
electronics

Article

Energy-Efficient Gabor Kernels in Neural Networks
with Genetic Algorithm Training Method

Fanjie Meng, Xinqing Wang *, Faming Shao , Dong Wang and Xia Hua

Department of Mechanical Engineering, College of Field Engineering, Army Engineering University of PLA,
Nanjing 210007, China; beilimeng1992@163.com (F.M.); shaofaming@163.com (F.S.);
dyhkxywangdong@163.com (D.W.); huaxia120888@163.com (X.H.)
* Correspondence: wangxqprof@163.com; Tel.: +86-187-6168-3665

Received: 21 December 2018; Accepted: 16 January 2019; Published: 18 January 2019
����������
�������

Abstract: Deep-learning convolutional neural networks (CNNs) have proven to be successful in
various cognitive applications with a multilayer structure. The high computational energy and
time requirements hinder the practical application of CNNs; hence, the realization of a highly
energy-efficient and fast-learning neural network has aroused interest. In this work, we address the
computing-resource-saving problem by developing a deep model, termed the Gabor convolutional
neural network (Gabor CNN), which incorporates highly expression-efficient Gabor kernels into
CNNs. In order to effectively imitate the structural characteristics of traditional weight kernels, we
improve upon the traditional Gabor filters, having stronger frequency and orientation representations.
In addition, we propose a procedure to train Gabor CNNs, termed the fast training method (FTM).
In FTM, we design a new training method based on the multipopulation genetic algorithm (MPGA)
and evaluation structure to optimize improved Gabor kernels, but train the rest of the Gabor CNN
parameters with back-propagation. The training of improved Gabor kernels with MPGA is much
more energy-efficient with less samples and iterations. Simple tasks, like character recognition on the
Mixed National Institute of Standards and Technology database (MNIST), traffic sign recognition on
the German Traffic Sign Recognition Benchmark (GTSRB), and face detection on the Olivetti Research
Laboratory database (ORL), are implemented using LeNet architecture. The experimental result of
the Gabor CNN and MPGA training method shows a 17–19% reduction in computational energy
and time and an 18–21% reduction in storage requirements with a less than 1% accuracy decrease.
We eliminated a significant fraction of the computation-hungry components in the training process
by incorporating highly expression-efficient Gabor kernels into CNNs.

Keywords: deep learning; approximate computing; convolutional neural networks; Gabor kernels;
energy efficiency; multipopulation genetic algorithm

1. Introduction

Deep learning [1,2] has been used in a variety of detection [3–5], classification [6], and inference
tasks [7,8]. Convolutional deep features extracted from multiple layers, also known as “hypercolumn”
features [9], are the foundation of deep learning. However, the huge amounts of computational
energy and time required for regular trainable weight kernel learning hinders their extensive practical
application. The large-scale structure and training complexity of convolutional neural networks
(CNNs) necessitate the most computationally intensive workloads across all modern computing
platforms [10], so the implementation of energy-efficient kernels in neural networks is of interest.

A variety of hardware and software techniques have been proposed to achieve energy and
time efficiency [11–14]. One aspect involves reducing the testing complexity of the networks.
Another focuses on reducing the training complexity of a CNN [15,16]. The latter is an important

Electronics 2019, 8, 105; doi:10.3390/electronics8010105 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-6281-2990
http://www.mdpi.com/2079-9292/8/1/105?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8010105
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 105 2 of 18

challenge for convolutional networks as high computational energy and time are needed. Especially in
some online training applications in which the training time is included in the system action, reducing
the training complexity means reducing the whole real-time action. At the same time, the dependence
on platform can be reduced by the implementation of an energy-efficient network, which is important
to some simple platforms. CNN-based feature extraction is a purely data-driven technique that
can learn robust representations from data, but usually at the cost of high computational time
and energy requirements [17]. Trainable random kernels in CNNs are adjusted to the appropriate
value step-by-step through the continuous cycle iteration of samples to express the depth characters.
Sufficient training data and iteration times demonstrated that the training of regular trainable weight
kernels is a process that consumes considerable amounts of energy and time. Anisotropic filtering
techniques have been widely used to extract robust image representations [18,19]. The optimization
of anisotropic filters is much simpler. Anisotropic filters determined by a small part of samples
can often effectively express the common features of all samples. Hence, the combination of CNNs
with anisotropic filters is a valid process to reduce the computational energy and time consumption
of networks. Among them, Gabor filters have attracted attention due to their ability to provide
discriminative and informative features [20]. Compared with other filtering approaches, Gabor filters
are advantageous in spatial information extraction, including edges and textures [21]. Through the
deep convolution neural network visualization toolbox “Yo shin ski/Deep-Visualization-Toolbox” [22],
we can obtain convolutional kernels for each level by visualizing a pretrained CNN model, as shown
in Figure 1. The visualization of CNN kernels indicates that they are often redundant, and most of
the convolutional kernels are similar to some structural Gabor filters. This similarity and the inherent
error resiliency of the networks were the basis of incorporating Gabor kernels into CNNs.

Electronics 2019, 8 FOR PEER REVIEW 2 of 18

focuses on reducing the training complexity of a CNN [15,16]. The latter is an important challenge

for convolutional networks as high computational energy and time are needed. Especially in some

online training applications in which the training time is included in the system action, reducing the

training complexity means reducing the whole real-time action. At the same time, the dependence on

platform can be reduced by the implementation of an energy-efficient network, which is important

to some simple platforms. CNN-based feature extraction is a purely data-driven technique that can

learn robust representations from data, but usually at the cost of high computational time and energy

requirements [17]. Trainable random kernels in CNNs are adjusted to the appropriate value step-by-

step through the continuous cycle iteration of samples to express the depth characters. Sufficient

training data and iteration times demonstrated that the training of regular trainable weight kernels

is a process that consumes considerable amounts of energy and time. Anisotropic filtering techniques

have been widely used to extract robust image representations [18,19]. The optimization of

anisotropic filters is much simpler. Anisotropic filters determined by a small part of samples can often

effectively express the common features of all samples. Hence, the combination of CNNs with

anisotropic filters is a valid process to reduce the computational energy and time consumption of

networks. Among them, Gabor filters have attracted attention due to their ability to provide

discriminative and informative features [20]. Compared with other filtering approaches, Gabor filters

are advantageous in spatial information extraction, including edges and textures [21]. Through the

deep convolution neural network visualization toolbox “Yo shin ski/Deep-Visualization-Toolbox”

[22], we can obtain convolutional kernels for each level by visualizing a pretrained CNN model, as

shown in Figure 1. The visualization of CNN kernels indicates that they are often redundant, and

most of the convolutional kernels are similar to some structural Gabor filters. This similarity and the

inherent error resiliency of the networks were the basis of incorporating Gabor kernels into CNNs.

Figure 1. Convolutional kernels of each level by visualizing a pretrained convolutional neural

network (CNN) model.

Based on the inherent error resiliency of the networks and the similarity between convolutional

kernels and Gabor filters, we introduced Gabor kernels into CNNs, and propose Gabor CNNs to

reduce the computational energy and time required by networks, while maintaining a competitive

output accuracy. In order to effectively imitate the structural characteristics of traditional weight

kernels, we improved the two-dimensional Gabor filters by introducing parameters k1, k2, and k3 to

adjust the oriented complex sinusoidal grating part. The improved Gabor filters have stronger

frequency and orientation representations. We trained standard CNNs with a few samples and

epochs as preliminary CNNs (or evaluation structures) to introduce and evaluate improved Gabor

kernels in the first convolutional layer. To optimize the Gabor kernels in the first convolutional layer

of preliminary CNNs, we designed a new multipopulation genetic algorithm (MPGA) [23,24] training

method. In the iteration of MPGA, we optimized the Gabor kernels of the network by minifying

Figure 1. Convolutional kernels of each level by visualizing a pretrained convolutional neural network
(CNN) model.

Based on the inherent error resiliency of the networks and the similarity between convolutional
kernels and Gabor filters, we introduced Gabor kernels into CNNs, and propose Gabor CNNs to
reduce the computational energy and time required by networks, while maintaining a competitive
output accuracy. In order to effectively imitate the structural characteristics of traditional weight
kernels, we improved the two-dimensional Gabor filters by introducing parameters k1, k2, and k3

to adjust the oriented complex sinusoidal grating part. The improved Gabor filters have stronger
frequency and orientation representations. We trained standard CNNs with a few samples and epochs
as preliminary CNNs (or evaluation structures) to introduce and evaluate improved Gabor kernels
in the first convolutional layer. To optimize the Gabor kernels in the first convolutional layer of
preliminary CNNs, we designed a new multipopulation genetic algorithm (MPGA) [23,24] training

Electronics 2019, 8, 105 3 of 18

method. In the iteration of MPGA, we optimized the Gabor kernels of the network by minifying global
samples error, based on a small portion of samples and the structure of neural networks. Through the
much simpler optimization of Gabor kernels, required computing resources were reduced, rather
than using a purely data-driven method. Simultaneously, we created a procedure to train Gabor
CNNs, termed the fast training method (FTM). In the FTM, we designed the Gabor convolutional
layer of the network using MPGA based on a small portion of samples, but trained the remaining
network structures using back-propagation [1] based on all samples. The FTM reasonably allocates
the energy consumption of each layer of the network. Given the structure of Gabor CNNs and the
MPGA training method, we eliminated a significant fraction of the computation-heavy components in
the training process, thereby producing a considerable reduction in computational energy and time
consumption required for training. The experimental results show that our proposed methodology is
energy-efficient and reduces storage requirements and training time, with minimal degradation of the
classification accuracy.

2. Related Work

2.1. Gabor Filters

After experiencing long-term evolution in nature, the biological vision system is one of
the best information processing systems with the most complete mechanism. Riaz et al. used
two-dimensional (2D) Gabor filters as a simple cell receptor field function to simulate its characteristics
and responses [25,26]. A circular 2D Gabor filter is a combination of a 2D Gaussian function and
an oriented complex sinusoidal grating. It is widely used to extract spatial local spectral features,
which are important for multiple pattern recognition. Many previous works have attempted to extract
important spatial information including edges and textures, with the advantage of Gabor filters
in sparse representation. Gabor filters have been successfully applied to face recognition [27,28],
fingerprint identification [29–31], and phase extraction [32] using Gabor atoms in sparse expression.
A 2D Gabor filter as expressed as:

Gσ,θ,λ,γ,ψ
(

x′, y′
)
= gσ,γ

(
x′, y′

)
· exp

{
i
(

2π
x′

λ
+ψ

)}
(1)

where i =
√

1, gσ,γ(x, y) is a Gaussian envelope defined as:

gσ,γ(x, y) =
1

2πσ2 · exp

{
−
(
x′2 + γ2y′2

)
2σ2

}
(2)

where x, y represents the coordinates of a pixel, x′ = x cos θ+ y sin θ, y′ = −x sin θ+ y cos θ, σ denotes
the standard deviation of a Gaussian envelope, λ denotes the wavelength of the span-limited sinusoidal
grating, θ denotes the orientation in the interval 0–180◦, γ represents the aspect ratio of the space, and
ψ represents the phase shift. A 2D Gabor filter Gσ,θ,λ,γ,ψ(x′, y′) can be decomposed into a real part
Rσ,θ,λ,γ,ψ(x′, y′) and an imaginary part Iσ,θ,λ,γ,ψ(x′, y′), as shown in the following equations:

Rσ,θ,λ,γ,ψ
(

x′, y′
)
= gσ,γ

(
x′, y′

)
· cos

(
2π

x′

λ
+ψ

)
(3)

Iσ,θ,λ,γ,ψ
(

x′, y′
)
= gσ,γ

(
x′, y′

)
· sin

(
2π

x′

λ
+ψ

)
. (4)

A circular 2D Gabor filter is a combination of a 2D Gaussian function and an oriented complex
sinusoidal grating. The standard deviation of a Gaussian envelope σ controls the receptive field of
Gabor filters. λ and θ control the wavelength and orientation of Gabor filters, respectively. The phase

Electronics 2019, 8, 105 4 of 18

shift ψ controls the distance between the center of the sinusoidal grating and the receptive field. Part of
the traditional Gabor filters with different parameters are shown in Figure 2.Electronics 2019, 8 FOR PEER REVIEW 4 of 18

(a) (b) (c)

Figure 2. Part of traditional Gabor filters with different parameters: (a) σ = 15, θ = 0°– 360° (from

left to right), λ = 2, 4, 10, 20 (from top to bottom), and ψ = 0; (b) σ = 5, θ = 0°– 360° (from left to

right), λ = 2, 4, 10, 20 (from top to bottom), and ψ = 0; (c) σ = 5, θ = 0°~360° (from left to right),

λ = 2, 4, 10, 20 (from top to bottom), and ψ = 5.

2.2. Convolutional Neural Network: Basics

The basic operation of CNNs consists of two stages: training and testing [33]. The testing process

is basically forward propagation [34,35] and is used to test random data inputs, which is much

simpler compared to training in terms of computational energy and time consumption. In the training

process, a large number of samples are circularly iterated in CNNs, and random parameters are

adjusted through gradient computation and weight update—both require considerable computation

and time [16]. In this paper, we propose a method to achieve energy efficiency in training by

removing a significant portion of the energy-hungry gradient computation and weight update

operations with MPGA optimization.

CNNs consist of convolutional [36,37], pooling [36,37], and fully connected layers [38]. The

nonlinear activation function [39,40] is applied at the end of the convolutional and fully connected

layers. The convolutional layers are used to extract the depth features of the images [1,37]. The

process is shown in Equation (5):

��
� = � �∑ ��

���⨂��������
� + ��

�∈��
�. (5)

In Equation (5), ��
��� is the input, ��

� is jth output feature map of the �th convolutional layer,

�() indicates the nonlinear activation function, ��������
� indicates the �th convolutional kernels of

the �th convolutional layer, and Bl represents the learnable bias added after the convolution

operation before entering the activation function. ⨂ indicates the operation of convolution. ��

represents all feature maps in �th convolutional layer. Figure 3 represents a standard architecture of

a deep-learning CNN.

Figure 3. A standard architecture of a deep-learning Convolutional Neural Network (CNN).

The main energy-hungry steps of CNN training (back-propagation) are gradient computation

and the weight updates of the convolutional and fully connected layers. In Sarwar et al. [16], the

authors proposed an energy model for quantifying the energy consumption of the network during

Figure 2. Part of traditional Gabor filters with different parameters: (a) σ = 15, θ = 0–360◦ (from
left to right), λ = 2, 4, 10, 20 (from top to bottom), and ψ = 0; (b) σ = 5, θ = 0–360◦ (from left to
right), λ = 2, 4, 10, 20 (from top to bottom), and ψ = 0; (c) σ = 5, θ = 0 ∼ 360◦ (from left to right),
λ = 2, 4, 10, 20 (from top to bottom), and ψ = 5.

2.2. Convolutional Neural Network: Basics

The basic operation of CNNs consists of two stages: training and testing [33]. The testing process
is basically forward propagation [34,35] and is used to test random data inputs, which is much
simpler compared to training in terms of computational energy and time consumption. In the training
process, a large number of samples are circularly iterated in CNNs, and random parameters are
adjusted through gradient computation and weight update—both require considerable computation
and time [16]. In this paper, we propose a method to achieve energy efficiency in training by removing
a significant portion of the energy-hungry gradient computation and weight update operations with
MPGA optimization.

CNNs consist of convolutional [36,37], pooling [36,37], and fully connected layers [38].
The nonlinear activation function [39,40] is applied at the end of the convolutional and fully connected
layers. The convolutional layers are used to extract the depth features of the images [1,37]. The process
is shown in Equation (5):

Xl
j = f

 ∑
i∈Mj

Xl−1
i ⊗ Kernell

ij + Bl

. (5)

In Equation (5), Xl−1
i is the input, Xl

j is jth output feature map of the lth convolutional layer, f ()

indicates the nonlinear activation function, Kernell
ij indicates the ith convolutional kernels of the jth

convolutional layer, and Bl represents the learnable bias added after the convolution operation before
entering the activation function. ⊗ indicates the operation of convolution. Mj represents all feature
maps in lth convolutional layer. Figure 3 represents a standard architecture of a deep-learning CNN.

Electronics 2019, 8 FOR PEER REVIEW 4 of 18

(a) (b) (c)

Figure 2. Part of traditional Gabor filters with different parameters: (a) σ = 15, θ = 0°– 360° (from

left to right), λ = 2, 4, 10, 20 (from top to bottom), and ψ = 0; (b) σ = 5, θ = 0°– 360° (from left to

right), λ = 2, 4, 10, 20 (from top to bottom), and ψ = 0; (c) σ = 5, θ = 0°~360° (from left to right),

λ = 2, 4, 10, 20 (from top to bottom), and ψ = 5.

2.2. Convolutional Neural Network: Basics

The basic operation of CNNs consists of two stages: training and testing [33]. The testing process

is basically forward propagation [34,35] and is used to test random data inputs, which is much

simpler compared to training in terms of computational energy and time consumption. In the training

process, a large number of samples are circularly iterated in CNNs, and random parameters are

adjusted through gradient computation and weight update—both require considerable computation

and time [16]. In this paper, we propose a method to achieve energy efficiency in training by

removing a significant portion of the energy-hungry gradient computation and weight update

operations with MPGA optimization.

CNNs consist of convolutional [36,37], pooling [36,37], and fully connected layers [38]. The

nonlinear activation function [39,40] is applied at the end of the convolutional and fully connected

layers. The convolutional layers are used to extract the depth features of the images [1,37]. The

process is shown in Equation (5):

��
� = � �∑ ��

���⨂��������
� + ��

�∈��
�. (5)

In Equation (5), ��
��� is the input, ��

� is jth output feature map of the �th convolutional layer,

�() indicates the nonlinear activation function, ��������
� indicates the �th convolutional kernels of

the �th convolutional layer, and Bl represents the learnable bias added after the convolution

operation before entering the activation function. ⨂ indicates the operation of convolution. ��

represents all feature maps in �th convolutional layer. Figure 3 represents a standard architecture of

a deep-learning CNN.

Figure 3. A standard architecture of a deep-learning Convolutional Neural Network (CNN).

The main energy-hungry steps of CNN training (back-propagation) are gradient computation

and the weight updates of the convolutional and fully connected layers. In Sarwar et al. [16], the

authors proposed an energy model for quantifying the energy consumption of the network during

Figure 3. A standard architecture of a deep-learning Convolutional Neural Network (CNN).

Electronics 2019, 8, 105 5 of 18

The main energy-hungry steps of CNN training (back-propagation) are gradient computation and
the weight updates of the convolutional and fully connected layers. In Sarwar et al. [16], the authors
proposed an energy model for quantifying the energy consumption of the network during training.
In a conventional CNN denoted by [784 6c 2s 12c 2s 10o] (784 input neurons, 6 and 12 feature maps
(6c and 12c) in the first and second convolutional layer, respectively, each followed by a pooling layer
(2s) of stride 2, and finally, a fully connected output layer of 10 neurons, 10o), the second convolutional
layer uses 27% of the overall energy consumption during training, whereas the first convolutional layer
consumes 20%. In order to reduce computation and ensure network accuracy, we replaced trainable
random kernels with Gabor filters. Because Gabor kernels do not require gradient computation and
weight updates, the computation and time consumption of the Gabor convolutional layers are reduced.

2.3. Combination of Gabor Filters and CNNs

Studies have reported work undertaken to combine Gabor filters and CNNs. Such work can be
divided into two main categories. In the first category, Gabor filters are used as a preprocessing step for
neural network training to increase the accuracy of the networks, using the advantage of Gabor filters
being similar to the simple human visual system [41,42] in the processes of texture feature expression
and description [43]. In this method type, the optimization of Gabor filters usually adopts an empirical
formula, which is not universal. In addition, this method increases the computational energy and
time consumption with a preprocessing step. In the other category, Gabor filters are introduced
into CNNs as Gabor kernels (or a Gabor convolutional layer) to eliminate the preprocessing step.
In Chang et al. [15,44], the authors attempted to remove the preprocessing overhead by introducing
Gabor filters into the first convolutional layer of a CNN. In Mahmoud et al. [44], Gabor filters were used
to replace the random filter kernels in the first convolutional layer. The training was then limited to the
remaining layers of the CNN. In Chang et al. [15], the Gabor kernels in the first layer were fine-tuned
with training. In other words, the authors used Gabor filters as a good starting point for training the
classifiers, which helps with convergence. In Sarwar et al. [16], Gabor filters were introduced in two
convolutional layers. The authors discussed a scheme where Gabor filters are used to replace trainable
random kernels in CNNs in order to decrease the computational energy and time consumption.

In the above studies, Gabor kernels were successfully introduced into the training process of
CNNs, with less computational energy and time consumption. However, in the proposed methods,
Gabor filters were used to replace convolutional kernels in pretrained CNNs, or to only selectively
replace trainable kernels in CNNs, without training Gabor kernels in the convolutional layers of
networks. Gabor kernels selected by empirical formula are always aiming at certain kinds of problems
and may not match the network. In this work, we improved upon the traditional Gabor filters and
designed a new MPGA training method to optimize them. Through the MPGA training method, our
Gabor kernels become trainable in Gabor CNNs and more universal.

3. Proposed Method

3.1. Overview of Our Method

To address the computing-resource-saving problem, we develop Gabor convolutional neural
network (Gabor CNN) and propose a fast training method (FTM) to train it. The structure of Gabor
CNN and update of the convolutional layer and weight matrix in the fully connected layer is shown
in Figure 5. The first convolutional layer of Gabor CNN consists of fixed Gabor kernels rather than
trainable random weight matrix. In the FTM, the traditional Gabor filters are improved to imitate the
structural characteristics of traditional weight kernels and introduced into the first convolutional layer.
Then, we design a new training method based on the multipopulation genetic algorithm (MPGA) to
optimize improved Gabor kernels instead of back-propagation. The training of Gabor kernels with
MPGA is much more energy-efficient because less samples and iterations are needed. Finally, the
rest of the Gabor CNN parameters are trained with back-propagation and all samples. The FTM for

Electronics 2019, 8, 105 6 of 18

Gabor CNNs is shown in Figure 8. By replacing back-propagation with energy-efficient MPGA in the
convolutional layer, we could eliminate a significant fraction of the computation-hungry components
in the training process.

3.2. Improved Gabor Kernels in the First Convolutional Layer

For a given network, the size and number of trainable convolutional kernels are fixed. In order to
maintain the accuracy and simultaneously reduce the computational energy and time consumption
in the process of network training, we used Gabor kernels whose size and number were the same
as regular trainable kernels, and whose orientations were equally spaced in direction and space to
replace the kernels of the first layer of the CNN. In other words, the first layer of a Gabor CNN consists
of Gabor kernels. With the introduction of Gabor filters with high-efficiency feature expression as
convolutional kernels into CNNs, the feature extraction of the image can be expressed as:

Xl
j = f

 ∑
i∈Mj

Xl−1
i ⊗Gσ,θ,λ,γ,ψ(x′, y′) + Bl

. (6)

The similarity between Gabor filters and convolutional kernels in the network and the inherent
error resiliency of the networks are the basis of incorporating Gabor kernels into the proposed network.
To enrich Gabor transformation, we introduced parameters k1, k2, and k3 to adjust the oriented complex
sinusoidal grating part and defined the improved Gabor as:

G′σ,θ,λ,γ,ψ
(

x′, y′
)
= gσ,γ

(
x′, y′

)
· cos

2π
(x′k1 + y′k2)

k3

λ
+ψ

, k1, k2, k3 > 0. (7)

For example, for k1 = 1, k2 = 0, and k3 = 1, the shape of Gabor filter is conventional with
oriented grating; for k1 = 2, k2 = 2, and k3 = 1

2 , the Gabor filter is circular. Figure 4 shows part of the
improved 2D Gabor filters.

Electronics 2019, 8 FOR PEER REVIEW 6 of 18

3.2. Improved Gabor Kernels in the First Convolutional Layer

For a given network, the size and number of trainable convolutional kernels are fixed. In order

to maintain the accuracy and simultaneously reduce the computational energy and time

consumption in the process of network training, we used Gabor kernels whose size and number were

the same as regular trainable kernels, and whose orientations were equally spaced in direction and

space to replace the kernels of the first layer of the CNN. In other words, the first layer of a Gabor

CNN consists of Gabor kernels. With the introduction of Gabor filters with high-efficiency feature

expression as convolutional kernels into CNNs, the feature extraction of the image can be expressed

as:

X�
� = � �∑ X�

���⨂�∈��
G�,�,�,�,�(�′, �′) + B��. (6)

The similarity between Gabor filters and convolutional kernels in the network and the inherent

error resiliency of the networks are the basis of incorporating Gabor kernels into the proposed

network. To enrich Gabor transformation, we introduced parameters ��, ��, and �� to adjust the

oriented complex sinusoidal grating part and defined the improved Gabor as:

G′�,�,�,�,�(�′, �′) = g�,�(�′, �′) ∙ cos �2π
(���������)��

�
+ ψ� , ��, ��, �� > 0. (7)

For example, for �� = 1, �� = 0, and �� = 1 , the shape of Gabor filter is conventional with

oriented grating; for �� = 2, �� = 2, and �� =
�

�
, the Gabor filter is circular. Figure 4 shows part of the

improved 2D Gabor filters.

(a) (b) (c)

Figure 4. Improved two-dimensional (2D) Gabor filters with various shapes: (a) Conventional Gabor

filters with oriented grating, (b) circular Gabor filters, and (c) more complicated Gabor filters.

In this paper, the Gabor CNN has two convolutional layers and each of them is followed by a

subsampling layer. It has a fully connected layer that produces the final classification result. The first

convolutional layer has k Gabor kernels, and the second convolutional layer extracts 2k features for

each input with 2k random kernels. Taking the Mixed National Institute of Standards and Technology

database (MNIST) [36] as an example, we used six Gabor kernels (with θ = 0°, 30°, 60°, 90°, 120°, and

150°) to form the first layer; hence, the second convolutional layer included 2k2 = 72 random kernels.

The 12 feature maps from the second layer were used as feature vector inputs to the fully connected

layer, which produced the final classification result. As a rule of thumb, we set the ratio of oriented,

circular, and complicated Gabor kernels to 10:3:1.

To produce the predicted output, samples undergo forward propagation of a Gabor CNN—the

same as the CNNs. However, the gradient computation and weight update are operated only at the

fully connected and second convolutional layers. The Gabor kernels in the first convolutional layer

are optimized by MPGA with minimal energy-consuming steps. Hence, in our proposed method, we

achieve energy efficiency by eliminating a large portion of the gradient computation and weight

update operations in the Gabor convolutional layer. In Figure 5, a schematic diagram shows an

update of the convolutional layer and weight matrix in the fully connected layer in a Gabor CNN.

Figure 4. Improved two-dimensional (2D) Gabor filters with various shapes: (a) Conventional Gabor
filters with oriented grating, (b) circular Gabor filters, and (c) more complicated Gabor filters.

In this paper, the Gabor CNN has two convolutional layers and each of them is followed by a
subsampling layer. It has a fully connected layer that produces the final classification result. The first
convolutional layer has k Gabor kernels, and the second convolutional layer extracts 2k features for
each input with 2k random kernels. Taking the Mixed National Institute of Standards and Technology
database (MNIST) [36] as an example, we used six Gabor kernels (with θ = 0◦, 30◦, 60◦, 90◦, 120◦, and
150◦) to form the first layer; hence, the second convolutional layer included 2k2 = 72 random kernels.
The 12 feature maps from the second layer were used as feature vector inputs to the fully connected

Electronics 2019, 8, 105 7 of 18

layer, which produced the final classification result. As a rule of thumb, we set the ratio of oriented,
circular, and complicated Gabor kernels to 10:3:1.

To produce the predicted output, samples undergo forward propagation of a Gabor CNN—the
same as the CNNs. However, the gradient computation and weight update are operated only at the
fully connected and second convolutional layers. The Gabor kernels in the first convolutional layer
are optimized by MPGA with minimal energy-consuming steps. Hence, in our proposed method,
we achieve energy efficiency by eliminating a large portion of the gradient computation and weight
update operations in the Gabor convolutional layer. In Figure 5, a schematic diagram shows an
update of the convolutional layer and weight matrix in the fully connected layer in a Gabor CNN.
Considering k = 6, there are six kernels in the first convolutional layer. Hence, the number of second
convolutional layer kernels is 72, as mentioned above. In the Gabor CNN, the second convolutional
layer and fully connected layer consist of trainable random kernels, but the first convolutional layer
consists of optimized Gabor kernels. We trained standard CNNs with a few samples and epochs
as preliminary CNNs (or evaluation structures) to introduce and evaluate improved Gabor kernels
in the first convolutional layer. In order to select the most fitting Gabor kernels, training based on
MPGA and preliminary CNNs is used to optimize the Gabor filters’ parameters. Then, Gabor filters
are established with an optimal set of parameters and are defined as Gabor kernels and introduced into
the first convolutional layer. To train other parameters, only the gradient matrix of the fully connected
and second convolutional layers is calculated by back-propagation with sample error. After that, the
weights update is performed with gradient matrix and fixed learning rate, the same as in a conventional
CNN. During continuous training, the Gabor CNNs meet the accuracy requirements and achieve
energy efficiency. The comparison between MPGA optimization and back-propagation in the first
convolutional layer is described in the next chapter.

Electronics 2019, 8 FOR PEER REVIEW 7 of 18

Considering k = 6, there are six kernels in the first convolutional layer. Hence, the number of second

convolutional layer kernels is 72, as mentioned above. In the Gabor CNN, the second convolutional

layer and fully connected layer consist of trainable random kernels, but the first convolutional layer

consists of optimized Gabor kernels. We trained standard CNNs with a few samples and epochs as

preliminary CNNs (or evaluation structures) to introduce and evaluate improved Gabor kernels in

the first convolutional layer. In order to select the most fitting Gabor kernels, training based on MPGA

and preliminary CNNs is used to optimize the Gabor filters’ parameters. Then, Gabor filters are

established with an optimal set of parameters and are defined as Gabor kernels and introduced into

the first convolutional layer. To train other parameters, only the gradient matrix of the fully connected

and second convolutional layers is calculated by back-propagation with sample error. After that, the

weights update is performed with gradient matrix and fixed learning rate, the same as in a

conventional CNN. During continuous training, the Gabor CNNs meet the accuracy requirements

and achieve energy efficiency. The comparison between MPGA optimization and back-propagation

in the first convolutional layer is described in the next chapter.

Figure 5. Update of convolutional layer and weight matrix in the fully connected layer in a Gabor

CNN.

3.3. MPGA Optimization for Gabor Convolutional Kernels

The CNN classification accuracy is based on the efficient expression of input features, and

improper substitution of Gabor kernels results in irreparable accuracy degradation. Therefore, the

optimization of Gabor kernels is the key to Gabor CNN accuracy. Different from other methods, the

optimization of Gabor kernels in a convolutional layer should be suitable for the network structure.

In this paper, the number and size of Gabor kernels are determined by a given CNN; in terms of

orientation, they are equally spaced. The standard deviation of the Gaussian envelope σ and the

frequency of the span-limited sinusoidal grating μ cover the whole solution space. In order to select

Figure 5. Update of convolutional layer and weight matrix in the fully connected layer in a Gabor CNN.

Electronics 2019, 8, 105 8 of 18

3.3. MPGA Optimization for Gabor Convolutional Kernels

The CNN classification accuracy is based on the efficient expression of input features, and
improper substitution of Gabor kernels results in irreparable accuracy degradation. Therefore, the
optimization of Gabor kernels is the key to Gabor CNN accuracy. Different from other methods, the
optimization of Gabor kernels in a convolutional layer should be suitable for the network structure.
In this paper, the number and size of Gabor kernels are determined by a given CNN; in terms of
orientation, they are equally spaced. The standard deviation of the Gaussian envelope σ and the
frequency of the span-limited sinusoidal grating µ cover the whole solution space. In order to select
suitable Gabor kernels and produce a fast-learning first convolutional layer, we propose MPGA
optimization for the standard deviation of a Gaussian envelope and the frequency of the span-limited
sinusoidal grating.

A simple multipopulation genetic algorithm is an iterative procedure that maintains a
constant-sized population (P) of candidate solutions consisting of individuals. During each generation,
three genetic operators, called reproduction, crossover, and mutation, are performed to generate new
populations. The best individual that represents the optimal solution in each generation is saved
for the next generation. A cost function is used to evaluate the fitness values of individuals in each
generation. An appropriate cost function is the key to MPGA optimization. The direction of error
gradient descent in MPGA optimization for the Gabor convolutional layer must be the same as the
direction of the error gradient descent in the training of CNNs. In this paper, we use global error as
the cost function of MPGA optimization. The global error refers to the binomial norm of difference
between the predicted values of all samples through CNNs and standard values, which is an important
index that reflects the accuracy. In other words, the descent of global error can directly reflect the rise
of network accuracy. The global error can be expressed as:

E =
1
2

n

∑
i=1
||y′k − yk ||22. (8)

where y′k is the predicted value of the kth sample through Gabor CNNs, yk is its label value, and n
represents the number of samples. In this work, the global error was used as the cost function of MPGA
optimization. Using the above description, MPGA optimization for Gabor convolutional kernels using
the global error as the cost function can be expressed as shown in Figure 6.

The MPGA optimization for Gabor convolutional kernels is as follows:

(1) An initial population P with a constant size 2k is randomly generated. k is the number of Gabor
convolutional kernels in the first layer. Genes of individuals in the population represent the
standard deviation of Gaussian envelope σ and the frequency of the span-limited sinusoidal
grating µ of Gabor kernels.

(2) The fitness for each initial individual corresponding to Gabor kernels is calculated.
(3) The next generation, including the best individual from the previous generation, is created

through reproduction, crossover, and mutation.
(4) Each individual in the new generation is evaluated and the best Gabor kernels corresponding to

one individual are saved.
(5) If the search goal is achieved, or an allowable generation is attained, the best individual

corresponding to Gabor kernels is returned as the solution; otherwise, return to step (3).

The training of improved Gabor kernels with MPGA is much more energy-efficient than the
back-propagation method with a few samples and iterations. Some of the conventional trained kernels
and optimized Gabor kernels of the first convolutional layer are shown in Figure 7.

Electronics 2019, 8, 105 9 of 18

Electronics 2019, 8 FOR PEER REVIEW 8 of 18

suitable Gabor kernels and produce a fast-learning first convolutional layer, we propose MPGA

optimization for the standard deviation of a Gaussian envelope and the frequency of the span-limited

sinusoidal grating.

A simple multipopulation genetic algorithm is an iterative procedure that maintains a constant-

sized population (P) of candidate solutions consisting of individuals. During each generation, three

genetic operators, called reproduction, crossover, and mutation, are performed to generate new

populations. The best individual that represents the optimal solution in each generation is saved for

the next generation. A cost function is used to evaluate the fitness values of individuals in each

generation. An appropriate cost function is the key to MPGA optimization. The direction of error

gradient descent in MPGA optimization for the Gabor convolutional layer must be the same as the

direction of the error gradient descent in the training of CNNs. In this paper, we use global error as

the cost function of MPGA optimization. The global error refers to the binomial norm of difference

between the predicted values of all samples through CNNs and standard values, which is an

important index that reflects the accuracy. In other words, the descent of global error can directly

reflect the rise of network accuracy. The global error can be expressed as:

� =
�

�
∑ ‖��

� − ��‖�
��

��� . (8)

where ��
� is the predicted value of the kth sample through Gabor CNNs, �� is its label value, and n

represents the number of samples. In this work, the global error was used as the cost function of

MPGA optimization. Using the above description, MPGA optimization for Gabor convolutional

kernels using the global error as the cost function can be expressed as shown in Figure 6.

Figure 6. Flow chart of multipopulation genetic algorithm (MPGA) optimization for Gabor

convolutional kernels. Individual {σ�, λ�, σ�, λ�, ⋯ , σ�, λ�}� represents a combination of Gabor

kernels in the convolutional layer. The individual {σ�, λ�, σ�, λ�, ⋯ , σ�, λ�}� is the optional individual

selected from the previous generation.

The MPGA optimization for Gabor convolutional kernels is as follows:

Figure 6. Flow chart of multipopulation genetic algorithm (MPGA) optimization for Gabor
convolutional kernels. Individual {σ1, λ1, σ2, λ2, · · · , σk, λk}n represents a combination of Gabor
kernels in the convolutional layer. The individual {σ1, λ1, σ2, λ2, · · · , σk, λk}m is the optional
individual selected from the previous generation.

Electronics 2019, 8 FOR PEER REVIEW 9 of 18

(1) An initial population P with a constant size 2k is randomly generated. k is the number of Gabor

convolutional kernels in the first layer. Genes of individuals in the population represent the

standard deviation of Gaussian envelope σ and the frequency of the span-limited sinusoidal

grating μ of Gabor kernels.

(2) The fitness for each initial individual corresponding to Gabor kernels is calculated.

(3) The next generation, including the best individual from the previous generation, is created

through reproduction, crossover, and mutation.

(4) Each individual in the new generation is evaluated and the best Gabor kernels corresponding to

one individual are saved.

(5) If the search goal is achieved, or an allowable generation is attained, the best individual

corresponding to Gabor kernels is returned as the solution; otherwise, return to step (3).

The training of improved Gabor kernels with MPGA is much more energy-efficient than the

back-propagation method with a few samples and iterations. Some of the conventional trained

kernels and optimized Gabor kernels of the first convolutional layer are shown in Figure 7.

(a) (b)

Figure 7. (a) Visualization of part of the conventional trained kernels and (b) optimized Gabor kernels

of the first convolutional layer (with θ = 0°, 30°, 60°, 90°, 120°, and 150°).

3.4. Fast Training Method for Gabor Convolutional Neural Networks

Trainable random kernels in CNNs are adjusted to the appropriate values by gradient

computation and weight update, which are not fit for Gabor kernels. Different from other methods

(such as the empirical formula), optimization of Gabor kernels in the convolutional layer should be

suitable for the network structure. In this paper, we propose an FTM for Gabor CNNs. The Gabor

convolutional layer is fast trained with MPGA and the evaluation structure, and then the rest of the

Gabor CNN parameters are trained with back-propagation. The FTM for the Gabor CNNs is shown

in Figure 8.

Figure 8. Fast training method for Gabor CNNs.

The basic operation of FTM consists of two stages: (1) optimization of Gabor convolutional

kernels with a few samples and evaluation structure; and (2) training other Gabor CNNs parameters

with all samples.

Gabor kernels can effectively express common features (like edges and texture) with simple

optimization. Hence, we propose MPGA optimization with fewer iterations for the Gabor

convolutional layer instead of training with a fixed learning rate. The Gabor features of the samples

Figure 7. (a) Visualization of part of the conventional trained kernels and (b) optimized Gabor kernels
of the first convolutional layer (with θ = 0◦, 30◦, 60◦, 90◦, 120◦, and 150◦).

3.4. Fast Training Method for Gabor Convolutional Neural Networks

Trainable random kernels in CNNs are adjusted to the appropriate values by gradient computation
and weight update, which are not fit for Gabor kernels. Different from other methods (such as the
empirical formula), optimization of Gabor kernels in the convolutional layer should be suitable for
the network structure. In this paper, we propose an FTM for Gabor CNNs. The Gabor convolutional
layer is fast trained with MPGA and the evaluation structure, and then the rest of the Gabor CNN
parameters are trained with back-propagation. The FTM for the Gabor CNNs is shown in Figure 8.

The basic operation of FTM consists of two stages: (1) optimization of Gabor convolutional kernels
with a few samples and evaluation structure; and (2) training other Gabor CNNs parameters with
all samples.

Gabor kernels can effectively express common features (like edges and texture) with simple
optimization. Hence, we propose MPGA optimization with fewer iterations for the Gabor
convolutional layer instead of training with a fixed learning rate. The Gabor features of the samples
are similar within the same class but differ from those in other classes, which has been proven in many
classification problems [32,44]. Based on the above reasoning, MPGA optimization for Gabor kernels
can be completed with few representative samples. Degradation of the classification accuracy can be

Electronics 2019, 8, 105 10 of 18

compensated for by the inherent error resiliency of the networks and the efficient ability to express
Gabor kernels. In the first stage, a preliminary CNN is established with traditional randomly weighted
kernels as the evaluation structure. Then, Gabor kernels constructed by a random initial population
are incorporated into a preliminary CNN to replace the random kernels. An MPGA training method
and a few samples from each class are used to optimize the Gabor convolutional layer and the output
of the first layer of the optimized Gabor CNN. The training of improved Gabor kernels with MPGA is
much more energy-efficient with fewer samples and iterations. In other words, we achieved energy
efficiency by eliminating a large portion of the gradient computation and weight update operations in
the first stage. In the second stage, other Gabor CNN parameters are trained with back-propagation to
improve the network accuracy. The experiment results show that the inherent error resiliency of the
networks and the ability of Gabor kernels to efficiently express features can effectively minimize the
loss of accuracy.

Electronics 2019, 8 FOR PEER REVIEW 9 of 18

(1) An initial population P with a constant size 2k is randomly generated. k is the number of Gabor

convolutional kernels in the first layer. Genes of individuals in the population represent the

standard deviation of Gaussian envelope σ and the frequency of the span-limited sinusoidal

grating μ of Gabor kernels.

(2) The fitness for each initial individual corresponding to Gabor kernels is calculated.

(3) The next generation, including the best individual from the previous generation, is created

through reproduction, crossover, and mutation.

(4) Each individual in the new generation is evaluated and the best Gabor kernels corresponding to

one individual are saved.

(5) If the search goal is achieved, or an allowable generation is attained, the best individual

corresponding to Gabor kernels is returned as the solution; otherwise, return to step (3).

The training of improved Gabor kernels with MPGA is much more energy-efficient than the

back-propagation method with a few samples and iterations. Some of the conventional trained

kernels and optimized Gabor kernels of the first convolutional layer are shown in Figure 7.

(a) (b)

Figure 7. (a) Visualization of part of the conventional trained kernels and (b) optimized Gabor kernels

of the first convolutional layer (with θ = 0°, 30°, 60°, 90°, 120°, and 150°).

3.4. Fast Training Method for Gabor Convolutional Neural Networks

Trainable random kernels in CNNs are adjusted to the appropriate values by gradient

computation and weight update, which are not fit for Gabor kernels. Different from other methods

(such as the empirical formula), optimization of Gabor kernels in the convolutional layer should be

suitable for the network structure. In this paper, we propose an FTM for Gabor CNNs. The Gabor

convolutional layer is fast trained with MPGA and the evaluation structure, and then the rest of the

Gabor CNN parameters are trained with back-propagation. The FTM for the Gabor CNNs is shown

in Figure 8.

Figure 8. Fast training method for Gabor CNNs.

The basic operation of FTM consists of two stages: (1) optimization of Gabor convolutional

kernels with a few samples and evaluation structure; and (2) training other Gabor CNNs parameters

with all samples.

Gabor kernels can effectively express common features (like edges and texture) with simple

optimization. Hence, we propose MPGA optimization with fewer iterations for the Gabor

convolutional layer instead of training with a fixed learning rate. The Gabor features of the samples

Figure 8. Fast training method for Gabor CNNs.

4. Implementation and Experiment

In this section, we present the details of implementation of the Gabor CNN and the MGPA
training method. We used modified versions of open-source MATLAB (MathWorks, Natick, MA, USA)
codes [45,46] to implement multilayer CNNs for our experiments. We incorporated Gabor kernels
into CNNs with MPGA optimization and the evaluation structure mentioned above to realize Gabor
CNNs. Firstly, we used an example to analyze the energy efficiency and performance of Gabor CNNs
on MINIST. Then, the accuracy, training time, and storage requirement were compared between two
structures on the datasets listed in Table 1. We discussed the effects of iterations and the sampling rate
in MPGA optimization on the three indicators above.

The architectures of two structures and parameters of MPGA optimization are listed in Table 2.

Table 1. Benchmarks used in experiments.

Application Dataset No. Training Samples No. Testing Samples Input Image Size

Digit Recognition MNIST 60,000 10,000 28 × 28
Traffic Sign Recognition GTSRB 39,200 5000 32 × 32 (Normalized)

Face Recognition ORL 400 200 92 × 112

Table 2. Architectures of two structures and parameters of MPGA optimization.

Dataset Network Population &
Individual

Crossover &
Mutation

Sampling
Rate

MNIST [784 (5 × 5)6c 2s (5 × 5)12c 2s 10o] 50 12 0.8 0.6 1%
GTSRB [1024 (5 × 5)8c 2s (5 × 5)12c 2s 42o] 50 16 0.8 0.6 1%

ORL [4096 (11 × 11)8c 2s (5 × 5)12c 2s 40o] 10 16 0.2 0.4 10%

Electronics 2019, 8, 105 11 of 18

4.1. Energy Efficiency and Performance

We conducted an experiment where we trained a CNN ([784 6c 2s 12c 2s 10o]) and a Gabor CNN
with the same structure on the MINIST dataset. Each of the structures was trained for 200 epochs.
Figure 9 shows the overall classification accuracy and mean square error obtained from each structure.
In the plot (Figure 9a), the red curve corresponds to the CNN samples’ mean square error and the
green curve corresponds to the Gabor CNN samples’ mean square error. K1 (1.27) and K2 (0.26) are
the initial values of the samples’ mean square error of each structure. The difference between K1

and K2 indicates that optimized Gabor kernels can drastically reduce the samples’ mean square error
and that the Gabor CNNs have preliminary identification ability. In the plot (Figure 9b), the red and
green curves correspond to the overall classification accuracy of CNN and Gabor CNN, respectively.
The degradation in classification accuracy is less than 1% and the curves in the two groups show similar
trends. The trends in both curves suggest that CNN and Gabor perform similarly, but Gabor CNN is
more efficient in terms of computing. As expected, incorporating Gabor kernels into CNNs causes
minimal degradation in network performance, and MPGA optimization is a process that increases the
overall classification accuracy.

Electronics 2019, 8 FOR PEER REVIEW 11 of 18

groups show similar trends. The trends in both curves suggest that CNN and Gabor perform

similarly, but Gabor CNN is more efficient in terms of computing. As expected, incorporating Gabor

kernels into CNNs causes minimal degradation in network performance, and MPGA optimization is

a process that increases the overall classification accuracy.

(a)

(b)

Figure 9. (a) Samples’ mean square error and (b) overall classification accuracy obtained from each

structure.

Fewer training data were used and fewer iterations were required for the optimization of Gabor

kernels than for the CNN training process. Hence, the energy consumption during the optimization

of Gabor kernels is far less than in gradient computation and weight update of the first random

convolutional layer with back-propagation. Convolution is the main operator in both MPGA

optimization and back-propagation. In Table 3, the number of convolutions (Conv) operated in

optimization of Gabor kernels and back-propagation (in standard CNN) method for one iteration in

the forward process (FP) and back process (BP) of the first layer in both structures are listed for

comparison. The optimization of Gabor kernels includes two parts: a preliminary CNN is established

with randomly weighted kernels and MPGA for the first convolutional layer replaced by Gabor

Figure 9. (a) Samples’ mean square error and (b) overall classification accuracy obtained from
each structure.

Electronics 2019, 8, 105 12 of 18

Fewer training data were used and fewer iterations were required for the optimization of
Gabor kernels than for the CNN training process. Hence, the energy consumption during the
optimization of Gabor kernels is far less than in gradient computation and weight update of the
first random convolutional layer with back-propagation. Convolution is the main operator in both
MPGA optimization and back-propagation. In Table 3, the number of convolutions (Conv) operated
in optimization of Gabor kernels and back-propagation (in standard CNN) method for one iteration
in the forward process (FP) and back process (BP) of the first layer in both structures are listed for
comparison. The optimization of Gabor kernels includes two parts: a preliminary CNN is established
with randomly weighted kernels and MPGA for the first convolutional layer replaced by Gabor kernels.
Correspondingly, the number Conv operated in optimization of Gabor kernels includes the number of
Conv in both MPGA and the preliminary CNN.

The computational energy and time required for the optimization of Gabor kernels completes the
genetic algorithm iterations and training for the preliminary CNN. Table 3 shows that the number of
convolutions operated in MPGA for one iteration in the forward process (FP) and back process (BP)
is more than in back-propagation. However, fewer iterations are needed in MPGA optimization than
in the back-propagation method. It can be seen from the calculation that the computational energy
consumption required for the optimization of Gabor kernels is 3–7% of the back-propagation in the
conventional CNN. In Figure 10, the pie chart represents different computation distributions between
Gabor and conventional CNNs across different segments. The energy of the error and loss function
consumes a small fraction (~1%) in both structures. The energy consumption of the second convolutional
layer and forward propagation in the two structures are the same in training. However, the energy
consumption proportion of the first convolutional layer in Gabor CNN is about 1%, which is far less
than in the conventional CNN. Of the entire 20% energy consumption required for the conventional
CNN in the first convolutional layer, 19% of the energy can be saved by the optimized Gabor kernels in
Gabor CNNs because Gabor kernels do not require gradient computation and weight update.

Table 3. Convolutions used in MPGA optimization and back-propagation in the first layer.

Method Conv in FP Conv in BP Iterations All Conv

MPGA 1.8 × 105 – 10 1.8 × 106

Preliminary CNN 4.7 × 104 4.7 × 104 10 9.4 × 105

Back-propagation 3.6 × 105 3.6 × 105 200–500 1.5–3.6 × 108

Preliminary CNN (or evaluation structure) and conventional CNN denoted by [784 6c 2s 12c2s 10o] In MPGA
optimization, the sampling rate is 1%, the population number is 50, and the number of genetic iterations is 10.

Electronics 2019, 8 FOR PEER REVIEW 12 of 18

kernels. Correspondingly, the number Conv operated in optimization of Gabor kernels includes the

number of Conv in both MPGA and the preliminary CNN.

Table 3. Convolutions used in MPGA optimization and back-propagation in the first layer.

Method Conv in FP Conv in BP Iterations All Conv

MPGA 1.8 × 105 -- 10 1.8 × 106

Preliminary CNN 4.7 × 104 4.7 × 104 10 9.4 × 105

Back-propagation 3.6 × 105 3.6 × 105 200–500 1.5–3.6 × 108

Preliminary CNN (or evaluation structure) and conventional CNN denoted by [784 6c 2s 12c2s 10o]

In MPGA optimization, the sampling rate is 1%, the population number is 50, and the number of

genetic iterations is 10.

The computational energy and time required for the optimization of Gabor kernels completes

the genetic algorithm iterations and training for the preliminary CNN. Table 3 shows that the number

of convolutions operated in MPGA for one iteration in the forward process (FP) and back process

(BP) is more than in back-propagation. However, fewer iterations are needed in MPGA optimization

than in the back-propagation method. It can be seen from the calculation that the computational

energy consumption required for the optimization of Gabor kernels is 3–7% of the back-propagation

in the conventional CNN. In Figure 10, the pie chart represents different computation distributions

between Gabor and conventional CNNs across different segments. The energy of the error and loss

function consumes a small fraction (~1%) in both structures. The energy consumption of the second

convolutional layer and forward propagation in the two structures are the same in training. However,

the energy consumption proportion of the first convolutional layer in Gabor CNN is about 1%, which

is far less than in the conventional CNN. Of the entire 20% energy consumption required for the

conventional CNN in the first convolutional layer, 19% of the energy can be saved by the optimized

Gabor kernels in Gabor CNNs because Gabor kernels do not require gradient computation and

weight update.

(a)

Figure 10. Cont.

Electronics 2019, 8, 105 13 of 18
Electronics 2019, 8 FOR PEER REVIEW 13 of 18

(b)

Figure 10. Energy consumption distribution: (a) conventional CNN and (b) Gabor CNN on MINIST.

4.2. Accuracy Comparison

We trained two structures on datasets listed in Table 2 for 200 epochs to determine the accuracy,

training time, and storage requirement information. The number of epochs was determined ensuring

that all trainings converged and reached saturation. In each dataset, the Gabor CNN and

conventional CNN had the same structure, and the latter was used as a baseline. The accuracies of

networks are listed in Table 4.

Table 4. Accuracies of networks.

Dataset Conventional CNN Gabor CNN Accuracy Change

MNIST 99.11% 98.66% 0.45%

GTSRB 98.70% 96.24% 2.46%

ORL 98.60% 99.10% −0.50%

Row 1 in Table 4 shows the accuracy of the two structures on MINIST. The accuracy decrease of

the Gabor CNN is minimal. This result can be attributed to the fact that MINIST is a grayscale image

dataset where edges and textures are remarkable features in the classification and the advantages of

Gabor kernels in spatial information extraction can be fully reflected. However, the decreased

accuracy of Gabor CNN in GTSRB is larger but tolerable. The larger accuracy loss may have occurred

because the edges and textures are not all remarkable features in Traffic Sign Recognition,

considering color is prominent in some situations. In Face Recognition, the accuracy of Gabor CNN

is better than that at baseline. As ORL has fewer samples, and MPGA optimization for Gabor kernels

can overcome this problem, this may be the reason for better accuracy.

4.3. Training Time Comparison

The bar chart in Figure 11 shows the normalized training time after 200 epochs of the two

structures in each dataset. The training time of conventional CNN in three datasets is about 1.570 ×

104 s, 1.026 × 104 s, and 104.7 s, respectively. Correspondingly, the training time of our Gabor CNN

is about 1.272 × 104 s, 8.411 × 103 s, and 98.4 s. Since FTM involves optimization of Gabor

convolutional kernels and training other parameters, the Gabor CNN training time includes the

corresponding two parts. Less training data and iterations are required for optimization of Gabor

kernels compared to the training process of CNN. Hence, considerably less training time is required

Figure 10. Energy consumption distribution: (a) conventional CNN and (b) Gabor CNN on MINIST.

4.2. Accuracy Comparison

We trained two structures on datasets listed in Table 2 for 200 epochs to determine the accuracy,
training time, and storage requirement information. The number of epochs was determined ensuring
that all trainings converged and reached saturation. In each dataset, the Gabor CNN and conventional
CNN had the same structure, and the latter was used as a baseline. The accuracies of networks are
listed in Table 4.

Table 4. Accuracies of networks.

Dataset Conventional CNN Gabor CNN Accuracy Change

MNIST 99.11% 98.66% 0.45%
GTSRB 98.70% 96.24% 2.46%

ORL 98.60% 99.10% −0.50%

Row 1 in Table 4 shows the accuracy of the two structures on MINIST. The accuracy decrease of
the Gabor CNN is minimal. This result can be attributed to the fact that MINIST is a grayscale image
dataset where edges and textures are remarkable features in the classification and the advantages of
Gabor kernels in spatial information extraction can be fully reflected. However, the decreased accuracy
of Gabor CNN in GTSRB is larger but tolerable. The larger accuracy loss may have occurred because
the edges and textures are not all remarkable features in Traffic Sign Recognition, considering color is
prominent in some situations. In Face Recognition, the accuracy of Gabor CNN is better than that at
baseline. As ORL has fewer samples, and MPGA optimization for Gabor kernels can overcome this
problem, this may be the reason for better accuracy.

4.3. Training Time Comparison

The bar chart in Figure 11 shows the normalized training time after 200 epochs of the two
structures in each dataset. The training time of conventional CNN in three datasets is about
1.570 × 104 s, 1.026 × 104 s, and 104.7 s, respectively. Correspondingly, the training time of our
Gabor CNN is about 1.272 × 104 s, 8.411 × 103 s, and 98.4 s. Since FTM involves optimization of
Gabor convolutional kernels and training other parameters, the Gabor CNN training time includes
the corresponding two parts. Less training data and iterations are required for optimization of Gabor
kernels compared to the training process of CNN. Hence, considerably less training time is required
for the optimization of Gabor kernels than for the gradient computation and weight update of the

Electronics 2019, 8, 105 14 of 18

first random convolutional layer with back-propagation. We observed a 17–19% reduction in training
time in MINIST and GTSRB. However, this reduction was not obvious in ORL as ORL had fewer
samples and we must increase the sampling rate of MPGA optimization to ensure that the Gabor
convolutional kernels are optimized. In conclusion, we achieved a significant reduction in training
time with sufficient samples.

Electronics 2019, 8 FOR PEER REVIEW 14 of 18

for the optimization of Gabor kernels than for the gradient computation and weight update of the

first random convolutional layer with back-propagation. We observed a 17–19% reduction in training

time in MINIST and GTSRB. However, this reduction was not obvious in ORL as ORL had fewer

samples and we must increase the sampling rate of MPGA optimization to ensure that the Gabor

convolutional kernels are optimized. In conclusion, we achieved a significant reduction in training

time with sufficient samples.

Figure 11. The normalized training time after 200 epochs of the two structures in each dataset.

4.4. Storage Requirement Comparison

Figure 12 shows the storage requirement reduction obtained using the proposed scheme for

different applications. We achieved a 6–21% reduction in storage requirements across the various

benchmarks for the memory read/write operations. The reduction was not obvious in ORL as ORL

had fewer samples and the computation saved by MPGA optimization is not obvious. In forward

propagation, each kernel requires one read operation, and in back-propagation, each kernel requires

one write operation. We observed an 18–21% reduction in the storage requirements in MINIST and

GTSRB. The proposed Gabor CNNs and FTM significantly improved in storage requirements with

sufficient samples.

Figure 12. The normalized storage requirement reduction of the two structures in each dataset.

4.5. Effects of Iterations and Sampling Rate

The Gabor convolutional layer was trained with MPGA and the evaluation structure. The

iterations and the sampling rate are key parameters of MPGA optimization. Insufficient iterations

and sampling rate could cause the improper substitution of Gabor kernels, resulting in irreparable

accuracy degradation. Conversely, superfluous iterations or sampling rate minimize the reduction in

Figure 11. The normalized training time after 200 epochs of the two structures in each dataset.

4.4. Storage Requirement Comparison

Figure 12 shows the storage requirement reduction obtained using the proposed scheme for
different applications. We achieved a 6–21% reduction in storage requirements across the various
benchmarks for the memory read/write operations. The reduction was not obvious in ORL as ORL
had fewer samples and the computation saved by MPGA optimization is not obvious. In forward
propagation, each kernel requires one read operation, and in back-propagation, each kernel requires
one write operation. We observed an 18–21% reduction in the storage requirements in MINIST and
GTSRB. The proposed Gabor CNNs and FTM significantly improved in storage requirements with
sufficient samples.

Electronics 2019, 8 FOR PEER REVIEW 14 of 18

for the optimization of Gabor kernels than for the gradient computation and weight update of the

first random convolutional layer with back-propagation. We observed a 17–19% reduction in training

time in MINIST and GTSRB. However, this reduction was not obvious in ORL as ORL had fewer

samples and we must increase the sampling rate of MPGA optimization to ensure that the Gabor

convolutional kernels are optimized. In conclusion, we achieved a significant reduction in training

time with sufficient samples.

Figure 11. The normalized training time after 200 epochs of the two structures in each dataset.

4.4. Storage Requirement Comparison

Figure 12 shows the storage requirement reduction obtained using the proposed scheme for

different applications. We achieved a 6–21% reduction in storage requirements across the various

benchmarks for the memory read/write operations. The reduction was not obvious in ORL as ORL

had fewer samples and the computation saved by MPGA optimization is not obvious. In forward

propagation, each kernel requires one read operation, and in back-propagation, each kernel requires

one write operation. We observed an 18–21% reduction in the storage requirements in MINIST and

GTSRB. The proposed Gabor CNNs and FTM significantly improved in storage requirements with

sufficient samples.

Figure 12. The normalized storage requirement reduction of the two structures in each dataset.

4.5. Effects of Iterations and Sampling Rate

The Gabor convolutional layer was trained with MPGA and the evaluation structure. The

iterations and the sampling rate are key parameters of MPGA optimization. Insufficient iterations

and sampling rate could cause the improper substitution of Gabor kernels, resulting in irreparable

accuracy degradation. Conversely, superfluous iterations or sampling rate minimize the reduction in

Figure 12. The normalized storage requirement reduction of the two structures in each dataset.

4.5. Effects of Iterations and Sampling Rate

The Gabor convolutional layer was trained with MPGA and the evaluation structure.
The iterations and the sampling rate are key parameters of MPGA optimization. Insufficient iterations
and sampling rate could cause the improper substitution of Gabor kernels, resulting in irreparable
accuracy degradation. Conversely, superfluous iterations or sampling rate minimize the reduction in

Electronics 2019, 8, 105 15 of 18

training time and storage requirements. The line chart in Figure 13a shows the training time reductions
of different iterations and sampling rates in MNIST. With increasing iterations and sampling rate,
the training time reduction decreased correspondingly. In Figure 13b, the accuracy was maximized
when the number of iterations was about 20 and the sampling rate was about 0.1. The results show
the significant negative linear correlation between the training time reduction and the sampling rate.
The accuracy was the highest value when the sampling rate was over 1%. To obtain the greatest degree
of training time reduction, we set the sampling rate to 1% and the number of iterations to 20 in MINIST.

Electronics 2019, 8 FOR PEER REVIEW 15 of 18

training time and storage requirements. The line chart in Figure 13a shows the training time

reductions of different iterations and sampling rates in MNIST. With increasing iterations and

sampling rate, the training time reduction decreased correspondingly. In Figure 13b, the accuracy

was maximized when the number of iterations was about 20 and the sampling rate was about 0.1.

The results show the significant negative linear correlation between the training time reduction and

the sampling rate. The accuracy was the highest value when the sampling rate was over 1%. To obtain

the greatest degree of training time reduction, we set the sampling rate to 1% and the number of

iterations to 20 in MINIST.

(a)

(b)

Figure 13. (a) Training time reduction and (b) accuracy with different numbers of iterations and

different sampling rates in MNIST.

5. Conclusions

High computational energy and the time required hinder the practical application of CNNs. Due

to the advantages of Gabor filters in spatial information extraction, including edges and textures, the

combination of CNN with Gabor kernels efficiently reduces the training time and energy consumed.

We improved the traditional Gabor filters by strengthening the frequency and orientation

representations. Then, we introduced Gabor kernels into CNNs and termed it the Gabor

Convolutional Neural Network (Gabor CNN) and designed a new training method based on the

multipopulation genetic algorithm (MPGA) to optimize the improved Gabor kernels. We proposed

a procedure to train Gabor CNNs, termed FTM. We eliminated a significant fraction of the energy-

consuming components of back-propagation in the training process, thereby considerably reducing

the energy and time consumption. In FTM, the Gabor convolutional layer was fast trained with

Figure 13. (a) Training time reduction and (b) accuracy with different numbers of iterations and
different sampling rates in MNIST.

5. Conclusions

High computational energy and the time required hinder the practical application of CNNs.
Due to the advantages of Gabor filters in spatial information extraction, including edges and
textures, the combination of CNN with Gabor kernels efficiently reduces the training time and energy
consumed. We improved the traditional Gabor filters by strengthening the frequency and orientation
representations. Then, we introduced Gabor kernels into CNNs and termed it the Gabor Convolutional
Neural Network (Gabor CNN) and designed a new training method based on the multipopulation
genetic algorithm (MPGA) to optimize the improved Gabor kernels. We proposed a procedure to train
Gabor CNNs, termed FTM. We eliminated a significant fraction of the energy-consuming components
of back-propagation in the training process, thereby considerably reducing the energy and time
consumption. In FTM, the Gabor convolutional layer was fast trained with MPGA and an evaluation

Electronics 2019, 8, 105 16 of 18

structure, and then the remaining Gabor CNN parameters were trained with back-propagation.
Experiments across various benchmark applications with our proposed scheme showed that Gabor
CNNs and the MPGA training method reduced computational energy and time by 17–19% and storage
requirements by 18–21% with a less than 1% accuracy decrease when samples were sufficient. However,
the reduction of computational time and storage requirements are not obvious when sufficient samples
are unavailable. Introducing Gabor filters into deeper layers is also difficult because the deeper
convolutional layer is complex and the similarity between pretrained deep convolutional kernels
and Gabor filters is poor. The accuracy of the network is difficult to guarantee when replacing all
convolutional layers. Employing Gabor kernels is also beneficial for larger and more complex CNNs,
considering the structure of Gabor CNNs and FTM. In the future, we will introduce Gabor kernels into
more complicated CNNs and applications.

Author Contributions: F.M. and X.W. were responsible for the overall work and proposed the idea and
experiments of the method in the paper, and the paper was written mainly by the two authors. F.S. performed
part of the experiments and contributed to many effective discussions in both ideas and writing. D.W. provided
many positive suggestions and comments for the paper. X.H. performed part of the experiments and provided
many good suggestions.

Funding: This work was supported by the National Key Research and Development Program of China under
grant 2016YFC0802904, National Natural Science Foundation of China under grant 61671470, and the Postdoctoral
Science Foundation Funded Project of China under grant 2017M623423.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tom, Y.; Devamanyu, H.; Soujanya, P.; Erik, C. Recent trends in deep learning based natural language
processing. IEEE Comput. Intell. Mag. 2018, 13, 55–75. [CrossRef]

2. Marcus, G. Deep Learning: A Critical Appraisal. arXiv, 2018, arXiv:1801.00631.
3. Han, J.; Zhang, D.; Cheng, G.; Liu, N.; Xu, D. Advanced deep-learning techniques for salient and

category-specific object detection: A survey. IEEE Signal Process. Mag. 2018, 35, 84–100. [CrossRef]
4. Asif, U.; Bennamoun, M.; Sohel, F. A multi-modal, discriminative and spatially invariant CNN for RGB-D

object labeling. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 2051–2065. [CrossRef]
5. Chin, T.W.; Yu, C.L.; Halpern, M.; Genc, H.; Tsao, S.L.; Reddi, V.J. Domain-Specific Approximation for Object

Detection. IEEE Micro 2018, 38, 31–40. [CrossRef]
6. Ranjan, R.; Sankaranarayanan, S.; Bansal, A.; Bodla, N.; Chen, J.-C.; Patel, V.M.; Castillo, C.D.; Chellappa, R.

Deep learning for understanding faces: Machines may be just as good, or better, than humans. IEEE Signal
Process. Mag. 2018, 35, 66–83. [CrossRef]

7. Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.;
Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, Honolulu,
HI, USA, 21–26 July 2017. [CrossRef]

8. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation
applied to handwritten zip code recognition. Neural Comput. 2014, 1, 541–551. [CrossRef]

9. Hariharan, B.; Arbelaez, P.; Girshick, R.; Malik, J. Object instance segmentation and fine-grained localization
using hypercolumns. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 627–639. [CrossRef]

10. Wang, J.; Ma, Y.; Zhang, L.; Gao, R.X.; Wu, D. Deep learning for smart manufacturing: Methods and
applications. J. Manuf. Syst. 2018, 48, 144–156. [CrossRef]

11. Deng, L.; Yu, D. Deep learning: Methods and applications. Found. Trends Signal Process. 2014, 7, 197–387.
[CrossRef]

12. Li, H.; Fan, X.; Li, J.; Wei, C.; Zhou, X.; Wang, L. A high performance FPGA-based accelerator for large-scale
Convolutional Neural Networks. In Proceedings of the International Conference on Field Programmable
Logic & Applications, Lausanne, Switzerland, 29 August–2 September 2016. [CrossRef]

13. Li, C.; Yang, Y.; Feng, M.; Srimat, C.; Zhou, H. Optimizing Memory Efficiency for Deep Convolutional Neural
Networks on GPUs. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage & Analysis, Denver, CO, USA, 12–17 November 2017. [CrossRef]

http://dx.doi.org/10.1109/MCI.2018.2840738
http://dx.doi.org/10.1109/MSP.2017.2749125
http://dx.doi.org/10.1109/TPAMI.2017.2747134
http://dx.doi.org/10.1109/MM.2018.112130335
http://dx.doi.org/10.1109/MSP.2017.2764116
http://dx.doi.org/10.1109/CVPR.2017.19
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1109/TPAMI.2016.2578328
http://dx.doi.org/10.1016/j.jmsy.2018.01.003
http://dx.doi.org/10.1561/2000000039
http://dx.doi.org/10.1109/FPL.2016.7577308
http://dx.doi.org/10.1109/SC.2016.53

Electronics 2019, 8, 105 17 of 18

14. Ciresan, D.C.; Meier, U.; Masci, J.; Gambardella, L.M.; Schmidhuber, J. Flexible, High Performance
Convolutional Neural Networks for Image Classification. In Proceedings of the International Joint
Conference on IJCAI, Barcelona, Spain, 16–22 July 2011. [CrossRef]

15. Chang, S.Y.; Morgan, N. Robust CNN-based speech recognition with Gabor filter kernels. In Proceedings of
the Annual Conference of the International Speech Communication Association, Singapore, 14–18 September
2014; pp. 905–909.

16. Sarwar, S.S.; Panda, P.; Roy, K. Gabor filter assisted energy efficient fast learning Convolutional Neural
Networks. In Proceedings of the IEEE/ACM International Symposium on Low Power Electronics and
Design, Taipei, Taiwan, 24–26 July 2017. [CrossRef]

17. Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.; Catanzaro, B.; Shelhamer, E. Cudnn: Efficient
primitives for deep learning. Comput. Sci. 2014. [CrossRef]

18. He, L.; Li, J.; Plaza, A.; Li, Y. Discriminative low-rank gabor filtering for spectral-spatial hyperspectral image
classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1381–1395. [CrossRef]

19. Rossovskii, L.E. Image filtering with the use of anisotropic diffusion. Comput. Math. Math. Phys. 2017, 57,
401–408. [CrossRef]

20. Bovik, A.C.; Clark, M.; Geisler, W.S. Multichannel texture analysis using localized spatial filters. IEEE Trans.
Pattern Anal. Mach. Intell. 2002, 12, 55–73. [CrossRef]

21. Randen, T.; Husoy, J.H. Filtering for texture classification: A comparative study. IEEE Trans Pattern Anal.
Mach. Intell. 1999, 21, 291–310. [CrossRef]

22. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Computer Vision—ECCV
2014; Springer: New York, NY, USA, 2014; pp. 818–833.

23. Madhavi, D.; Ramesh Patnaik, M. Genetic Algorithm-Based Optimized Gabor Filters for Content-Based
Image Retrieval. In Intelligent Communication, Control and Devices. Advances in Intelligent Systems and
Computing, 2nd ed.; Singh, R., Choudhury, S., Gehlot, A., Eds.; Springer: Singapore, 2018; Volume 624,
pp. 157–164. ISBN 978-981-10-5902-5.

24. Ghodrati, H.; Dehghani, M.J.; Danyali, H. Iris feature extraction using optimized Gabor wavelet based
on multi objective genetic algorithm. In Proceedings of the International Symposium on Innovations in
Intelligent Systems and Applications, Istanbul, Turkey, 15–18 June 2011; pp. 159–163. [CrossRef]

25. Riaz, F.; Hassan, A.; Rehman, S.; Qamar, U. Texture classification using rotation- and scale-invariant gabor
texture features. IEEE Signal Process. Lett. 2013, 20, 607–610. [CrossRef]

26. Tao, L.; Hu, G.H.; Kwan, H.K. Multiwindow real-valued discrete gabor transform and its fast algorithms.
IEEE Trans. Signal Process. 2015, 63, 5513–5524. [CrossRef]

27. Bhattacharya, S.; Dasgupta, A.; Routray, A. Robust face recognition of inferior quality images using Local
Gabor Phase Quantization. Technol. Symp. 2017. [CrossRef]

28. Li, C.; Wei, W.; Li, J.; Song, W. A cloud-based monitoring system via face recognition using gabor and cs-lbp
features. J. Supercomput. 2017, 73, 1532–1546. [CrossRef]

29. Kaggwa, F.; Ngubiri, J.; Tushabe, F. Combined feature level and score level fusion Gabor filter-based multiple
enrollment fingerprint recognition. In Proceedings of the International Conference on Signal Processing,
Auckland, New Zealand, 27–30 November 2017. [CrossRef]

30. Fei, L.; Teng, S.; Wu, J.; Rida, I. Enhanced minutiae extraction for high-resolution palmprint recognition.
Int. J. Image Graph. 2017, 17, 1750020. [CrossRef]

31. Kumari, P.A.; Suma, G.J. An experimental study of feature reduction using PCA in multi-biometric systems
based on feature level fusion. In Proceedings of the International Conference on Advances in Electrical,
Putrajaya, Malaysia, 28–30 September 2017. [CrossRef]

32. Jia, S.; Shen, L.; Zhu, J.; Li, Q. A 3-D gabor phase-based coding and matching framework for hyperspectral
imagery classification. IEEE Trans. Cybern. 2017, 48, 1176–1188. [CrossRef] [PubMed]

33. Bengio, Y. Learning deep architectures for AI. Found. Trends Mach. Learn. 2009, 2, 1–127. [CrossRef]
34. Li, D. A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Trans. Signal

Inf. Process. 2014, 3, 1–29. [CrossRef]
35. Palm, R.B. Prediction as a Candidate for Learning Deep Hierarchical Models of Data; Technical University of

Denmark: Lyngby, Denmark, 2012.
36. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.

Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-210
http://dx.doi.org/10.1109/ISLPED.2017.8009202
http://dx.doi.org/10.13140/RG.2.2.20310.45128
http://dx.doi.org/10.1109/TGRS.2016.2623742
http://dx.doi.org/10.1134/S0965542517030125
http://dx.doi.org/10.1109/34.41384
http://dx.doi.org/10.1109/34.761261
http://dx.doi.org/10.1109/INISTA.2011.5946089
http://dx.doi.org/10.1109/LSP.2013.2259622
http://dx.doi.org/10.1109/TSP.2015.2455526
http://dx.doi.org/10.1109/TechSym.2016.7872699
http://dx.doi.org/10.1007/s11227-016-1840-6
http://dx.doi.org/10.1109/SCOPES.2016.7955721
http://dx.doi.org/10.1142/S0219467817500206
http://dx.doi.org/10.1109/ICAEES.2016.7888019
http://dx.doi.org/10.1109/TCYB.2017.2682846
http://www.ncbi.nlm.nih.gov/pubmed/28368844
http://dx.doi.org/10.1561/2200000006
http://dx.doi.org/10.1017/ATSIP.2014.4
http://dx.doi.org/10.1109/5.726791

Electronics 2019, 8, 105 18 of 18

37. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
38. Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet classification with deep Convolutional Neural Networks.

In Proceedings of the International Conference on Neural Information Processing Systems, Lake Tahoe, NV,
USA, 3–6 December 2012; pp. 1097–1105. [CrossRef]

39. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016.
[CrossRef]

40. Yeo, I.; Gi, S.G.; Lee, B.G.; Chu, M. Stochastic implementation of the activation function for artificial neural
networks. In Proceedings of the Biomedical Circuits & Systems Conference, Torino, Italy, 19–21 October 2017.
[CrossRef]

41. Hubel, D.H.; Wiesel, T.N. Receptive fields of single neurons in the cat’s striate cortex. J. Physiol. 1959, 148,
574–591. [CrossRef] [PubMed]

42. Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s
visual cortex. J. Physiol. 1962, 160, 106–154. [CrossRef]

43. Chen, Y.; Zhu, L.; Ghamisi, P.; Jia, X.; Li, G.; Tang, L. Hyperspectral images classification with gabor filtering
and Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2355–2359. [CrossRef]

44. Mahmoud, S.A. Arabic (Indian) handwritten digits recognition using Gabor-based features. In Proceedings
of the International Conference on Innovations in Information Technology, Al-Ain, Abu Dhabi,
15–17 December 2009. [CrossRef]

45. Palm, R.B. MATLAB/Octave Toolbox for Deep Learning. Available online: https://github.com/
rasmusbergpalm/DeepLearnToolbox/ (accessed on 1 December 2015).

46. Vedaldi, A.; Lenc, K. MatConvNet: Convolutional Neural Networks for MATLAB. In Proceedings of the 23rd
Annual ACM Conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 689–692. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/BioCAS.2016.7833826
http://dx.doi.org/10.1113/jphysiol.1959.sp006308
http://www.ncbi.nlm.nih.gov/pubmed/14403679
http://dx.doi.org/10.1113/jphysiol.1962.sp006837
http://dx.doi.org/10.1109/LGRS.2017.2764915
http://dx.doi.org/10.1109/INNOVATIONS.2008.4781779
https://github.com/rasmusbergpalm/DeepLearnToolbox/
https://github.com/rasmusbergpalm/DeepLearnToolbox/
http://dx.doi.org/10.1145/2733373.2807412
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Gabor Filters
	Convolutional Neural Network: Basics
	Combination of Gabor Filters and CNNs

	Proposed Method
	Overview of Our Method
	Improved Gabor Kernels in the First Convolutional Layer
	MPGA Optimization for Gabor Convolutional Kernels
	Fast Training Method for Gabor Convolutional Neural Networks

	Implementation and Experiment
	Energy Efficiency and Performance
	Accuracy Comparison
	Training Time Comparison
	Storage Requirement Comparison
	Effects of Iterations and Sampling Rate

	Conclusions
	References

