
electronics

Article

Soft-Decision Low-Complexity Chase Decoders for
the RS(255,239) Code

Vicente Torres 1, Javier Valls 1,∗ , Maria Jose Canet 1 and Francisco García-Herrero 2

1 Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universitat Politècnica de València,
46022 Valencia, Spain; vtorres@eln.upv.es (V.T.); macasu@eln.upv.es (M.J.C.)

2 ARIES Research Center, Universidad Antonio de Nebrija, 28040 Madrid, Spain; fgarciahe@nebrija.es
* Correspondence: jvalls@eln.upv.es; Tel.: +34-96-284-9418

Received: 17 November 2018; Accepted: 13 December 2018; Published: 21 December 2018 ����������
�������

Abstract: In this work, we present a new architecture for soft-decision Reed–Solomon (RS)
Low-Complexity Chase (LCC) decoding. The proposed architecture is scalable and can be used for a
high number of test vectors. We propose a novel Multiplicity Assignment stage that sorts and stores
only the location of the errors inside the symbols and the powers of α that identify the positions of the
symbols in the frame. Novel schematics for the Syndrome Update and Symbol Modification blocks
that are adapted to the proposed sorting stage are also presented. We also propose novel solutions
for the problems that arise when a high number of test vectors is processed. We implemented three
decoders: a η = 4 LCC decoder and two decoders that only decode 31 and 60 test vectors of true
η = 5 and η = 6 LCC decoders, respectively. For example, our η = 4 decoder requires 29% less
look-up tables in Virtex-V Field Programmable Gate Array (FPGA) devices than the best soft-decision
RS decoder published to date, while has a 0.07 dB coding gain over that decoder.

Keywords: FEC; Low-Complexity Chase; Reed–Solomon; Soft-Decision Decoding

1. Introduction

Reed–Solomon (RS) error-correction codes are widely used in communication and storage
systems due to their capacity to correct both burst errors and random errors. These codes are
being incorporated in recent 100 Gbps Ethernet standards over a four-lane backplane channel, as
well as over a four-lane copper cable [1,2], and for optical fiber cables. Generally, the main decoding
methods for RS codes are divided into hard-decision decoding (HDD) and algebraic soft-decision (ASD)
decoding. The hard-decision RS decoder architecture consists, commonly, of three main computation
blocks: syndrome computation, key equation solver and error location and evaluation. In a different
way, ASD algorithms require three main steps: multiplicity assignment (MA), interpolation and
factorization. ASD algorithms can achieve significant coding gain at a cost of a small increase in
complexity when compared with HDD. Low-Complexity Chase (LCC) [3,4] achieves the same error
correction performance with lower complexity, when compared to other Algebraic Soft-Decision
Decoding algorithms [5–7] for Reed–Solomon codes [8], like bit-level generalized minimum distance
(BGMD) decoding [9] or Kötter–Vardy (KV) [5]. The main benefit of LCC is the use of just one level of
multiplicity, which means that only the relationship between the hard-decision (HD) reliability value
of the received symbols and the second best decision is required to exploit the soft-information from
the channel. This fact has a great impact on the number of iterations and on the global complexity of
the interpolation and factorization steps [10–16] compared to KV and BGMD [17]. Another benefit
derived from having just one level of multiplicity is that the interpolation and factorization stages can
be replaced by Berlekamp–Massey decoders [18], and this results in a considerable reduction in the
total number of operations [19].

Electronics 2019, 8, 10; doi:10.3390/electronics8010010 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-9390-5022
https://orcid.org/0000-0002-6765-9219
https://orcid.org/0000-0001-6719-9681
http://www.mdpi.com/2079-9292/8/1/10?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8010010
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 10 2 of 13

Recently, Peng et al. [20] showed that the computation of the symbol reliability values can be
performed using bit-level magnitudes. They also presented implementation results for a soft-decision
decoder that includes the Multiplicity Assignment stage (MAS). On the other hand, Lin et al. [21]
proposed a decoder that reduces the complexity by relaxing the criteria for the selection of the best test
vector. The resulting decoder requires less area than decoders with worse performance.

The main contributions of the present paper are as follows. We present a novel MAS based on the
one proposed in [20], which sorts and stores less data than in that proposal. We propose also novel
implementation schematics for the Syndrome Update (SUS) and Symbol Modification (SMS) stages
that are adapted to the proposed MAS. We also propose a scalable architecture for the computation of
a high number of test vectors, therefore, it reaches high coding gain. We detail two architectures that
use two or four Key Equation Solver (KES) blocks, and follow a Gray code sequence to process the test
vectors, so the complexity of the decoder is not increased. Specifically, we present three decoders for
soft-decision RS decoding. The first is a η = 4 LCC decoder. The other two, which we call Q5 and Q6,
do not decode the complete set of 2η test vectors of η = 5 and η = 6 LCC decoders, but only a subset
of them. The proposed decoders give a solution for the problems created by using a high number of
test vectors, since, in that case, the design of the decoder is not as simple as parallelizating resources.
We present implementation results for FPGA and CMOS ASIC devices that confirm that our proposals
have lower area while they achieve higher coding gain than state-of-the-art decoders.

The organization of this paper is as follows. In Sections 2 and 3 we summarize the background
concepts about RS and LCC decoding, respectively. In Section 4 we detail the architecture for the
proposed decoders. The implementation results and comparisons are given in Section 5. Finally,
in Section 6 we present the conclusions.

2. RS Decoders

In an RS(N,K) code over GF(2m), where N = 2m−1, 2t redundant symbols are added to the
K-symbol message to obtain the N-symbol codeword C(x). After the codeword is transmitted over a
noisy channel, the decoder receives R(x) = C(x) + E(x), where E(x) is the noise polynomial.

The RS decoding process begins with the Syndrome Computation (SC) block. This block computes
the 2t syndromes Si that are the coefficients of the syndrome polynomial S(x). This is achieved
by evaluating the received polynomial in the 2t roots of the generator polynomial, specifically
Si = R(αi+1) for i ∈ {0, 1, . . . , 2t−1}, where α is the primitive element of GF(2m). The KES block
obtains the error-locator Λ(x) and the error magnitude Ω(x) polynomials by solving the key-equation
Λ(x)⋅S(x) = Ω(x) mod xN−K. The third block is the Chien Search and Error Evaluation (CSEE).
The Chien search finds the error locations, evaluating Λ(x) in all the possible positions (i.e., Λ(α−n),
for n ∈ {0, 1, . . . , N−1}) and an error evaluation method (e.g., Forney’s formula) is used to calculate
the error magnitude (e.g., En = Ω(α−n)/Λ′(α−n)) when the Chien search finds an error location,
which is whenever Λ(α−n) = 0. If the total amount of errors in R(x) does not exceed the error
correcting capability t, all the errors in R(x) are corrected subtracting the error magnitudes from the
received symbols.

3. Low-Complexity Chase Decoder

We assume that the codeword C is modulated in binary phase-shift keying (BPSK) and transmitted
over a Gaussian Noise (AWGN) channel. The LCC algorithm uses the reliability of the received
symbols in order to generate a set of test vectors that will be decoded with a HD decoder (HDD).
The reliability of a symbol is derived from the a posteriori probabilities p(C∣R), but instead, the
likelihood function, p(R∣C), can be used by applying Bayes’ Law. The reliability of the received symbol
ri is defined as Γi = log [p (ri∣yHD

i) /p (ri∣y2HD
i)], where yHD

i is the symbol with the highest probability
of being the transmitted symbol for the i-th received symbol and y2HD

i is the symbol with the second
highest probability.

Electronics 2019, 8, 10 3 of 13

The closer Γi is to zero, the less reliable ri is, since the probabilities of being yHD
i or y2HD

i the
transmitted symbol are more similar. Once Γi is computed for all the received symbols, those η symbols
with the smallest values of Γi are selected, where η is a positive integer. The LCC decoding process
creates 2η different test vectors: all the possible combinations of choosing or not y2HD

i instead of yHD
i

for those η symbols. As proposed in [20], y2HD
i is obtained by flipping the least reliable bit of yHD

i .
The Frame Error Rate performance of the RS(255,239) LCC decoder is shown in Figure 1 for

η = {1, 2, 3, 4, 5, 6}.

6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4

10−6

10−5

10−4

10−3

10−2

10−1

HD
η=1

η=2

η=3

η=4

η=5

η=6

RS(255,239)

Proposed Q6

Proposed Q5

DCD η=5

Eb/No (dB)

F
E
R

[21]

Figure 1. Frame Error Rate (FER) versus Eb/No for RS(255,239) decoders.

4. Decoder Architecture

In this section we present the architecture for three soft-decision RS(255,239) decoders. The first
decoder we present is a η = 4 LCC. The second one, which we refer to as Q5, is a quasi-η = 5
LCC: it uses all the test vectors of a true η = 5 LCC, but one. The third one, which we refer to as
Q6, is a quasi-η = 6 LCC: it uses all the test vectors of a true η = 6 LCC, but four. They are based
on a systolic KES, the enhanced parallel inversionless Berlekamp–Massey algorithm (ePiBMA) [22],
that requires 2t = 16 cycles for the computation of each frame, with low critical path: one adder (T+),
one multiplexer (Tx) and one multiplier (T*). Moreover, the selected KES requires fewer resources
than other popular options. If the computation times of the three main pipeline stages are equalized,
one KES can be used to compute 16 test vectors, for example for a η = 4 LCC decoder. For the Q5/Q6
decoders we propose the use of 2/4 KES working in parallel, which increases the decoding capability
to 32/64 test vectors.

Figure 2 shows the block diagram for the proposed Q5 decoder. The decoder is based on the
three classical blocks of a HDD: SC, KES and CSEE. Furthermore, more functional blocks are required
to manage the additional test vectors. First, the test vectors have to be created and their relevant
characteristics are stored so the rest of the blocks can process those test vectors. A tree of comparators
and multiplexers finds the least reliable bit of each symbol. The Sorting Array block, as described
below, selects the η least reliable symbols of the received frame, which are sorted and stored for later
use. The SC block computes the syndromes for the HD test vector and that information is used to
create the syndromes for the additional test vectors. Each KES is fed with the syndromes of a new test
vector each 16 cycles. The 16 Parallel Chien Polynomial Evaluation (PCPE) blocks are used to anticipate
if those test vectors will be successfully decoded in a full CSEE block. After all those computations,
the Vector Selection stage (VSS) feeds the CSEE block with the best test vector available. The vector
test selection criteria are as follows: the first vector that accomplishes that the number of errors is equal
to the order of the error-locator polynomial is the one to be decoded; otherwise, the HD test vector
is selected.

Electronics 2019, 8, 10 4 of 13

In the case of η = 4, one KES is enough to process all the test vectors and, therefore, the block
diagram is the same as in Figure 2 but without KES2, SUS2 and PCPE2. In the case of the Q6 decoder,
two more copies of each of those three blocks are required.

Min.
Finder

Synd.
Comp.

Sorting
Array

Synd.
update
#1

Synd.
update
#2

Root
Gen.

KES1

16-Par.
Chien
#1

KES2 16-Par.
Chien
#2

Vector
Select.

Chien
Forney

Symbol
Modif.

root pos

0

Bit
rel.

1
2

7

pos
rel

root
pos

root

#tv

BUFFER
HD

Figure 2. Block diagram for the Q5 decoder.

Figure 3 shows the decoding chronogram for the Q5 decoder. As can be seen, while a KES
computes a specific test vector, the corresponding SUS calculates the syndromes for the next one.
At the same time, the corresponding PCPE processes the previous test vector. The decoding of a new
frame can start every 256 cycles. In this decoder, KES2 must wait 16 cycles until the syndromes for its
first test vector (i.e., #31) are available. KES1, on the other hand, works with test vector #0 (HD) during
those cycles, since its syndromes are available. If KES2 were to compute 16 test vectors, the latency of
the decoder would increase, since the decisions in VSS would be delayed. Moreover, the complexity of
the decoder would also increase because the control logic would have to consider decisions for two
consecutive frames at the same time. Therefore, Q5 computes 31 out of the 32 possible test vectors
of a η = 5 LCC (see Figure 4a). The test vectors that are evaluated by each KES follow a Gray code
sequence. This allows the syndromes for a test vector to be easily created from the syndromes of the
previous one [19]. The total amount of required operations is reduced, since only one symbol changes
from one test vector to the next one. It should be noted that the first test vector evaluated by each
KES and the HD frame are different in just one symbol. Note that SUS2 follows the Gray sequence
in reverse order, starting with test vector #31. In Q6, for the same reasons explained above, only
16 + 15 + 15 + 15 = 61 test vectors could be decoded. Nevertheless, in order to start the computation
in all four KES with a test vector that has only one symbol difference with respect to the HD frame, we
compute test vector #31 simultaneously in two KES, as shown in Figure 4b. Therefore, Q6 computes 60
out of the 64 possible test vectors in η = 6. For the η = 4 LCC, the full 4-bit Gray sequence is decoded.
As can be observed in Figure 1, the coding gain of decoders Q5 and Q6 is close to that of true η = 5
and η = 6 decoders, respectively.

In the following subsections, we describe the blocks that are different from the ones in other
LCC decoders.

Input

Syndrome

Syndrome Update #1

Key Equation Solver #1

16-Parallel Chien Search #1

Syndrome Update #2

Key Equation Solver #2

16-Parallel Chien Search #2

Chien-Forney (Output)
256 cycles

2×256+34 cycles

Frame A Frame B Frame C
A B C

A
1

A
2

A
3

A
4

B
1

B
2

B
3

B
4◦ ◦ ◦

A
14

A
15 ◦ ◦ ◦

B
14

B
15

A
0

A
1

A
2

A
3

A
4

B
0

B
1

B
2

B
3

B
4◦ ◦ ◦

A
14

A
15 ◦ ◦ ◦

B
14

B
15

A
0

A
1

A
2

A
3

A
4

B
0

B
1

B
2

B
3

B
4◦ ◦ ◦

A
14

A
15 ◦ ◦ ◦

B
14

B
15

A
31

A
30

A
29

A
28

B
31

B
30

B
29

B
28◦ ◦ ◦

A
18

A
17 ◦ ◦ ◦

B
18

B
17

A
31

A
30

A
29

A
28

B
31

B
30

B
29

B
28◦ ◦ ◦

A
18

A
17 ◦ ◦ ◦

B
18

B
17

A
31

A
30

A
29

A
28

B
31

B
30

B
29

B
28◦ ◦ ◦

A
18

A
17 ◦ ◦ ◦

B
18

B
17

A

Figure 3. Decoding chronogram for the Q5 decoder.

Electronics 2019, 8, 10 5 of 13

(b) Q6

KES1 (16) KES2 (15)
KES3 (15)

KES4 (15)

0 1 2 1112131415161718192829303132333443444546474849505160616263

◦◦◦

◦◦◦

◦◦◦

◦◦◦

◦◦◦

◦◦◦

◦◦◦

◦◦◦

-
R
el
ia
b
il
it
y
+

(a) Q5

KES1 (16) KES2 (15)

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031-
R
el
ia
b
il
it
y
+

Figure 4. Test vectors used by the Q5 and Q6 decoders. The arrows show the processing order followed
by each KES. ∎ = 1, ◻ = 0.

4.1. Multiplicity Assignment Block

The Minimum Finder block receives the soft magnitudes of the m = 8 bits of a symbol and sorts
them according to their absolute value [20]. For each symbol of the received frame this block outputs
the hard decision value, the absolute value of the least reliable bit of the symbol and its position in the
symbol (a 3-bit value). The goal of the Sorting Array block is to provide all the information required to
create the additional test vectors. The information we need to create the test vectors is the position of
each one of these η symbols in the frame and the location of their least reliable bit inside those symbols.
In [20] both yHD

i and y2HD
i are sorted and stored for the η least reliable symbols. Nevertheless, in our

proposal, instead of sorting/storing 2η 8-bit values, we only sort/store η 3-bit values that are the
positions of the least reliable bits in the symbols. It is unnecessary to store yHD

i and y2HD
i since yHD

i
is already stored in the buffer and y2HD

i can be obtained from yHD
i if the position of its least reliable

bit, posi, is known, since yHD
i + y2HD

i = 2posi . Assuming that the reliability values are stored with g
bits, a total of (g+22)⋅η bit registers are required in our proposal, whereas in [20] (g+48)⋅η bit registers
are required.

Moreover, instead of sorting/storing the positions of the symbols in the frames, for convenience
reasons that are explained below, we sort/store the corresponding powers of α created by the Root
Generator block. Figure 5a shows the architecture of the Sorting Array block. The first row uses the
output from the Minimum Finder block to sort the symbols according to their reliability. The other
2 rows of the schematic apply the decisions adopted in the first block of their column and, therefore,
store the position of the least reliable bits inside their symbol and the location of the symbols inside the
frame. Figure 5b,d show the implementation schematic of the basic blocks in Figure 5a. The pseudocode
of the Sorting Array block is shown in Algorithm 1.

Electronics 2019, 8, 10 6 of 13

1

0
1

0

<Logic

Din

Data
shifted from

the left column

(if “shift in”=1)

new

All columns can
accept data from

the current symbol

shift
in

This cell has
to accept

shifted data

s1 s2 The first row generates
shifting commands

shift
out

c

Dout

c
shift
in s1 s2

shift
out

0 0 X 0 0
0 1 0 1 1
1 0 1 1 1
1 1 0 1 1

1

0
1

0Din
Data

shifted from
the left column

new

All columns can
accept data from

the current symbol

s1 s2 The 2nd and 3rd row
obey shifting commands

Dout

(b) Schematic of the blocks in
the first row of (a)

(d) Schematic of the blocks in
the second and third rows of (a)

(a) Organization

(c) Truth table of the
Logic block in (b)

1 2 3 η

rel.

Data from
current
symbol

Low —— Reliability —— High

pos.

root

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦
η columns

Figure 5. Schematics of the Sorting Array block. Note that the first column is different than the rest,
since “Din” and “shift in” inputs do not exist.

Algorithm 1 Pseudocode for the Sorting Array block

Input: For every symbol location i∈[0, N−1] in the frame and its bit k∈[0, m−1], the Min. Finder block

provides γi = min{∣ri,k∣} and δi = arg
k∈[0,m−1]

min{∣ri,k∣} (where ri,k are the bit-level received voltages)

begin
Step 1 Sort symbols of the frame according to γi.
Step 2 s[1∶η] = symbol locations of the η symbols with lowest γi
Step 3

for h = 1∶η // for all symbols selected in Step 2
root[h] = α−s[h] // root associated with its position in the frame
pos[h] = δs[h] // location of the least reliable bit in the symbol

end
end
Output: root,pos

4.2. Syndrome Update Block

The value to be added to the previous i-th syndrome, Sprev
i , to obtain the new i-th syndrome,

Snew
i , is:

∆Si = Snew
i − Sprev

i = ynew
j ⋅ α−j⋅i − yprev

j ⋅ α−j⋅i

= (ynew
j − yprev

j) ⋅ α−j⋅i = 2posj ⋅ α−j⋅i, (1)

where j is the position of the symbol in the frame and posj is the position of its least reliable bit.
In this work, we propose a novel architecture for SUS that takes advantage of Equation (1) and

of the fact of storing powers of α to indicate the positions of the least reliable symbols in the frame
instead of their positions itself. Figure 6a shows the schematic of this block. The root multiplexer
outputs α−j (selected from root1–rootη). The pos multiplexer outputs posj (selected from pos1–posη).
Both values are changed each 16 clock cycles. The shift block scales by 2posj and the Reduction Modulo

Electronics 2019, 8, 10 7 of 13

block computes the modular reduction to the primitive polynomial of the Galois Field. One syndrome
is updated each clock cycle. For the first 16 clock cycles, the HD syndromes are used to compute the
new syndromes. After that, the syndromes are computed from the syndromes of the previous test
vector. The pseudocode of the Syndrome Update block is shown in Algorithm 2.

(a) Schematic of the Syndrome Update block.

1

α−i·j
root1

◦
◦
◦rootη

α−j

shift

pos1
◦
◦
◦posη

Reduc.
Mod.

Sprevi

∆Si S
new
i

HD
Synd.

0

2t−1

2t−1

◦ ◦ ◦

◦
◦
◦

◦
◦
◦

Snewi

Synd. of
current test

vector

0
1

Previous test vector synd.

clock cycles ∈ [17, 240]

Hard-decision synd.

clock cycles ∈ [1, 16]

(b) Schematic of the Vector Selection Block for the Q5 decoder.

KES1

KES2

HD

to CSEE

Control
#tv to Symbol

Modific.16-P Pol. Eval #2
16-P Pol. Eval #1

(c) Schematic of the Symbol Modification block

Root Gen.

pos1root1
0

= eq1

pos2root2
0

= eq2

posηrootη
0

=
eqη

LUT
2x

2pos

LUT > 0
tv 6= HD

#tv (from Vector Selection block)

η-bit Gray Code

eq1
eq2

eqη

yHDi − y2HDi

◦
◦
◦

◦
◦
◦

◦
◦
◦

◦
◦
◦

Figure 6. Schematics for different blocks of the proposed decoders.

Electronics 2019, 8, 10 8 of 13

Algorithm 2 Pseudocode for the Syndrome Update block

Input: root and pos from the Sorting Array block, and hard-decision syndromes SHD from the
Syndrome Computer

begin
for all the test vectors (tv) assigned to this block

h=index in root of the symbol that is different from previous tv
factor = root[h] // root[h]=α−j

pos = pos[h]
for i = 1 ∶ 2t // for all the syndromes

if tv = first test vector (one with 1 symbol change from HD)
Sprev[i] = SHD[i]

end
Snew[i] = Sprev[i] + 2pos ⋅ factor // factor=α−j⋅i
Sprev[i] = Snew[i]
factor = factor ⋅ root[h]

end
Output: Snew // 2t syndromes for the current test vector

end
end

4.3. Vector Selection Block

This block selects the test vector whose KES output feeds the CSEE block. The decision depends
on whether the number of errors found by the PCPE block matches the order of the error-locator
polynomial. Since the latency of the PCPE block is 21 (which is greater than the latency of the KES),
VSS requires that the KES output from the previous test vector is still available. Therefore, for each
KES in the decoder, two sets of registers are required to store the current and the previous test vectors.
On the other hand, since the decision to feed the CSEE block with HD may be delayed beyond the
moment a new frame is being received (see Figure 3), the KES output for HD requires also two sets of
registers to save the current and the previous frames. VSS also outputs the identification number of the
test vector that is selected. The schematic for the VSS of the Q5 decoder is shown in Figure 6b. For the
η = 4 LCC the schematic is similar, but there is neither KES2 nor a second polynomial evaluation
block. In the case of the Q6 decoder, more registers should be added for the storage of the KES3 and
KES4 outputs, just as shown in Figure 6b for KES2.

4.4. Symbol Modification Block

In an HDD, the corrected frame is created from the received frame and the error information.
but in a LCC decoder, the error information is not related to the received frame, but to the selected test
vector. Therefore, in order to create the corrected frame, first it is necessary to create the test vectors
from the received frame (the HD symbols, which are stored in the buffer). The architecture we propose
for this block is shown in Figure 6c. The multiplexers select the symbols that have to be changed
according to the Gray code. When the output of the Root Generator matches one of the outputs of a
multiplexer, the pattern required to change that symbol is obtained from the position of the bit to be
changed inside the symbol. The pattern obtained in the Symbol Modification block is added to the HD
symbol (from the buffer) and to the error magnitude (from CSEE) to correct the corresponding symbol
(see Figure 2). The pseudocode of the Symbol Modification block is shown in Algorithm 3.

Electronics 2019, 8, 10 9 of 13

Algorithm 3 Pseudocode for the Symbol Modification block

Input: root and pos from the Sorting Array block, and
ntv = number of the selected test vector (tv) from Vector Selection block

begin
for h=1∶η

root[h]=0 if the symbol associated with that root is not changed
end
for i=1∶N // for all the symbols in the frame

d[i] = 0
for h=1∶η // compare with the η roots

if (ntv<>0)&(α−i= root[h]) // no changes if HD is selected
d[i] = 2pos[h]

end
end

end
end
Output: d // differences between yHD

i and y2HD
i for the selected tv

5. Implementation Results

The proposed architectures for the η = 4 LCC, Q5 and Q6 decoders were implemented on an
eight-metal layer 90 nm CMOS standard-cell technology with Cadence software and also in a Xilinx
Virtex-V and Virtex-7 ultrascale FPGA devices with ISE and Vivado software, respectively. The chip
layout of the proposed η = 4 LCC decoder in ASIC is shown in Figure 7.

DecoderDecoder

BufferBuffer

Figure 7. Chip layout of the proposed η = 4 LCC decoder.

In Figure 8, we compare the gate count (#XORs) and coding gain of the proposed decoders
with the results from state-of-the-art soft-decision RS(255,239) decoders, specifically η = {3, 4, 5} LCC
based on HDD (ZHA) [19], Factorization-Free decoder (FFD) [23] and Interpolation-Based decoder
(IBD) [24]. As can be seen, our decoders improve the ratio coding gain versus area, when compared
with other decoders.

Table 1 shows the detailed gate count in ASIC (given in number of XORs) of the different blocks
of the three proposed decoders.

Electronics 2019, 8, 10 10 of 13

10 20 30 40 50

0.4

0.5

0.6
Ours Q5

Ours η=4

ZHA
FFDDCD IBD

Ours Q6

ZHA

ZHA

? �4 •
?

?

XORs (·103)

C
od

in
g

G
ai

n
(d

B
)

∎ Ours
⋆ ZHA [19]
△ DCD [21]
◇ FFD [23]
● IBD [24]

Figure 8. Coding gain at FER = 10−6 versus implementation cost (#XORs) for ASIC devices. Note: data
from the decoders labeled as ZHA [19], FFD [23] and IBD [24] are estimations and do not include the
multiplicity assignment stage.

Table 1. Gate count (#XORs).

Block Q6 Q5 η = 4

Root Generator 55 54 55
Minimum Finder 597 596 596
Sorting Array 619 506 407
Syndrome Update 3373 1681 830
Vector Selection 3911 2387 1626
Symbol Modification 304 269 219
Syndrome Computer 1538 1538 1538
KES 15,717 7906 3937
Polynomial Evaluation 9054 4493 2242
CSEE 1664 1665 1665
Others 2480 1852 1528

Decoder (without BUFFER) 39,312 22,947 14,643
BUFFER 12,289 12,281 12,282

Total gate count (#XOR) 51,601 35,228 26,925

Tables 2 and 3 compare, for the same RS code, our proposals and state-of-the-art published
decoders, for ASIC and FPGA devices, respectively. On the one hand, Table 2 compares our decoders
with [21], the only decoder, to the best of our knowledge, that provides complete implementation
results in ASIC, and also with [20]. On the other hand, Table 3 compares our decoders with [20],
the only decoder, to the best of our knowledge, that provides complete implementation results in a
Virtex-V FPGA device. As can be seen in Table 2, our η = 4 LCC decoder requires 41% fewer gates in
ASIC than [21], whereas it has a 0.07 dB improvement in coding gain at FER = 10−6 compared to this
decoder. Furthermore, our Q5 decoder has a gate count similar to [21], but has 0.14 dB advantage in
coding gain at FER = 10−6. On the other hand, the comparison with [20] is not that straightforward,
due to differences in the technology used and the lack of gate count. Nevertheless, the reduction in
area is clear when using the same Virtex-V FPGA device. As shown in Table 3, in this case, our η = 4
LCC decoder reduces the LUT count in [20] about 29 %. Moreover, Ref. [20] has lower coding gain,
since this is a η = 3 LCC decoder. Our decoder η = 4 LCC has similar area to the η = 3 LCC decoder
in [19], but it should be noted that [19] does not include the multiplicity assignment stage.

In regard to latency and throughput results, as can be seen in Tables 2 and 3, our decoders
reach 450 MHz thanks to the low critical path, which is T* + T+ + Tx. The throughput of our η = 4
LCC and Q5 decoders in ASICs is 255 × 8 × 450 × 106/256 = 3.58 Gb/s. Since the decoder from [21]
has longer critical path and higher computational latency than our decoders (259 versus 256 cycles),
the potential throughput that it can achieve is slightly lower than ours. On the other hand, since the
decoders from [19,20] have the same critical path as ours but slightly higher computational latency
than ours (275 versus 256 cycles), it is expected that our throughput is slightly higher: 1.3 Gb/s versus
1.0 Gb/s [20], for the same FPGA device, as can be seen in Table 3. Additionally, the proposed decoders

Electronics 2019, 8, 10 11 of 13

have a latency of 546 cycles, whereas the DCD [21] requires 777 cycles and the decoders from [19,20]
require 550 clock cycles plus the pipeline.

Table 2 also shows chip area and consumption details for the proposed decoders. Our consumption
data are obtained with the Static Power Analysis tool of the Encounter software from Cadence. It should
be noted that the proposed decoders are implemented with different Standard-Cell libraries, number
of metal layers and supply voltage compared to [21]. For comparison purposes, we also implemented
an η = 4 LCC decoder optimized for area and working at 320 MHz (the same clock frequency as
the decoder in [21]). For that implementation, the chip area is 0.268 mm2 and the estimated power
consumption is 21.3 mW, which are similar to those of the decoder in [21].

Table 2. Implementation results of RS decoders in CMOS ASICs.

RS(255,239) Ours Q6 Ours Q5 Ours η = 4 LCC η = 5 DCD [21] η = 3 LCC [20]

Process (nm) @ Supply Volt. (V) 90@1.2 90@1.2 90@1.2 90@0.98 130@-
Chip area (mm2)/# Metal layers 0.632/8 0.435/8 0.336/8 0.216/9 0.332/-
Gate ct. (kXOR) no/with buffer 39.3/51.6 22.9/35.2 14.6/26.9 22.5/45.3 -/-
Frequency (MHz) 446 * 450 * 450 * 320 † 220
Throughput (Gb/s) 3.55 3.58 3.58 2.56 1.6
Latency (clock cycles) 256 × 2 + 34 256 × 2 + 34 256 × 2 + 34 259 × 3 275 × 2 §

Power consumpt. (mW@MHz) 62.2@446 ‡ 32.1@450 ‡ 28.8@450 ‡ 19.6@320 † -
Coding gain (dBs@FER) 0.60@10−6 0.52@10−6 0.45@10−6 0.38@10−6 0.37@10−6

Critical path T* + T+ + Tx T* + T+ + Tx T* + T+ + Tx 2T* + 2T+ + Tx T* + T+ + Tx

* Post-layout result. † Measurement. ‡ Estimated. § Does not include latency from MAS, SMS and Chien-Forney stages.

Table 3. Implementation results of RS decoders in a Virtex-V XC5vlx50t-3 FPGA device.

RS(255,239) Ours Q6 Ours Q5 Ours η = 4 LCC η = 3 LCC [20] η = 3 LCC [19]

LUTs 16,049 8914 5246 7377 5470 *
Registers 6362 3966 2729 3380 2230 *
Frequency (MHz) 166.7 166.7 166.7 134 149.5
Throughput (Gb/s) 1.3 1.3 1.3 1.0 1.1
Latency (clock cycles) 256 × 2 + 34 256 × 2 + 34 256 × 2 + 34 275 × 2 § 275 × 2 §

Coding gain (dBs@FER) 0.60@10−6 0.52@10−6 0.45@10−6 0.37@10−6 0.37@10−6

Critical path T*+ T++ Tx T*+ T++ Tx T*+ T++ Tx T*+ T++ Tx T*+ T++ Tx

* Does not include the MAS. § Does not include latency from MAS, SMS and Chien-Forney stages.

More up-to-date FPGA device implementation results are shown in Table 4. As can be seen, in this
technology our decoders reach 2.5 Gb/s.

Table 4. Implementation results of RS decoders in a Virtex-7 FPGA devices.

RS(255,239) Ours Q6 Ours Q5 Ours η = 4 LCC

LUTs 13,343 7372 4227
Registers 7223 4480 3083
Frequency (MHz) 312.5 312.5 312.5
Throughput (Gb/s) 2.5 2.5 2.5

It should be noted that in the comparison with state-of-the-art decoders, the coding gain
performance of other decoders [19–21] is that of an η = 3 LCC decoder. The decoders we propose are
the first ones that use 16 or more test vectors with their full-decoding capabilities. Zhang et al. [19]
give estimation results for η = 4 and η = 5 using their architecture: 19,594 and 32,950 XOR gates,
respectively. The hardware requirement of the decoder is reduced to 14,643/19,594 = 75% and
22,947/32,950 = 70%, respectively. On the one hand, it should be noted that their estimation does
not include the Multiplicity Assignment nor the Symbol Modificaction stages. On the other hand,
these authors estimate the cost of the η = 5 LCC decoder assuming that the design of this decoder

Electronics 2019, 8, 10 12 of 13

only requires the parallelization of specific resources (i.e., syndrome update, Key Equation Solver
and polynomial evaluation), but, in the case of η = 5 and η = 6, the use of a Gray code sequence
in the decoding process is not straightforward. We propose a solution for this issue in the present
work. Moreover, when a decoder has to process 32 or 64 test vectors by using 2 or 4 processing units
in parallel, respectively, part of these units would have to process their last test vector while the
processing of the next frame has already started (see Figure 3). Processing those last test vectors would
imply that the latency of the decoder increases and that a considerable amount of registers are required
to concurrently process data from two frames. In the present work we propose a solution for this
problem that still profits from the use of a Gray code processing sequence.

6. Conclusions

In this work, we present three soft-decision Reed–Solomon LCC decoders for η = 4, quasi-η = 5
and quasi-η = 6 that are based on HD decoding. The Frame Error Rate coding gains of the proposed
decoders are 0.45, 0.52 and 0.60 at FER = 10−6 compared to hard-decision decoding, which are higher
than those of previously published LCC decoders. The proposed architecture is easily scalable
and is based on a simplification of the Multiplicity Assignment stage. We present also detailed
implementation schematics for those computational blocks that are different from conventional
implementations. In the present work we propose novel solutions for decoders that use a high
number of test vectors, problems that go beyond the simple parallelization of resources. We present
implementation results in ASIC and FPGA devices for the three decoders. The results show, for
example, that our η = 4 decoder, which has a 0.07 higher coding than the best η = 3 decoder published
to date, requires 41% less area and 29% less LUTs, in ASIC and FPGA, respectively, than the η = 3
decoder. This results are achieved without spoiling the throughput nor the latency of the decoder.

Author Contributions: Conceptualization, J.V.; All authors have equally contributed to the methodology,
implementation of the models, validation, and writing the original draft.

Funding: This research was funded by the Spanish Ministerio de Economía y Competitividad and FEDER grant
number TEC2015-70858-C2-2-R.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cideciyan, R.D.; Gustlin, M.; Li, M.P.; Wang, J.; Wang, Z. Next Generation Backplane and Copper Cable
Challenges. IEEE Commun. Mag. 2013, 51, 130–136. [CrossRef]

2. Perrone, G.; Valls, J.; Torres, V.; García-Herrero, F. Reed–Solomon Decoder Based on a Modified ePIBMA for
Low-Latency 100 Gbps Communication Systems. Circuits Syst. Signal Process. 2018. [CrossRef]

3. Bellorado, J. Low-Complexity Soft Decoding Algorithms for Reed–Solomon Codes. Ph.D. Thesis, Harvard
University, Cambridge, MA, USA, 2006.

4. Chase, D. Class of Algorithms for Decoding Block Codes with Channel Measurement Information.
IEEE Trans. Inf. Theory 1972, 18, 170–182. [CrossRef]

5. Koetter, R.; Vardy, A. Algebraic Soft-Decision Decoding of Reed–Solomon Codes. IEEE Trans. Inf. Theory
2003, 49, 2809–2825. [CrossRef]

6. Sudan, M. Decoding of Reed–Solomon Codes beyond the Error-Correction Bound. J. Complex. 1997, 13,
180–193. [CrossRef]

7. Guruswami, V.; Sudan, M. Improved Decoding of Reed–Solomon and Algebraic-Geometry Codes.
IEEE Trans. Inf. Theory 1999, 45, 1757–1767. [CrossRef]

8. Blahut, R.E. Theory and Practice of Error Control Codes; Addison-Wesley: Reading, MA, USA, 1983.
9. Jiang, J.; Narayanan, K.R. Algebraic Soft-Decision Decoding of Reed–Solomon Codes Using Bit-Level Soft

Information. IEEE Trans. Inf. Theory 2008, 54, 3907–3928. [CrossRef]
10. Gross, W.J.; Kschischang, F.R.; Koetter, R.; Gulak, R.G. A VLSI Architecture for Interpolation in Soft-Decision

List Decoding of Reed–Solomon Codes. In Proceedings of the IEEE Workshop on Signal Processing Systems,
San Diego, CA, USA, 16–18 October 2002; pp. 39–44.

http://dx.doi.org/10.1109/MCOM.2013.6685768
http://dx.doi.org/10.1007/s00034-018-0938-x
http://dx.doi.org/10.1109/TIT.1972.1054746
http://dx.doi.org/10.1109/TIT.2003.819332
http://dx.doi.org/10.1006/jcom.1997.0439
http://dx.doi.org/10.1109/18.782097
http://dx.doi.org/10.1109/TIT.2008.928238

Electronics 2019, 8, 10 13 of 13

11. Zhu, J.; Zhang, X.; Wang, Z. Backward Interpolation Architecture for Algebraic Soft-Decision Reed–Solomon
Decoding. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2009, 17, 1602–1615.

12. Zhu, J.; Zhang, X. Efficient VLSI Architecture for Soft-Decision Decoding of Reed–Solomon Codes. IEEE Trans.
Circuits Syst. I Regul. Pap. 2008, 55, 3050–3062.

13. Wang, Z.; Ma, J. High-Speed Interpolation Architecture for Soft-Decision Decoding of Reed–Solomon Codes.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2006, 14, 937–950. [CrossRef]

14. Zhang, X. Reduced Complexity Interpolation Architecture for Soft-Decision Reed–Solomon Decoding.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2006, 14, 1156–1161. [CrossRef]

15. Zhang, X.; Parhi, K.K. Fast Factorization Architecture in Soft-Decision Reed–Solomon Decoding. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 2005, 13, 413–426. [CrossRef]

16. Zhang, X.; Zhu, J. Hardware Complexities of Algebraic Soft-Decision Reed–Solomon Decoders and
Comparisons. In Proceedings of the 2010 Information Theory and Applications Workshop (ITA), San Diego,
CA, USA, 31 January–5 February 2010; pp. 1–10.

17. Bellorado, J.; Kavcic, A. Low-Complexity Soft-Decoding Algorithms for Reed–Solomon Codes—Part I:
An Algebraic Soft-In Hard-Out Chase Decoder. IEEE Trans. Inf. Theory 2010, 56, 945–959. [CrossRef]

18. García-Herrero, F.; Valls, J.; Meher, P.K. High-Speed RS(255,239) Decoder Based on LCC Decoding.
Circuits Syst. Signal Process. 2011, 30, 1643–1669. [CrossRef]

19. Zhang, W.; Wang, H.; Pan, B. Reduced-Complexity LCC Reed–Solomon Decoder Based on Unified Syndrome
Computation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2013, 21, 974–978. [CrossRef]

20. Peng, X.; Zhang, W.; Ji, W.; Liang, Z.; Liu, Y. Reduced-Complexity Multiplicity Assignment Algorithm and
Architecture for Low-Complexity Chase Decoder of Reed–Solomon Codes. IEEE Commun. Lett. 2015, 19,
1865–1868. [CrossRef]

21. Lin, Y.M.; Hsu, C.H.; Chang, H.C.; Lee, C.Y. A 2.56 Gb/s Soft RS(255,239) Decoder Chip for Optical
Communication Systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 2110–2118. [CrossRef]

22. Wu, Y. New Scalable Decoder Architectures for Reed–Solomon Codes. IEEE Trans. Commun. 2015, 63,
2741–2761. [CrossRef]

23. Zhu, J.; Zhang, X. Factorization-Free Low-complexity Chase Soft-Decision Decoding of Reed–Solomon
Codes. In Proceedings of the 2009 IEEE International Symposium on Circuits and Systems, Taipei, Taiwan,
24–27 May 2009; pp. 2677–2680.

24. Garcia-Herrero, F.; Canet, M.J.; Valls, J.; Meher, P.K. High-Throughput Interpolator Architecture for
Low-Complexity Chase Decoding of RS Codes. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2012,
20, 568–573. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TVLSI.2006.884046
http://dx.doi.org/10.1109/TVLSI.2006.884177
http://dx.doi.org/10.1109/TVLSI.2004.842914
http://dx.doi.org/10.1109/TIT.2009.2039073
http://dx.doi.org/10.1007/s00034-011-9327-4
http://dx.doi.org/10.1109/TVLSI.2012.2197030
http://dx.doi.org/10.1109/LCOMM.2015.2477495
http://dx.doi.org/10.1109/TCSI.2014.2298282
http://dx.doi.org/10.1109/TCOMM.2015.2445759
http://dx.doi.org/10.1109/TVLSI.2010.2103961
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	RS Decoders
	Low-Complexity Chase Decoder
	Decoder Architecture
	Multiplicity Assignment Block
	Syndrome Update Block
	Vector Selection Block
	Symbol Modification Block

	Implementation Results
	Conclusions
	References

