human visual system [41,42] in the processes of texture feature expression
and description [43]. In this method type, the optimization of Gabor filters usually adopts an empirical
formula, which is not universal. In addition, this method increases the computational energy and
time consumption with a preprocessing step. In the other category, Gabor filters are introduced
into CNNs as Gabor kernels (or a Gabor convolutional layer) to eliminate the preprocessing step.
In Chang et al. [15,44], the authors attempted to remove the preprocessing overhead by introducing
Gabor filters into the first convolutional layer of a CNN. In Mahmoud et al. [44], Gabor filters were used
to replace the random filter kernels in the first convolutional layer. The training was then limited to the
remaining layers of the CNN. In Chang et al. [15], the Gabor kernels in the first layer were fine-tuned
with training. In other words, the authors used Gabor filters as a good starting point for training the
classifiers, which helps with convergence. In Sarwar et al. [16], Gabor filters were introduced in two
convolutional layers. The authors discussed a scheme where Gabor filters are used to replace trainable
random kernels in CNNs in order to decrease the computational energy and time consumption.

In the above studies, Gabor kernels were successfully introduced into the training process of
CNNs, with less computational energy and time consumption. However, in the proposed methods,
Gabor filters were used to replace convolutional kernels in pretrained CNNs, or to only selectively
replace trainable kernels in CNNs, without training Gabor kernels in the convolutional layers of
networks. Gabor kernels selected by empirical formula are always aiming at certain kinds of problems
and may not match the network. In this work, we improved upon the traditional Gabor filters and
designed a new MPGA training method to optimize them. Through the MPGA training method, our
Gabor kernels become trainable in Gabor CNNs and more universal.

3. Proposed Method

3.1. Overview of Our Method

To address the computing-resource-saving problem, we develop Gabor convolutional neural
network (Gabor CNN) and propose a fast training method (FTM) to train it. The structure of Gabor
CNN and update of the convolutional layer and weight matrix in the fully connected layer is shown
in Figure 5. The first convolutional layer of Gabor CNN consists of fixed Gabor kernels rather than
trainable random weight matrix. In the FTM, the traditional Gabor filters are improved to imitate the
structural characteristics of traditional weight kernels and introduced into the first convolutional layer.
Then, we design a new training method based on the multipopulation genetic algorithm (MPGA) to
optimize improved Gabor kernels instead of back-propagation. The training of Gabor kernels with
MPGA is much more energy-efficient because less samples and iterations are needed. Finally, the
rest of the Gabor CNN parameters are trained with back-propagation and all samples. The FTM for
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Gabor CNNs is shown in Figure 8. By replacing back-propagation with energy-efficient MPGA in the
convolutional layer, we could eliminate a significant fraction of the computation-hungry components
in the training process.

3.2. Improved Gabor Kernels in the First Convolutional Layer

For a given network, the size and number of trainable convolutional kernels are fixed. In order to
maintain the accuracy and simultaneously reduce the computational energy and time consumption
in the process of network training, we used Gabor kernels whose size and number were the same
as regular trainable kernels, and whose orientations were equally spaced in direction and space to
replace the kernels of the first layer of the CNN. In other words, the first layer of a Gabor CNN consists
of Gabor kernels. With the introduction of Gabor filters with high-efficiency feature expression as
convolutional kernels into CNNs, the feature extraction of the image can be expressed as:

Xl
j = f

 ∑
i∈Mj

Xl−1
i ⊗Gσ,θ,λ,γ,ψ(x′, y′) + Bl

. (6)

The similarity between Gabor filters and convolutional kernels in the network and the inherent
error resiliency of the networks are the basis of incorporating Gabor kernels into the proposed network.
To enrich Gabor transformation, we introduced parameters k1, k2, and k3 to adjust the oriented complex
sinusoidal grating part and defined the improved Gabor as:

G′σ,θ,λ,γ,ψ
(

x′, y′
)
= gσ,γ

(
x′, y′

)
· cos

2π
(x′k1 + y′k2)

k3

λ
+ψ

, k1, k2, k3 > 0. (7)

For example, for k1 = 1, k2 = 0, and k3 = 1, the shape of Gabor filter is conventional with
oriented grating; for k1 = 2, k2 = 2, and k3 = 1

2 , the Gabor filter is circular. Figure 4 shows part of the
improved 2D Gabor filters.
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filters with oriented grating, (b) circular Gabor filters, and (c) more complicated Gabor filters.

In this paper, the Gabor CNN has two convolutional layers and each of them is followed by a
subsampling layer. It has a fully connected layer that produces the final classification result. The first
convolutional layer has k Gabor kernels, and the second convolutional layer extracts 2k features for
each input with 2k random kernels. Taking the Mixed National Institute of Standards and Technology
database (MNIST) [36] as an example, we used six Gabor kernels (with θ = 0◦, 30◦, 60◦, 90◦, 120◦, and
150◦) to form the first layer; hence, the second convolutional layer included 2k2 = 72 random kernels.
The 12 feature maps from the second layer were used as feature vector inputs to the fully connected
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layer, which produced the final classification result. As a rule of thumb, we set the ratio of oriented,
circular, and complicated Gabor kernels to 10:3:1.

To produce the predicted output, samples undergo forward propagation of a Gabor CNN—the
same as the CNNs. However, the gradient computation and weight update are operated only at the
fully connected and second convolutional layers. The Gabor kernels in the first convolutional layer
are optimized by MPGA with minimal energy-consuming steps. Hence, in our proposed method,
we achieve energy efficiency by eliminating a large portion of the gradient computation and weight
update operations in the Gabor convolutional layer. In Figure 5, a schematic diagram shows an
update of the convolutional layer and weight matrix in the fully connected layer in a Gabor CNN.
Considering k = 6, there are six kernels in the first convolutional layer. Hence, the number of second
convolutional layer kernels is 72, as mentioned above. In the Gabor CNN, the second convolutional
layer and fully connected layer consist of trainable random kernels, but the first convolutional layer
consists of optimized Gabor kernels. We trained standard CNNs with a few samples and epochs
as preliminary CNNs (or evaluation structures) to introduce and evaluate improved Gabor kernels
in the first convolutional layer. In order to select the most fitting Gabor kernels, training based on
MPGA and preliminary CNNs is used to optimize the Gabor filters’ parameters. Then, Gabor filters
are established with an optimal set of parameters and are defined as Gabor kernels and introduced into
the first convolutional layer. To train other parameters, only the gradient matrix of the fully connected
and second convolutional layers is calculated by back-propagation with sample error. After that, the
weights update is performed with gradient matrix and fixed learning rate, the same as in a conventional
CNN. During continuous training, the Gabor CNNs meet the accuracy requirements and achieve
energy efficiency. The comparison between MPGA optimization and back-propagation in the first
convolutional layer is described in the next chapter.
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3.3. MPGA Optimization for Gabor Convolutional Kernels

The CNN classification accuracy is based on the efficient expression of input features, and
improper substitution of Gabor kernels results in irreparable accuracy degradation. Therefore, the
optimization of Gabor kernels is the key to Gabor CNN accuracy. Different from other methods, the
optimization of Gabor kernels in a convolutional layer should be suitable for the network structure.
In this paper, the number and size of Gabor kernels are determined by a given CNN; in terms of
orientation, they are equally spaced. The standard deviation of the Gaussian envelope σ and the
frequency of the span-limited sinusoidal grating µ cover the whole solution space. In order to select
suitable Gabor kernels and produce a fast-learning first convolutional layer, we propose MPGA
optimization for the standard deviation of a Gaussian envelope and the frequency of the span-limited
sinusoidal grating.

A simple multipopulation genetic algorithm is an iterative procedure that maintains a
constant-sized population (P) of candidate solutions consisting of individuals. During each generation,
three genetic operators, called reproduction, crossover, and mutation, are performed to generate new
populations. The best individual that represents the optimal solution in each generation is saved
for the next generation. A cost function is used to evaluate the fitness values of individuals in each
generation. An appropriate cost function is the key to MPGA optimization. The direction of error
gradient descent in MPGA optimization for the Gabor convolutional layer must be the same as the
direction of the error gradient descent in the training of CNNs. In this paper, we use global error as
the cost function of MPGA optimization. The global error refers to the binomial norm of difference
between the predicted values of all samples through CNNs and standard values, which is an important
index that reflects the accuracy. In other words, the descent of global error can directly reflect the rise
of network accuracy. The global error can be expressed as:

E =
1
2

n

∑
i=1
||y′k − yk ||22. (8)

where y′k is the predicted value of the kth sample through Gabor CNNs, yk is its label value, and n
represents the number of samples. In this work, the global error was used as the cost function of MPGA
optimization. Using the above description, MPGA optimization for Gabor convolutional kernels using
the global error as the cost function can be expressed as shown in Figure 6.

The MPGA optimization for Gabor convolutional kernels is as follows:

(1) An initial population P with a constant size 2k is randomly generated. k is the number of Gabor
convolutional kernels in the first layer. Genes of individuals in the population represent the
standard deviation of Gaussian envelope σ and the frequency of the span-limited sinusoidal
grating µ of Gabor kernels.

(2) The fitness for each initial individual corresponding to Gabor kernels is calculated.
(3) The next generation, including the best individual from the previous generation, is created

through reproduction, crossover, and mutation.
(4) Each individual in the new generation is evaluated and the best Gabor kernels corresponding to

one individual are saved.
(5) If the search goal is achieved, or an allowable generation is attained, the best individual

corresponding to Gabor kernels is returned as the solution; otherwise, return to step (3).

The training of improved Gabor kernels with MPGA is much more energy-efficient than the
back-propagation method with a few samples and iterations. Some of the conventional trained kernels
and optimized Gabor kernels of the first convolutional layer are shown in Figure 7.
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Electronics 2019, 8 FOR PEER REVIEW  9 of 18 

 

(1) An initial population P with a constant size 2k is randomly generated. k is the number of Gabor 

convolutional kernels in the first layer. Genes of individuals in the population represent the 

standard deviation of Gaussian envelope σ and the frequency of the span-limited sinusoidal 

grating μ of Gabor kernels. 

(2) The fitness for each initial individual corresponding to Gabor kernels is calculated. 

(3) The next generation, including the best individual from the previous generation, is created 

through reproduction, crossover, and mutation. 

(4) Each individual in the new generation is evaluated and the best Gabor kernels corresponding to 

one individual are saved. 

(5) If the search goal is achieved, or an allowable generation is attained, the best individual 

corresponding to Gabor kernels is returned as the solution; otherwise, return to step (3). 

The training of improved Gabor kernels with MPGA is much more energy-efficient than the 

back-propagation method with a few samples and iterations. Some of the conventional trained 

kernels and optimized Gabor kernels of the first convolutional layer are shown in Figure 7. 

 
(a) (b) 

Figure 7. (a) Visualization of part of the conventional trained kernels and (b) optimized Gabor kernels 

of the first convolutional layer (with θ = 0°, 30°, 60°, 90°, 120°, and 150°). 

3.4. Fast Training Method for Gabor Convolutional Neural Networks 

Trainable random kernels in CNNs are adjusted to the appropriate values by gradient 

computation and weight update, which are not fit for Gabor kernels. Different from other methods 

(such as the empirical formula), optimization of Gabor kernels in the convolutional layer should be 

suitable for the network structure. In this paper, we propose an FTM for Gabor CNNs. The Gabor 

convolutional layer is fast trained with MPGA and the evaluation structure, and then the rest of the 

Gabor CNN parameters are trained with back-propagation. The FTM for the Gabor CNNs is shown 

in Figure 8. 

 

Figure 8. Fast training method for Gabor CNNs. 

The basic operation of FTM consists of two stages: (1) optimization of Gabor convolutional 

kernels with a few samples and evaluation structure; and (2) training other Gabor CNNs parameters 

with all samples. 

Gabor kernels can effectively express common features (like edges and texture) with simple 

optimization. Hence, we propose MPGA optimization with fewer iterations for the Gabor 

convolutional layer instead of training with a fixed learning rate. The Gabor features of the samples 

Figure 7. (a) Visualization of part of the conventional trained kernels and (b) optimized Gabor kernels
of the first convolutional layer (with θ = 0◦, 30◦, 60◦, 90◦, 120◦, and 150◦).

3.4. Fast Training Method for Gabor Convolutional Neural Networks

Trainable random kernels in CNNs are adjusted to the appropriate values by gradient computation
and weight update, which are not fit for Gabor kernels. Different from other methods (such as the
empirical formula), optimization of Gabor kernels in the convolutional layer should be suitable for
the network structure. In this paper, we propose an FTM for Gabor CNNs. The Gabor convolutional
layer is fast trained with MPGA and the evaluation structure, and then the rest of the Gabor CNN
parameters are trained with back-propagation. The FTM for the Gabor CNNs is shown in Figure 8.

The basic operation of FTM consists of two stages: (1) optimization of Gabor convolutional kernels
with a few samples and evaluation structure; and (2) training other Gabor CNNs parameters with
all samples.

Gabor kernels can effectively express common features (like edges and texture) with simple
optimization. Hence, we propose MPGA optimization with fewer iterations for the Gabor
convolutional layer instead of training with a fixed learning rate. The Gabor features of the samples
are similar within the same class but differ from those in other classes, which has been proven in many
classification problems [32,44]. Based on the above reasoning, MPGA optimization for Gabor kernels
can be completed with few representative samples. Degradation of the classification accuracy can be
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compensated for by the inherent error resiliency of the networks and the efficient ability to express
Gabor kernels. In the first stage, a preliminary CNN is established with traditional randomly weighted
kernels as the evaluation structure. Then, Gabor kernels constructed by a random initial population
are incorporated into a preliminary CNN to replace the random kernels. An MPGA training method
and a few samples from each class are used to optimize the Gabor convolutional layer and the output
of the first layer of the optimized Gabor CNN. The training of improved Gabor kernels with MPGA is
much more energy-efficient with fewer samples and iterations. In other words, we achieved energy
efficiency by eliminating a large portion of the gradient computation and weight update operations in
the first stage. In the second stage, other Gabor CNN parameters are trained with back-propagation to
improve the network accuracy. The experiment results show that the inherent error resiliency of the
networks and the ability of Gabor kernels to efficiently express features can effectively minimize the
loss of accuracy.
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4. Implementation and Experiment

In this section, we present the details of implementation of the Gabor CNN and the MGPA
training method. We used modified versions of open-source MATLAB (MathWorks, Natick, MA, USA)
codes [45,46] to implement multilayer CNNs for our experiments. We incorporated Gabor kernels
into CNNs with MPGA optimization and the evaluation structure mentioned above to realize Gabor
CNNs. Firstly, we used an example to analyze the energy efficiency and performance of Gabor CNNs
on MINIST. Then, the accuracy, training time, and storage requirement were compared between two
structures on the datasets listed in Table 1. We discussed the effects of iterations and the sampling rate
in MPGA optimization on the three indicators above.

The architectures of two structures and parameters of MPGA optimization are listed in Table 2.

Table 1. Benchmarks used in experiments.

Application Dataset No. Training Samples No. Testing Samples Input Image Size

Digit Recognition MNIST 60,000 10,000 28 × 28
Traffic Sign Recognition GTSRB 39,200 5000 32 × 32 (Normalized)

Face Recognition ORL 400 200 92 × 112

Table 2. Architectures of two structures and parameters of MPGA optimization.

Dataset Network Population &
Individual

Crossover &
Mutation

Sampling
Rate

MNIST [784 (5 × 5)6c 2s (5 × 5)12c 2s 10o] 50 12 0.8 0.6 1%
GTSRB [1024 (5 × 5)8c 2s (5 × 5)12c 2s 42o] 50 16 0.8 0.6 1%

ORL [4096 (11 × 11)8c 2s (5 × 5)12c 2s 40o] 10 16 0.2 0.4 10%
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4.1. Energy Efficiency and Performance

We conducted an experiment where we trained a CNN ([784 6c 2s 12c 2s 10o]) and a Gabor CNN
with the same structure on the MINIST dataset. Each of the structures was trained for 200 epochs.
Figure 9 shows the overall classification accuracy and mean square error obtained from each structure.
In the plot (Figure 9a), the red curve corresponds to the CNN samples’ mean square error and the
green curve corresponds to the Gabor CNN samples’ mean square error. K1 (1.27) and K2 (0.26) are
the initial values of the samples’ mean square error of each structure. The difference between K1

and K2 indicates that optimized Gabor kernels can drastically reduce the samples’ mean square error
and that the Gabor CNNs have preliminary identification ability. In the plot (Figure 9b), the red and
green curves correspond to the overall classification accuracy of CNN and Gabor CNN, respectively.
The degradation in classification accuracy is less than 1% and the curves in the two groups show similar
trends. The trends in both curves suggest that CNN and Gabor perform similarly, but Gabor CNN is
more efficient in terms of computing. As expected, incorporating Gabor kernels into CNNs causes
minimal degradation in network performance, and MPGA optimization is a process that increases the
overall classification accuracy.
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Fewer training data were used and fewer iterations were required for the optimization of
Gabor kernels than for the CNN training process. Hence, the energy consumption during the
optimization of Gabor kernels is far less than in gradient computation and weight update of the
first random convolutional layer with back-propagation. Convolution is the main operator in both
MPGA optimization and back-propagation. In Table 3, the number of convolutions (Conv) operated
in optimization of Gabor kernels and back-propagation (in standard CNN) method for one iteration
in the forward process (FP) and back process (BP) of the first layer in both structures are listed for
comparison. The optimization of Gabor kernels includes two parts: a preliminary CNN is established
with randomly weighted kernels and MPGA for the first convolutional layer replaced by Gabor kernels.
Correspondingly, the number Conv operated in optimization of Gabor kernels includes the number of
Conv in both MPGA and the preliminary CNN.

The computational energy and time required for the optimization of Gabor kernels completes the
genetic algorithm iterations and training for the preliminary CNN. Table 3 shows that the number of
convolutions operated in MPGA for one iteration in the forward process (FP) and back process (BP)
is more than in back-propagation. However, fewer iterations are needed in MPGA optimization than
in the back-propagation method. It can be seen from the calculation that the computational energy
consumption required for the optimization of Gabor kernels is 3–7% of the back-propagation in the
conventional CNN. In Figure 10, the pie chart represents different computation distributions between
Gabor and conventional CNNs across different segments. The energy of the error and loss function
consumes a small fraction (~1%) in both structures. The energy consumption of the second convolutional
layer and forward propagation in the two structures are the same in training. However, the energy
consumption proportion of the first convolutional layer in Gabor CNN is about 1%, which is far less
than in the conventional CNN. Of the entire 20% energy consumption required for the conventional
CNN in the first convolutional layer, 19% of the energy can be saved by the optimized Gabor kernels in
Gabor CNNs because Gabor kernels do not require gradient computation and weight update.

Table 3. Convolutions used in MPGA optimization and back-propagation in the first layer.

Method Conv in FP Conv in BP Iterations All Conv

MPGA 1.8 × 105 – 10 1.8 × 106

Preliminary CNN 4.7 × 104 4.7 × 104 10 9.4 × 105

Back-propagation 3.6 × 105 3.6 × 105 200–500 1.5–3.6 × 108

Preliminary CNN (or evaluation structure) and conventional CNN denoted by [784 6c 2s 12c2s 10o] In MPGA
optimization, the sampling rate is 1%, the population number is 50, and the number of genetic iterations is 10.
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4.2. Accuracy Comparison

We trained two structures on datasets listed in Table 2 for 200 epochs to determine the accuracy,
training time, and storage requirement information. The number of epochs was determined ensuring
that all trainings converged and reached saturation. In each dataset, the Gabor CNN and conventional
CNN had the same structure, and the latter was used as a baseline. The accuracies of networks are
listed in Table 4.

Table 4. Accuracies of networks.

Dataset Conventional CNN Gabor CNN Accuracy Change

MNIST 99.11% 98.66% 0.45%
GTSRB 98.70% 96.24% 2.46%

ORL 98.60% 99.10% −0.50%

Row 1 in Table 4 shows the accuracy of the two structures on MINIST. The accuracy decrease of
the Gabor CNN is minimal. This result can be attributed to the fact that MINIST is a grayscale image
dataset where edges and textures are remarkable features in the classification and the advantages of
Gabor kernels in spatial information extraction can be fully reflected. However, the decreased accuracy
of Gabor CNN in GTSRB is larger but tolerable. The larger accuracy loss may have occurred because
the edges and textures are not all remarkable features in Traffic Sign Recognition, considering color is
prominent in some situations. In Face Recognition, the accuracy of Gabor CNN is better than that at
baseline. As ORL has fewer samples, and MPGA optimization for Gabor kernels can overcome this
problem, this may be the reason for better accuracy.

4.3. Training Time Comparison

The bar chart in Figure 11 shows the normalized training time after 200 epochs of the two
structures in each dataset. The training time of conventional CNN in three datasets is about
1.570 × 104 s, 1.026 × 104 s, and 104.7 s, respectively. Correspondingly, the training time of our
Gabor CNN is about 1.272 × 104 s, 8.411 × 103 s, and 98.4 s. Since FTM involves optimization of
Gabor convolutional kernels and training other parameters, the Gabor CNN training time includes
the corresponding two parts. Less training data and iterations are required for optimization of Gabor
kernels compared to the training process of CNN. Hence, considerably less training time is required
for the optimization of Gabor kernels than for the gradient computation and weight update of the
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first random convolutional layer with back-propagation. We observed a 17–19% reduction in training
time in MINIST and GTSRB. However, this reduction was not obvious in ORL as ORL had fewer
samples and we must increase the sampling rate of MPGA optimization to ensure that the Gabor
convolutional kernels are optimized. In conclusion, we achieved a significant reduction in training
time with sufficient samples.

Electronics 2019, 8 FOR PEER REVIEW  14 of 18 

 

for the optimization of Gabor kernels than for the gradient computation and weight update of the 

first random convolutional layer with back-propagation. We observed a 17–19% reduction in training 

time in MINIST and GTSRB. However, this reduction was not obvious in ORL as ORL had fewer 

samples and we must increase the sampling rate of MPGA optimization to ensure that the Gabor 

convolutional kernels are optimized. In conclusion, we achieved a significant reduction in training 

time with sufficient samples. 

 

Figure 11. The normalized training time after 200 epochs of the two structures in each dataset. 

4.4. Storage Requirement Comparison 

Figure 12 shows the storage requirement reduction obtained using the proposed scheme for 

different applications. We achieved a 6–21% reduction in storage requirements across the various 

benchmarks for the memory read/write operations. The reduction was not obvious in ORL as ORL 

had fewer samples and the computation saved by MPGA optimization is not obvious. In forward 

propagation, each kernel requires one read operation, and in back-propagation, each kernel requires 

one write operation. We observed an 18–21% reduction in the storage requirements in MINIST and 

GTSRB. The proposed Gabor CNNs and FTM significantly improved in storage requirements with 

sufficient samples. 

 

Figure 12. The normalized storage requirement reduction of the two structures in each dataset. 

4.5. Effects of Iterations and Sampling Rate 

The Gabor convolutional layer was trained with MPGA and the evaluation structure. The 

iterations and the sampling rate are key parameters of MPGA optimization. Insufficient iterations 

and sampling rate could cause the improper substitution of Gabor kernels, resulting in irreparable 

accuracy degradation. Conversely, superfluous iterations or sampling rate minimize the reduction in 

Figure 11. The normalized training time after 200 epochs of the two structures in each dataset.

4.4. Storage Requirement Comparison

Figure 12 shows the storage requirement reduction obtained using the proposed scheme for
different applications. We achieved a 6–21% reduction in storage requirements across the various
benchmarks for the memory read/write operations. The reduction was not obvious in ORL as ORL
had fewer samples and the computation saved by MPGA optimization is not obvious. In forward
propagation, each kernel requires one read operation, and in back-propagation, each kernel requires
one write operation. We observed an 18–21% reduction in the storage requirements in MINIST and
GTSRB. The proposed Gabor CNNs and FTM significantly improved in storage requirements with
sufficient samples.
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4.5. Effects of Iterations and Sampling Rate

The Gabor convolutional layer was trained with MPGA and the evaluation structure.
The iterations and the sampling rate are key parameters of MPGA optimization. Insufficient iterations
and sampling rate could cause the improper substitution of Gabor kernels, resulting in irreparable
accuracy degradation. Conversely, superfluous iterations or sampling rate minimize the reduction in
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training time and storage requirements. The line chart in Figure 13a shows the training time reductions
of different iterations and sampling rates in MNIST. With increasing iterations and sampling rate,
the training time reduction decreased correspondingly. In Figure 13b, the accuracy was maximized
when the number of iterations was about 20 and the sampling rate was about 0.1. The results show
the significant negative linear correlation between the training time reduction and the sampling rate.
The accuracy was the highest value when the sampling rate was over 1%. To obtain the greatest degree
of training time reduction, we set the sampling rate to 1% and the number of iterations to 20 in MINIST.
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5. Conclusions

High computational energy and the time required hinder the practical application of CNNs.
Due to the advantages of Gabor filters in spatial information extraction, including edges and
textures, the combination of CNN with Gabor kernels efficiently reduces the training time and energy
consumed. We improved the traditional Gabor filters by strengthening the frequency and orientation
representations. Then, we introduced Gabor kernels into CNNs and termed it the Gabor Convolutional
Neural Network (Gabor CNN) and designed a new training method based on the multipopulation
genetic algorithm (MPGA) to optimize the improved Gabor kernels. We proposed a procedure to train
Gabor CNNs, termed FTM. We eliminated a significant fraction of the energy-consuming components
of back-propagation in the training process, thereby considerably reducing the energy and time
consumption. In FTM, the Gabor convolutional layer was fast trained with MPGA and an evaluation
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structure, and then the remaining Gabor CNN parameters were trained with back-propagation.
Experiments across various benchmark applications with our proposed scheme showed that Gabor
CNNs and the MPGA training method reduced computational energy and time by 17–19% and storage
requirements by 18–21% with a less than 1% accuracy decrease when samples were sufficient. However,
the reduction of computational time and storage requirements are not obvious when sufficient samples
are unavailable. Introducing Gabor filters into deeper layers is also difficult because the deeper
convolutional layer is complex and the similarity between pretrained deep convolutional kernels
and Gabor filters is poor. The accuracy of the network is difficult to guarantee when replacing all
convolutional layers. Employing Gabor kernels is also beneficial for larger and more complex CNNs,
considering the structure of Gabor CNNs and FTM. In the future, we will introduce Gabor kernels into
more complicated CNNs and applications.
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