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Abstract: Renewable energy sources are integrated into a grid via inverters. Due to the absence
of an inherent droop in an inverter, an artificial droop and inertia control is designed to let the
grid-connected inverters mimic the operation of synchronous generators and such inverters are called
virtual synchronous generators (VSG). Sudden addition, removal of load or faults in the grid causes
power and frequency oscillations in the grid. The steady state droop control of VSG is not effective
in dampening such oscillations. Therefore, a new control scheme, namely bouncy control, has been
introduced. This control uses a variable emergency gain, to enhance or reduce the power contribution
of individual VSGs during a disturbance. The maximum power contribution of an individual VSG
is limited by its power rating. It has been observed that this control, successfully minimized the
oscillation of electric parameters and the power system approached steady state quickly. Therefore,
by implementing bouncy control, VSGs can work in coordination to make the grid more robust.
The proposed controller is verified through Lyapunov stability analysis.

Keywords: virtual synchronous generator (VSG); parallel VSGs; lyapunov stability analysis;
optimization; multiple VSGs coordination; island microgrid; reliability

1. Introduction

With the increases in the growth of renewable energy sources (RES)-based distributed
generators (DG), the parallel connection of DG sources to form a microgrid has emerged as a
commercially and technically feasible solution. A microgrid usually comprises of multiple DGs
of different types, such as renewable energy sources (RES), non-renewable energy source and energy
storage system (ESS). RES are dependent on the environmental condition and are usually uncontrollable
(or offer marginal control), and therefore the presence of controllable sources is necessary for the steady
operation of a microgrid. A centralized control called an energy management system (EMS) controls
all the parallel operating DGs in microgrid; based on the electrical parameters of grid. EMS can be
operated in a grid-connected microgrid as well as in an island-mode microgrid.

There are two main types of microgrid control: (i) control via communication, a centralized
control that has comparatively a slower response (e.g., secondary or tertiary control); and (ii) control
not requiring communication, a decentralized control that offers faster response toward any change
in active and reactive power of a microgrid (e.g., primary control). [1–4]. The hierarchical control
structure to normalize the operation of an islanded alternating current (AC) microgrid experiencing
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communication link failures is presented in [5]. In a microgrid, a droop control is normally used as
a primary control due of its decentralized nature. It provides a firm coordination between multiple
DGs operating in parallel. Different types of droop control are discussed in literature e.g., P-ω, P-V,
Q-V, etc. [6–9].A drawback of droop control is a lack of inertia. In a conventional power system, a main
source of electricity is a synchronous generator (SG), which has an inherent droop and inertia control
that helps to synchronize multiple synchronous generators and share a real and reactive power equally
among them. Moreover, because of its inherent inertia, it brings a system back to its steady state
quickly after any disturbance.

The control of inverter which resembles the characteristics of synchronous generator, in terms
of real and reactive power sharing ability and droop-control, was first proposed in [10], and was
further developed for parallel inverters in [7]. The virtual synchronous generator (VSG) was first
proposed in [11], because of its capability to stabilize using virtual rotational inertia; along with a
droop control. The inverter control strategies that mimic synchronous generator have been presented
as virtual synchronous generator [12], followed by virtual synchronous machines (VSM) in [13],
virtual synchronous machine (VISMA) in [14], and synchronverter in [15].

However, VSG still has some weaknesses compared to synchronous generator due to its
inappropriate sharing of active and reactive transient power (unsuitable coordination) and the lack
of overload capability to ride through large oscillations that can cause severe oscillation problem at
the time of disturbance in a microgrid [16]. A VSG control technique based on Hamilton approach is
introduced to enhance the robustness of a system in [17].The alternate moment of inertia is a technique
that uses different inertia coefficient to increase the damping of a system during oscillation [18],
the smaller inertia is used to enhance the dynamic response of an inverter [19], the proper increase in
damping ratio by observing the derivative of power, reactive power, voltage and the phase difference
to solve the output power oscillation presented in [20], the power oscillation is damped by using a
virtual stator reactance in [16], and sharing transient load by using the generator emulation method
presented in [21] are a few techniques to address this issue.

• Microgrid isolation

A microgrid is designed to operate in two basic modes: (i) island mode, and (ii) grid-connected
mode. The transition to an island-mode or isolated microgrid can take place suddenly i.e., unscheduled
or according to a schedule. In the scheduled transition, the main grid controller give a signal to a
microgrid. This type of transition is relatively safe because of prior information of a disturbance.
When a fault appears at the grid; that goes beyond the protection limits of a microgrid, then a
microgrid opens the circuit breaker (CB) ‘1’ in Figure 1 to isolate itself from the main fault zone in
a grid. It is an unscheduled type of transition (from grid-connected to island mode) and it can cause
severe disturbance. The proper protection and control measures are needed to safeguard a power
system under such disturbances.

Microgrids are designed to operate in island mode under the standards defined in IEEE-1547.4.
The local loads within an island mode microgrid operate from the distributed generators DGs.
These DGs can be RES, fuel generators, and energy storage batteries. The standards in IEEE-1547.4
suggest that a microgrid should be able to support its local loads, when any contingency happens at a
main grid or it should have a proper plan of load-shedding; in terms of critical or non-critical load,
when microgrid generation is not sufficient to support its local loads. An island microgrid
is usually sensitive toward any change because it does not have grid support to counter any
disturbance. Therefore, the change in load or any similar operation that causes transient behavior in an
island-microgrid must be keenly observed and countermeasures must be taken to alleviate disturbance.
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Figure 1. Transition to island microgrid.

At the time of loading, unloading, or a fault, the oscillation in power and frequency of VSG
arises that may lead to instability of an overall system or even termination in a worst case situation.
The stabilization of VSG is evaluated on the basis of its ability to eliminate oscillations from the
microgrid. The oscillation improvement by considering the droop coefficient has been done by our
research group in [22]. The angular frequency of VSG is considered for varying J and D in previous
research. VSG utilizes a phase locked loop (PLL) technique to obtain frequency and phase of grid for
the sake of synchronization [23].

In this research, a new parameter ‘emergency gain’ is introduced to dampen the oscillation of VSG
during an emergency condition. The equation is derived to show the dependency of a parameter on a
derivative of angular frequency. The final swing equation for the additional parameter is also presented.
A ‘bouncy control algorithm’ is designed to define the variable values of emergency gain; it enhances
the stability of a microgrid. It basically improves the transient time by varying the dependence of
change in power on the VSG. The control is designed, such that ∆P and δP (derivative of change
in power) are influencing the sensitivity of VSG power during the recovery. Lyapunov stability analysis
is implemented to show the effectiveness of the scheme [18,24,25]. The energy function of synchronous
generator is built within a simulation to investigate the disturbance in a system. This technique can be
also be implemented to improve the coordination of VSGs that are operating as a source or a load in
an island microgrid; developed in [26,27].

The basic operation of a VSG is presented in Section 2. The emergency power control and its sub
sections: (a) bouncy control, and (b) Lyapunov stability analysis are presented in Section 3. In Section 4,
experiments and results are described. The conclusion of this work is presented in Section 5.

2. Basic Operation of Virtual Synchronous Generator (VSG)

The block diagram of VSG control is shown in Figure 2. The control is designed in the
dq-axis. The reference rotational frequency of the dq-axis is ‘ωo’ in an isolated system, while in
a grid-connected VSG, it adopts the rotational frequency of the grid. The double voltage current
controller is used in this VSG control system. The basic second order swing equation for VSG control
is shown in Equation (1). It has two parts: (i) a mechanical part, which controls the rotor motion by
using P−ω control, and (ii) an electrical part, which control the stator voltage by using Q−V control.

J
∂(ω−ωg)

∂t
=

Pre f − Pe

ω
− D(ω−ωg) (1)

Ere f = E + I(ra + jxa) (2)
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where Pre f is the reference power provided by the governor, Pe is the measured output power, D is
the droop coefficient, J is the virtual inertia, ω is the virtual angular frequency of VSG, and ωg is the
angular frequency of the grid or power common coupling (PCC). Pre f

∗ is the maximum instantaneous
power by VSG source. ‘E’ is the excitation electromotive force and ‘I’ is the stator current. ‘ra’ and ‘xa’
are a resistance and a reactance of stator winding in synchronous generator.

ω = ωre f − Dp(P− Pre f )

u = ure f − Dq(Q−Qre f )
(3)
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Figure 2. Angular frequency and active power control of a virtual synchronous generator (VSG).

Equation (2) shows the basic active power and angular frequency (P−ω), and reactive power
and voltage (Q−V) droop control equations.

The simplified active and reactive power controls of VSG are shown in Figures 2 and 3 respectively.
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3. Emergency Power Control Scheme

The VSG system is designed in the dq-axis, while considering the angular frequency of the grid
and the dq-axis are same. The intention of using the dq-axis is to separate the effects of active and
reactive power. The 3-Φ voltages and currents are first measured in abc-axis. After converting them
into dq-axis, power and frequency are measured. The change in power and frequency is detected
for the selection of Ge & Jx. VSG gives V and θ at its output, which in turns generate pulse width
modulation (PWM) after passing through voltage and current loop control. The overall control of grid
connected VSG is displayed in Figure 4.
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The coordination of multiple sources in a microgrid is a critical issue because of different power
rating, inertia and droop ratio. The response of different sources is not the same, for example;
the response of a synchronous generator is much slower than that of a VSG-based inverter controller.
In the same way, the dynamic response of two VSG controllers connected in parallel is not identical;
mainly because of droop and inertia, and therefore it is necessary to limit the response of a speedier
source that approaches to its rated power sooner. This strategy has an ability to provide a protection to
a swiftly responding source, whereas force other sources to response faster to bring equilibrium to
the system.

The emergency power controller is designed such that the recovery time speeds up or slows
down to stabilize a microgrid. The change in power during transition time along with the VSG control
parameters decide the response of a VSG, which in turn define the stability of a system. In any control
of a power system, the electric parameters strive to maintain their stable point during normal operation
and return to a stable state after any disturbance. In the view of above consideration, the input
parameters of VSG i.e. the change in active power ‘∆P’ and the derivative of the active power ‘δP’
(equal to dP/dt), is used to stabilize a microgrid; without altering the control parameters (e.g., inertia
and droop coefficient) of the VSG control.

The active power tries to approach its stable point after any disturbance. In VSG control,
droop coefficient usually defines the static stability, whereas the dynamic stability is dependent
on both droop coefficient and inertia. Hence, P-ω droop control defines the new stable point of VSG
electric parameters, such as power and angular frequency. The angular frequency is considered as a
measure of the stability of the VSG, and therefore, to improve the stability of a VSG or a microgrid,
the angular frequency stability needs to be enhanced.

3.1. Bouncy Control

A bouncy control is designed to assist the stability of VSG during overload/emergency condition
as shown in Figure 5. It offers two properties: (a) speed-up the response of a power delivery;
by increasing the sensitivity of VSG on a system for a definite time (emergency) when the drop
in angular frequency is not a problem; (b) slow-down the response of VSG toward any change when a
minimal angular frequency variation is needed.
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Figure 5. Emergency control of VSG.

A control strategy of VSG is design to handle a disturbance or a fault that appears in a VSG-based
microgrid. Bouncy control supports the stability of VSG by enhancing the power quality via changing
the power transition time (fast or slow; based on condition).

The power acceleration is the situation when the power goes away from stable (or reference) point
after any disturbance, while power decelerating is a curve of the power approaching toward the stable
condition. Four operation modes are defined by considering the ∆P and δP in Table 1. In this research,
we are only considering the case when the power exceeds its rated power, and therefore, the gains for
∆P less than zero (or measured power P greater than Pre f ) are set to ‘1’.

Table 1. Bouncy control of gain selector.

∆P (P-Pref) d(P)/dt Slope Ge

∆P> 0 d(P)/dt<0 Decelerating Gde
∆P> 0 d(P)/dt>0 Accelerating Gac
∆P< 0 d(P)/dt<0 Accelerating 1
∆P< 0 d(P)/dt>0 Decelerating 1

In bouncy control, the effect of power error is amplified/reduced at the time of disturbance.
(a) amplifying error: In amplifying ∆P, the decelerating gain ‘Gde’ has more influence on a system as
compared to the accelerating gain ‘Gac’ because the time of Gac is very small. When the decelerating
gain ‘Gde’ is greater than 1 then it increases the sensitivity of power difference (P− Pre f ), and therefore,
VSG tries to reach the power reference faster than before and speeds up the recovery time. At the
normal condition, both gains Gac and Gde remain at ‘1’. (b) reducing error: When a VSG is connected
in parallel with other VSGs, then in this case, reducing the response of an individual VSG (crossing its
rated limit) can enhance the stability of an overall microgrid. In reducing ∆P, both accelerating and
decelerating gains should be provided with a value less than ‘1’ to slow down the response.

When the power error goes higher from Pre f , bouncy control is activated. Once the control starts,
it remains active until the power returns to its reference value (or new stable value). The bouncy
control equation of an emergency condition is given in Equations (3)–(6). Our focus remains on Gde as
it has significant dependence on the settling time. In contrast, Gac has comparatively less significance
on it.

Ge× (Pre f − Pmeas) = ∆P× Ge (4)

The conventional swing equation of VSG control in Equation (1) is changed after implementing
bouncy control, such that the ∆P is increasing or decreasing by factor Gde and Gac during the time
of power deceleration and acceleration respectively. Ge is the general term for an emergency gain
(Gac & Gde).

J
∂(ω−ωg)

∂t
=

Ge× (Pre f − Pe)

ω
− D(ω−ωg) (5)
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The relationship of the old and new (after adding a new parameter in control) derivative of
the change in frequency is derived to show the dependence of a newly introduced parameter in
Equation (6). It can be seen from Equation (6), when the value of ‘x’ is set to ‘1’ then the VSG works

normally. To reduce the response of
•

δω1, the value of ‘x’ regulate to less than ‘1’, which makes the

second part of Equation (6) negative and eventually reduces
•

δω1x. When the value of ‘x’ is greater than

‘1’ then it makes a second term positive, and therefore the response of
•

δω1x increases as compared

to
•

δω1. Hence, it speeds-up the recovery time.

J1
•

δω1x =
x ∗ ∆P1

ω1
− D1∆ω1 (6)

J1
•

δω1x = J1
•

δω1 +
∆P1
ω1

(x− 1)
•

δω1x =
•

δω1 − ∆P1
J1ω1

(1− x)
(7)

Investigating the effect of this method on the overall frequency deviation of a parallel connected
VSG in a microgrid, we are calculating the equivalent frequency deviation and adding the effect of the
proposed control into it. The criterion of frequency deviation is decided based on its operating power.
When all the VSGs are under the rated electric parameters of a system then the frequency deviation can
be increased for a limited time after any disturbance to achieve a quick response; by contrast, when the
power of any VSG goes beyond the rated power, then the slow response toward any disturbance is
introduced to enhance the stability of a VSG operation and island microgrid.

•
δωeq =

•
δω1 +

•
δω2

•
δωeqx =

•
δω1x +

•
δω2

(8)

3.2. Flowchart

The flowchart of a bouncy control is shown in Figure 6. The system is initializing with Ge = 1
and three phase voltages and currents are measured in a simulation through voltmeter and ammeter,
respectively. In the actual system, the voltages and currents are first changed from abc-axis to dq-axis.
However, in the flowchart, it is unnecessary to show a transformation. Power and frequency are
acquired from the data obtained through measurement. The method of acquisition without using PLL
is presented in [28]. Power and frequency are being measured continuously, so the change in power
and (∆P) and derivate of power (δP) can easily be detected. These parameters are the key factors in the
execution of emergency control. The selecting criteria Ge’ from ‘∆P’, and ‘δP’, can be seen in Table 1.
The algorithm is designed to limit the contribution of power to the grid when the VSG reaches to its
maximum power, therefore only ∆P > 0 is considered to change gains in a bouncy control, while the
gain is unchanged at the time when ∆P < 0 (it can be introduced in future studies). When ∆P > 0,
it further detects the power derivative ‘δP’ to find out whether the curve is positive or negative. ‘texe’ is
the time of execution of simulation, when the time ‘t’ is less than the execution time ‘texe’, the system
keeps updating ‘Ge’ in the simulation. Emergency control ends with the termination of the simulation.
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3.3. Lyapunov Stability Analysis

The emergency power controller strategy is justified by implementing transient system analysis by
using the online Lyapunov method. Evaluation of the Lyapunov function through transient simulation
helps to calculate the energy function of the VSG, which in turn represents the stability of the system.
It has few advantages over small signal state-space stability: (i) there is no need to solve non-linear
differential equation of a system; (ii) no assumptions are required; and (iii) it does not change a
system into linear, so it has accurate results. Due to these advantages, the Lyapunov method has been
commonly used by researchers.

However, in the Lyapunov method, the main task is to find the Lyapunov function. It should
be designed such that the function gives zero output value at a stable condition. The similar online
optimization technique to improve control parameters by reducing the fitness value of an objective
function; depending on the error of an electric parameters is presented in [29]. The Lyapunov function
for a synchronous generator is presented in [18,25] by calculating the energy function. As VSG is a
replica of synchronous generator, so this energy function could be implemented in VSG control.

V = VK + VP =
1
2

ωo J∆ω2 − [Pre f (δ− δr) + Pmax(cos δ− cos δr)] (9)

where ‘V’ is the energy function of transient system when fault or any disturbance occurs. ‘δ’ is a
power angle of VSG. ‘δr’ is the angle at stable point. Pin is the input reference power. ‘P’ is the output
electrical power. It can be seen from Equation (9), the energy function is divided into two sections:
(i) kinetic energy ‘VK’, and (ii) potential energy ‘VP’. The kinetic energy is positive during oscillations,
as the inertia and change in angular frequency is equal to or greater than zero. The potential energy
has a negative sign, so the magnitude of a second term must be less than zero or the first term during
oscillations; to satisfy V > 0.
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The kinetic energy ‘VK’ is dependent on the variable ‘∆ω’–change in frequency,
nominal frequency ‘ωo’, and virtual inertia coefficient ‘J’. It can be assumed from the Equation (10),
the kinetic energy is present in a system due to change in frequency ‘∆ω’, when the system is at the
stable condition i.e., ω = ωg; then ‘∆ω = 0’, consequently there is no kinetic energy in a system
(VK = 0). It can be observed from Equation (4) that emergency gain ‘Ge’ is influencing the derivative
of ω, when the ‘Ge’ increases the change in angular frequency also rises and vice versa. To enhance
the angular frequency stability, it is better to take Ge less than 1, which in turn reduces the change in
angular frequency.

VK =
1
2

ωo J∆ω2 (10)

The potential energy ‘Vp’ is dependent on the power and the phase angle of VSG. When there is a
phase difference in the VSG with respect to the grid, then there is an existence of potential energy in
the system. The reference power angle ‘δr’ has basically ‘0’ value at a grid. At the stable condition, δ is
equal to δr, therefore the term (δ− δr) and (cos δ− cos δr) are equal to zero, consequently there is no
more potential energy in a system VP = 0. When the disturbance appears in a system, emergency gain
is activated; it directly influences the potential energy of a system. The main purpose of implementing
emergency gain is to provide the independent control during abnormal conditions of the VSG. As it
can be seen from Equation (9), potential energy has a negative sign, therefore it causes declining
behavior on the energy function. So, the increase in potential energy ‘VP’ causes the reduction in
overall energy ‘V’. Hence, it improves the responsiveness of a system. By contrast, when the emergency
gain is set lower than 1 then the potential energy ‘VP’ falls, consequently, the overall energy takes a
longer time to stabilize.

VP = Pre f (δ− δr) + Pmax(cos δ− cos δr) (11)

At the stable condition, the transient energy is supposed to be at zero. When any disturbance
occurs in a system, the energy becomes positive that shows the system is under an abnormal condition.
The derivative of the system transient energy must be negative to fulfill the Lyapunov stability criterion.
The negative value shows that the transient system is returning back to the equilibrium state after the
disturbance [18]. The derivative of ‘V’ in Equation (9) is taken by considering the variable ∆ω:

.
V =

dV
dt

= ωo J∆ω
d∆ω

dt
− D∆ω2 (12)

The above expression is a derivative equation of the system energy, it is necessary to be negative
to show its decaying behavior (

.
V < 0). The second term −D∆ω2 remains negative for D > 0, it is

a damping factor. The first term of Equation (12) is negative when the system is approaching the
equilibrium state. For the positive ∆ω (∆ω = ω − ωg), the derivative of ∆ω is negative and for
the negative ∆ω, the derivative of ∆ω is positive. Therefore, the first term maintains negative in
either conditions.

E = V + [R + jXL] ∗ Io

Zs = R + jXL = |Z|∠ϕ
(13)

The interlinking of the VSG inverter with a grid is demonstrated in Figure 7. The voltage generated
from the VSG is represented by E∠δ, in which, E is the amplitude of the voltage, while ‘δ’ is the power
angle of voltage. V∠δr is the instantaneous voltage of a grid, ’V’ is the amplitude of the voltage and δr

is the reference power angle of a grid which is ideally at ‘0’ (δr = 0). XL and R are the line impedances.Electronics 2018, 7, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/electronic 
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The angular frequency of a grid is taken as a reference angular frequency of the dq-axis. The power
curve is presented in Figure 8. ‘δr’ is the power angle at which a reference power Pre f is providing to
the system. Pmax is the maximum available power. ε′ is a power margin, power is considering stable
within its limit.
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4. VSG Interconnection with a Grid—Case 1

The system is designed for the VSG operating with renewable source and it is connected with a
load and a grid in Figure 9. As the VSG is getting power through the renewable source, so it is necessary
to deliver the maximum power through it. The load of 16 kW is connected near the VSG, the load is
intentionally unevenly distributed among the VSG and the grid such that the VSG is providing power
at its full capacity of 15,000 W, whereas the grid is contributing only 1000 W to the load. The additional
load of 6 kW is added to the system at 0.6 s; after the system approaches stability. The disturbance
caused due to the addition of this load is considered hereafter.Electronics 2018, 7, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/electronic 
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The emergency control is implemented on the VSG inverter to support the system during
disturbance. The experiments are performed to show the behavior of the proposed bouncy control.
The VSG is operating at its full load of 15 kW. The other parameters are presented in Table 2.
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Table 2. Parameter of a system for case 1.

Parameters Values Parameters Values

Sbase 15 kW fpwm 5000 Hz
V* 380 V VL-N 220 V
ω 2π × 50 Hz/s Gde 0.5 & 2.5
D 10 Gac 1

Load2 6 kW L1 1.5 mH
fn 50 Hz C1 150 µF

Vdc 800 V J 0.1
n 0.016 R1 0.05 Ω

XL 0.3 mΩ RL 0.1 Ω

Impact of Gain in VSG System

This research focuses on the improvement of VSG stability under abnormal condition;
by implementing emergency power control. The experiment is performed on a VSG-connected
grid mode system to find out the impact of accelerating and decelerating emergency gain in the time of
stabilization. A case of adding the load is considered to create instability in a system. The emergency
accelerating gain is set to 1, while the power trend is carried out after applying different decelerating
gain. The increase in Gde is shows improvement in the transition time.

To elaborate the effect of Gde and Gac on a system, the graphs are plotted between the variation
in gains and the ratio of change in settling time (∆T/T∗s ). In Figure 10a, the two-dimensional graph
between Gde and ∆T/T∗s , the rising curve shows the improvement in transition time on increasing Gde.
The experiment is carried out with the gains between 0.5–3. When the gain ‘Gde is set to 0.5, it is showing
around 16% lapse in stabilizing time, while 2.5 and 2.75 are showing 9.6% and 10% improvement in
transition time. Therefore, it is justified to choose the decelerating gain between 2.5–3 for the best
performance of VSG during disturbance. In Figure 10b, the three-dimensional graph between Gde and
Gac with ∆T/T∗s . It can be observed through graph that Gac > 1 has a negligible effect on transition
time, but it is only effective and causing delay in transition time when the gain Gac is <1.
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In this case, we are considering the significance of bouncy control. The bouncy control is
adjusting the gain of power difference on the basis of change in power and the derivative of power.
Implementing this control shows improvement in stability of the system. The Lyapunov stability
analysis is done by using the energy function [18,25]. The trends of angular frequency generated
through a proposed control from different gains during the time of disturbance are shown in Figure 11a.
It can be noticed that the stabilization time of angular frequency from ‘Gde = 2.5’ is better than
‘Gde = 1’ (actual system), however, it causes the extreme frequency drop of 313.75 Hz/s (314.28 Hz/s in
the actual system). It can be concluded that it is a tradeoff between time and maximum undershoot.
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The value of gain can be selected according to the angular frequency limit. In a case, when we want
minimal dip in angular frequency, we can compromise on time by taking lower decelerating gain.
When ‘Gde = 0.5’, it shows the least angular frequency dip of 314.64 Hz/s. It can be observed from
Figure 11b that the power is stabilized earlier after disturbance when the gain is ‘Gde = 2.5’ in proposed
control. It can also be seen through the power graph that the overshoot is same as before as the
accelerating gain is not changing, only the transition time is improving. When the gain is lower than 1,
the settling time increases. Hence, lower gain is beneficial for frequency stabilization, but it slows
down the power response of the VSG.
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It is worth noticing that the slower power response of VSG causes less influence on a grid for a
limited time, which makes the VSG less effective toward any disturbance when it reaches its rated
power. So, the VSG becomes robust, and it forces other sources of grid to contribute at that time.

The energy graph to find the Lyapunov stability analysis in shown in Figure 12. The energy
function used to find the fitness value of a system is a function of synchronous generator used by many
researchers. The motive of using a synchronous generator’s energy function is obvious, as the VSG is
its replica control. Hence, it is convenient to treat the VSG as a synchronous generator. It is clearly
visible through graph that the system is returning to stable point by using proposed control. It shows
that the kinetic energy is increased at the time of restoration of stability. On the contrary, the energy of
proposed control is higher in the start for approximately 0.05 s, but its stew rate is higher, an therefore
it achieves the steady state quickly.

Electronics 2018, 7, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/electronic 

 

Figure 12. The trend of the energy function of Lyapunov stability. 354 

5. Multiple VSGs System (Island Microgrid)—Case 2 355 

The bouncy control is implemented in a microgrid. The experiments are performed on a 356 
microgrid connected with two VSGs of the same power 15 kW, but different droop coefficient in 357 
Figure 13. The research on a microgrid of multiple VSGs system has been done by our research group 358 
in [30,31] PWM frequency for inverters is set to 5 kHz and values of resistance inductor capacitor 359 
(RLC) filters are calculated accordingly. The system is designed to generate three-phase AC voltage. 360 
The input direct current (DC) voltage is set to 800 V, while it is generating 380 V phase-phase-rms 361 
voltage at frequency of 50Hz. The simulation is started with a load of 15,000 W and additional load 362 

of 15 kW is adding at 0.5 s. 363 

Figure 13. Multiple VSGs connected in parallel (island microgrid). 364 

Table 3 shows the parameters selected for the two VSGs. The droop coefficient of VSG1 is set to 365 
10; four times less than the value set for VSG2. The different values are set to share different power 366 
from two VSGs utilizing more power of VSG1 when the load is less. 367 
  368 

VSG-2 (Ideal)

VSG-1(Battery)

RLC filter

RLC filter

Common 
point of 3Ф 

 
R1L1

Load1

Load2

C1

Vdc

Common point of 
3Ф 

 
R2L2

C2

Vdc

Figure 12. The trend of the energy function of Lyapunov stability.



Electronics 2018, 7, 202 13 of 18

5. Multiple VSGs System (Island Microgrid)—Case 2

The bouncy control is implemented in a microgrid. The experiments are performed on a microgrid
connected with two VSGs of the same power 15 kW, but different droop coefficient in Figure 13.
The research on a microgrid of multiple VSGs system has been done by our research group in [30,31]
PWM frequency for inverters is set to 5 kHz and values of resistance inductor capacitor (RLC) filters
are calculated accordingly. The system is designed to generate three-phase AC voltage. The input
direct current (DC) voltage is set to 800 V, while it is generating 380 V phase-phase-rms voltage at
frequency of 50 Hz. The simulation is started with a load of 15,000 W and additional load of 15 kW is
adding at 0.5 s.
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Figure 13. Multiple VSGs connected in parallel (island microgrid).

Table 3 shows the parameters selected for the two VSGs. The droop coefficient of VSG1 is set
to 10; four times less than the value set for VSG2. The different values are set to share different power
from two VSGs utilizing more power of VSG1 when the load is less.

Table 3. Parameter of a system.

Parameters Values Parameters Values

Sbase- 15 kW fpwm 5000 Hz
V* 380 V V L-N 220 V
ω 2π x 50 Hz/s Gde 10%
fn 50 Hz Gac 50%

D(VSG-1) 10 R1 0.05 Ω
D(VSG-2) 40 L1 2.38 mH
Load2 15 kW C1 170 µF
Load1 15 kW R2 0.05 Ω

Vdc 800 V L2 2.38 mH
n 0.010 C2 170 µF
J1 0.1 J2 0.1

5.1. Loading/Unloading Analysis

At the time of addition of load, the VSG2 takes over the control to stabilize the system. Initially,
when the load is 15 kW, the VSG1 and VSG2 are contributing 12 kW and 3 kW, respectively. As the load
increases to 30 kW at 0.5 s, VSG1 contributes 3 kW to an additional load, whereas VSG2 supplies 12 kW.
Overall, both VSGs start operating at full capacity of 15 kW. The transition of power and frequency
due to the addition of load in the initial system (without emergency control) is shown in Figure 14a.
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The system shows instability in both parameters under observation (P, ω) and taking substantial time
in settling as shown in Figure 14a. The angular frequency of VSG1 drops down to 313.6 Hz/s and
settles at around 0.65 s.
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The power and frequency graphs of a system; operating with bouncy control, are shown in
Figure 14b. The bouncy control is introduced in VSG1 such that power error is operating at 50%
sensitivity at the time of acceleration and 10% at the time of deceleration. The difference between
accelerating and decelerating gain (sensitivity) are set closer. If the difference would be higher, then the
VSG could show a variation in frequency while stabilizing. The controller is limiting the effect of a
disturbance on VSG1 and forcing VSG2 to stabilize the system. The angular frequency drops down
to 314 Hz/s and stabilizes at about 0.56 s. In this way, VSG1 becomes robust which in turn makes a
microgrid strong. It can be observed that the bouncing in Figure 14a has significantly been reduced in
Figure 14b. Moreover, the angular frequency of VSG1 drops down to around 313.5 Hz/s in Figure 14a,
which is now improved to great extent (not showing undershoot in angular frequency).

Lyapunov stability analysis is carried-out at VSG1 inverter control. The kinetic energy of
Lyapunov function is associated with the angular frequency, so in this case, Equation (10) is being
considered because the stability of VSG is majorly dependent on the angular frequency. It can be
seen from Figure 15 that the peak energy of an initial system is almost double that of the optimized
system which has bouncy control. Initial system is showing more oscillations and taking longer time
to stabilize at around 0.65 s, whereas the optimized system is not showing oscillations; however it
is showing relatively slower transient time at the start, but its overall stabilizing time is better than
initial system i.e., 0.565 s. This control is limiting the instability of a system and suppressing the
frequency oscillations.
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5.2. Fault Analysis

Three phase to ground fault is applied at 0.8 s for 0.01 seconds. The effects of initial and proposed
control on recovery from the fault are analyzed as shown in Figure 16. The power and angular
frequency oscillation is alleviated at around 0.9 s by using the proposed controller compared to
1 s by the initial controller. The proposed method can stabilize the system faster after the fault,
by increasing the damping effect using emergency gain. It can be observed from Figure 16 that the
power transient is initially showing a same trend for both controllers, because the proposed controller
takes some time to respond, whereas a significant improvement can be seen in angular frequency of
VSG-1. The undershoot of angular frequency has been reduced because the bouncy control is reducing
the derivative of change in angular frequency by implementing emergency gain <1 in Equation (6),
consequently, the oscillations are reduced and the system is brought back to the equilibrium state
faster. The results show that the proposed controller is not only effective under a minor disturbance
like loading or unloading, but it is also effective for limiting a fault-related disturbance. The limitation
of this control method is a power sensing delay. It is observed from fault analysis, the peak power of
the proposed controller during fault is same as the initial controller. However, there is a significant
improvement in the frequency undershoot and the time to reach steady state.
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6. Conclusions

In this paper, the emergency control of a virtual synchronous generator is introduced. A technique
of bouncy control is implemented to improve the stability of a system by increasing or reducing
the sensitivity of a system during recovery time. After using the proposed control, it is observed
that the VSG is showing better response after a disturbance. The parameter ‘Ge’ in bouncy control
can make a system robust according to the system’s requirement. The criteria of selecting gain
solely depends on the system’s strength. When the system has not enough strength to bear the
disturbance, the small value of Ge is used; that delays transition time while ensuring the minimal
disturbance in VSG frequency. In another case, when the system is stronger, then the higher value
of decelerating gain Gde improves the stabilizing time. This controller makes the weakest source of
a microgrid stronger by limiting its dependence on a load and a grid for a limited time that in turn
gives a signal to other sources to contribute during that time. Hence, the overall system strengthens.
The results are deliberated through power and frequency graphs. VSG stability is investigated through
simulation-based Lyapunov stability analysis by executing energy function to verify the effectiveness
of a control. The results show a markedly improved response. The stability can further be improved
by increasing the power response of other VSG-controlled sources when its operating power is less
than the rated power at the time of loading/unloading. The bouncy control can be used in any
system, as it has a capability to make the system more robust. The coordination of multiple VSGs
connected in parallel, particularly the island microgrid, can be greatly enhanced by using the bouncy
control technique.
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