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Abstract: In this paper, we analyze the noise quantization effects in coefficients of discrete wavelet
transform (DWT) filter banks for image processing. We propose the implementation of the DWT
method, making it possible to determine the effective bit-width of the filter banks coefficients at which
the quantization noise does not significantly affect the image processing results according to the peak
signal-to-noise ratio (PSNR). The dependence between the PSNR of the DWT image quality on the
wavelet and the bit-width of the wavelet filter coefficients is analyzed. The formulas for determining
the minimal bit-width of the filter coefficients at which the processed image achieves high quality
(PSNR ≥ 40 dB) are given. The obtained theoretical results were confirmed through the simulation
of DWT for a test image using the calculated bit-width values. All considered algorithms operate
with fixed-point numbers, which simplifies their hardware implementation on modern devices:
field-programmable gate array (FPGA), application-specific integrated circuit (ASIC), etc.

Keywords: discrete wavelet transform; digital image processing; quantization noise; bit-width;
fixed-point numbers

1. Introduction

Digital image processing (DIP) is widely used in various research areas, such as medical image
processing [1], biology [2], physics [3,4], and astronomy [5], as well as in the industrial [6], defense,
and law enforcement fields [7]. Image denoising and compression are valuable tasks of the DIP [8],
and various approaches are used to solve these problems, the most common of which are the Fourier
transform [9] and the wavelet transform [10–12], and a special hardware is widely used. In most of
applications, problems of energy efficiency, cost, and image processing speed are still urgent [13].

The most popular way to raise the implementation efficiency for the discrete wavelet transform
(DWT) on modern hardware (e.g. field-programmable gate array (FPGA), application-specific
integrated circuit (ASIC), etc.) [14,15], the filter bank coefficients bit-width is chosen as short as possible
while providing appropriate quality of image processing [16,17]. An efficient approach is based on
the residue number system, for example, a two-dimensional biorthogonal DWT processor design is
presented in the literature [18]. A memory-efficient very-large-scale integration (VLSI) implementation
scheme for line-based two-dimensional (2D) DWT is proposed in the literature [19]. A systolic-like
modular architecture for hardware-efficient implementation of two-dimensional DWT is presented in
the literature [20]. In the work of [21], it is shown that DWT transform, by means of the lifting scheme,
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can be performed in an efficient way in terms of memory utilization and computational efforts on
modern programmable graphics processing units (GPUs). The power–performance enhancement of a
two-dimensional DWT image processor using the residue number system and the static voltage scaling
scheme is presented in the literature [22]. In the work of [23], it is indicated that the representation of the
DWT coefficients in the real number format requires 16 bits when converting the DWT coefficients to the
format of a fixed-point number. In the works of [24,25], the authors consider hardware implementations
of systems implementing DWT of signals with filters, the coefficients of which are quantized by 5
and 16 bits each. In the analyzed papers, the bit-width of the DWT coefficients was determined
approximately; the number of bits was selected and analyzed. That is, the number of bits by these
authors was determined empirically. This circumstance motivated us to conduct a research aimed
at estimating of the minimal bit-width of the DWT coefficients for which the quantization noise is
practically negligible.

This paper proposes a solution for the problem of determining the minimal bit-width of the
DWT filter banks coefficients, at which the quantization noise [26,27] arising as a result of rounding
of the coefficients of wavelet filters does not have a significant effect on the image processing result.
The implementation of the DWT method, making it possible to determine the effective bit-width of
the filter banks coefficients at which the quantization noise does not significantly affect the image
processing results according to the peak signal-to-noise ratio (PSNR), is proposed. Formulas are
derived for determining the minimum bit-width of the coefficients at which the processed image
achieves “high” quality, depending on the wavelet type. The quality of processing is considered high
if peak signal-to-noise ratio (PSNR) ≥ 40 dB, as the value of 40 dB describes the difference between
the two images, almost invisible to the viewer [28]. All calculations are performed only in fixed-point
arithmetic, which opens the possibility of efficient hardware implementation on modern devices
(FPGA, ASIC, etc.).

2. Materials and Methods

An image I, consisting of X rows and Y columns is represented as a function
I(x, y), where 0 ≤ x ≤ X− 1 and 0 ≤ y ≤ Y− 1 are the spatial coordinates of I. The pixel values are
dependent on the kind of image (binary, grayscale, or color). In this paper, we focus primarily on
grayscale and color images. Thus, the values of the pixels are referred to as I(x, y) for grayscale images
and as I(x, y, z) for color images, where z = 1, 2, 3—color number (red, green, and blue for example).
DWT of image is implemented by sequentially using filter banks (wavelet filters). The scheme of a
one-level two-dimensional DWT of images is shown in Figure 1.

1. Row analysis is performed by decomposing the image along the rows with low-pass LD and
highpass HD wavelet filters and downsampling ↓ 2 .

2. Column analysis is performed by decomposing the coefficients obtained at stage 1, by columns
similar to the row analysis.
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We get four sets of coefficients cA, cH, cV, cD of image decomposition, called approximating and
detailing (horizontal, vertical, and diagonal), respectively, as a result of direct DWT of the original
image I.

3. Column synthesis is performed by upsampling ↑ 2 the coefficients cA, cH, cV, cD, restoration
with lowpass HR and highpass HR filters and summation of results.

4. Row synthesis is performed for coefficients obtained at stage 3, by rows with the technique
similar to the column synthesis.

The original image I is restored as a result of the synthesis (inverse DWT) from the coefficients
cA, cH, cV, cD. The original image should be completely restored. However, in practice, quantization
noise occurs due to the digital format of the image representation.

We will assume that the wavelet filters F consist of the coefficients fF,i, where i = 0, . . . , k− 1 is
the coefficient number, where k is the number of the filter coefficients. The next operation is called a
convolution and is performed as follows:

I′(x, y) =
k−1

∑
i=0

I(x, y + i) · fF,k−1−i, I ′′ (x, y) =
k−1

∑
i=0

I(x + i, y) · fF,k−1−i,

where I′—result of row convolution, I ′′—result of column convolution. We shall consider only wavelets
with compact support. The coefficients of the wavelet filters are related by the equation [15]

fHD,i = (−1)i+1 fLD,k−1−i, fLR,i = fLD,k−1−i, fHR,i = (−1)i fLD,i. (1)

The question arises about the minimum bit-width of the wavelet filters coefficients, efficient
from the point of view of hardware implementation on modern devices, and necessary to achieve
a high image quality. The speed of operations with numbers in a fixed-point format is higher than
in a floating-point format on modern devices, which can be used to develop real time image and
video processing devices. Therefore, the coefficients of wavelet filters are quantized and converted
into a format with a fixed-point in the proposed method as follows: scaled by 2n and rounded up
(d2n fF,ie). The bit-width r of the filter coefficients can be determined by the formula r = n + 1 in this
case. The values of the pixels of the processed image should be normalized as follows: all the values
obtained as a result of the image restoration are divided into 24n and rounded down (bI(x, y)c).

Rounding up and rounding down are analogous to cutting the fractional part of the number
with increasing the integer part by one in the case of rounding up. The rounding errors will have
different signs and partially compensate each other when rounding is performed in different directions.
The use of rounding operations in this order requires less resources for hardware implementation than
rounding operations to the nearest. This is because the coefficients of the wavelet filters are known
beforehand and their quantization with rounding up can be done previously. Thus, the coefficients
of the wavelet filters will be used in the form of constants in the hardware part. The convolution is
performed using arithmetic logic devices and its result is rounded down by cutting the fractional part
that does not require additional hardware and time costs.

The error of the proposed method is estimated using the mean square error (MSE) of image,
calculated for grayscale (MSEgrayscale) [28] and color (MSEcolor) [29] images by the following formulas:

MSEgrayscale =
X−1

∑
x=0

Y−1

∑
y=0

[I1(x, y)− I2(x, y)]2

X ·Y , MSEcolor =
1
3

3

∑
z=1

X−1

∑
x=0

Y−1

∑
y=0

[I1(x, y, z)− I2(x, y, z)]2

X ·Y .
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We used peak signal-to-noise ratio (PSNR) between two images to quantify the image processing
quality. This characteristic is measured in decibels (dB) and is calculated by the following formula [28]:

PSNR = 10 log10

(
M2

MSE

)
,

where M is the maximum amplitude of the input image.
Theoretical analysis of the maximum error of DWT of images using the proposed method is

presented in the next section.

3. Results

3.1. Theoretical Analysis of the Maximum Error of DWT of Images

The error arises initially when the filter coefficients are rounding up (quantization noise). Then,
it increases with convolutions, upsampling and summing the results of convolution. We introduce the
following notation. Rounding down after normalizing the values of the restored image also has an
effect. Note the important facts:

1. The absolute error of the DWT is maximal when all pixel values in the image are maximal.
2. The analyzing and synthesizing wavelet filters consist of the same coefficients, according to

formula (1), hence, the limited absolute errors of computations will also be equal. Therefore,
within the framework of theoretical calculations, wavelet filters are classified only into lowpass L
and highpass H ones.

3. The sums of the lowpass and highpass wavelet filter coefficients are equal to
√

2 and 0,
respectively [15].

We introduce the following notation.

1. Ej,F—limited absolute error (LAE) of calculating the value of the coefficient at the j-th stage,
resulting from convolution with a sequence of wavelet filters F;

2. SF—the exact value of the sum of the coefficients of the wavelet filter F;
3. Tj,F—the exact value of the calculations in the j-th stage, after convolution with a sequence of

wavelet filters F.

The errors for all the coefficients cA, cH, cV, cD of image decomposition are separated into two
groups (Figure 2, where X̃ = X+k

2 − 1 and Ỹ = Y+k
2 − 1) as a result of upsampling. Upsampling

is applied twice during image recovery. We get four groups of errors as a result. Thus, to the
introduced notations, it is necessary to add an additional index, which denotes calculations by the
spatial characteristics of the coefficients.
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Stage 1. Rounding up the filter coefficients. Calculate the exact values of the sums SF and SF,l
of coefficients and errors E1,F and E1,F,l of rounding up the filters L and H coefficients, l = 1, 2:

SL =
k−1

∑
j=0

2n fL,j = 2n
k−1

∑
j=0

fL,j = 2n ·
√

2 = 2n+ 1
2 , SH =

k−1

∑
j=0

2n fH,j = 2n
k−1

∑
j=0

fH,j = 2n · 0 = 0,

SL,1 =

k
2−1

∑
j=0

2n fL,2j, SL,2 =

k
2−1

∑
j=0

2n fL,2j+1, SH,1 =

k
2−1

∑
j=0

2n fH,2j, SH,2 =

k
2−1

∑
j=0

2n fH,2j+1,

E1,L =
k−1

∑
j=0

(⌈
2n fL,j

⌉
− 2n fL,j

)
, E1,H =

k−1

∑
j=0

(⌈
2n fH,j

⌉
− 2n fH,j

)
, E1,L,1 =

k
2−1

∑
j=0

(⌈
2n fL,2j

⌉
− 2n fL,2j

)
,

E1,L,2 =

k
2−1
∑

j=0

(⌈
2n fL,2j+1

⌉
− 2n fL,2j+1

)
, E1,H,1 =

k
2−1
∑

j=0

(⌈
2n fH,2j

⌉
− 2n fH,2j

)
, E1,H,2 =

k
2−1
∑

j=0

(⌈
2n fH,2j+1

⌉
− 2n fH,2j+1

)
.

Stage 2. Row decomposition. Calculate the exact values T2,F and errors E2,F of row
decomposition with filters L and H:

T2,L = SL ·M, E2,L = E1,L ·M, E2,H = E1,H ·M.

All the results of the convolution Tj,F with the filter H are zero.
Stage 3. Column decomposition. Calculate the exact values T3,F and errors E3,F of column

decomposition with filters L and H:

T3,LL = T2,L · SL, E3,LL = (T2,L + E2,L)(SL + E1,L)− T3,LL, E3,LH = (T2,L + E2,L)E1,H ,

E3,HL = E2,H(SL + E1,L), E3,HH = E2,HE1,H .

Stage 4. Column reconstruction. Calculate the exact values T4,F,l and errors E4,F,l of column
reconstruction with filters L and H, l = 1, 2:

T4,LLL,l = T3,LL · SL,l , E4,LLL,l = (T3,LL + E3,LL)(SL,l + E1,L,l)− T4,LLL,l , E4,LHH,l = E3,LH(SH,l + E1,H,l),

E4,HLL,l = E3,HL(SL,l + E1,L,l), E4,HHH,l = E3,HH(SH,l + E1,H,l).

Stage 5. Column summation. Calculate the errors E5,F,l of sums E4,F,l , l = 1, 2 :

E5,L,l = E4,LLL,l + E4,LHH,l , E5,H,l = E4,HLL,l + E4,HHH,l .

Stage 6. Row reconstruction. Calculate the exact values T6,F,l and errors E6, f ,l of row
reconstruction with filters L and H, l = 1, 2, 3, 4:

T6,L,1 = T4,LLL,1 · SL,1, T6,L,2 = T4,LLL,2 · SL,1, T6,L,3 = T4,LLL,1 · SL,2, T6,L,4 = T4,LLL,2 · SL,2,

E6,L,1 = (T4,L,1 + E5,L,1)(SL,1 + E1,L,1)− T6,L,1, E6,L,2 = (T4,L,2 + E5,L,2)(SL,1 + E1,L,1)− T6,L,2,

E6,L,3 = (T4,L,1 + E5,L,1)(SL,2 + E1,L,2)− T6,L,3, E6,L,4 = (T4,L,2 + E5,L,2)(SL,2 + E1,L,2)− T6,L,4,

E6,H,1 = E5,H,1(SL,1 + E1,H,1), E6,H,2 = E5,H,2(SL,1 + E1,H,1), E6,H,3 = E5,H,1(SL,2 + E1,H,2),

E6,H,4 = E5,H,2(SL,2 + E1,H,2).

Stage 7. Row summation. Calculate the errors E7,l of sums E6,F,l , l = 1, 2, 3, 4:

E7,l = E6,L,l + E6,H,l .
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Stage 8. Normalizing. Calculate the errors E8,l of division E7,l by 24n, l = 1, 2, 3, 4:

E8,l =
E7,l

24n .

Stage 9. Rounding down of pixel values. Calculate the errors E9,l of rounding down E8,l ,
l = 1, 2, 3, 4:

E9,l =
⌊

E8,l
⌋
.

The obtained values E9,l (l = 1, 2, 3, 4) represent the resulting error of the method and allow for
the calculation of the PSNR.

PSNR = 10 log10

 4M2

4
∑

l=1
E2

9,l

, (2)

where 1
4

4
∑

l=1
E2

9,l = MSEgrayscale = MSEcolor.

The results of the theoretical analysis can be applied to any wavelet with a compact support.
Comparison of the results of calculations using formula (2) and simulation is presented below.

3.2. Simulation of the Image DWT

The simulation was carried out in the Matlab software version R2017b (40502181, ETU-LETI,
St. Petersburg, Russia) of the 8-bit (M = 255) grayscale images “Lena” (Figure 3a) with low-frequency
pattern, “Pepper” (Figure 3b) with low frequency pattern, and “Baboon” (Figure 3c) with a
high-frequency pattern.
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Figure 3. Images used for simulation: (a) “Lena”; (b) “Pepper”; and (c) “Baboon”.

The Daubechies wavelets db k
2 (k = 4, 8, 12, . . . , 40), symlets sym k

2 (k = 4, 8, 12, . . . , 40), and coiflets
coi f k

6 (k = 6, 12, . . . , 30) are used. Wavelet filters are obtained using the command “wfilters”.
Decomposition and reconstruction of the image are carried out using the commands “dwt2” and
“idwt2”, respectively. Simulation, as well as theoretical analysis, was carried out with quantized
coefficients in accordance with the proposed implementation of the DWT of images. An example of
the simulation results with image “Lena” and a wavelet db4 is shown in Figure 4.

Figure 4 shows that as the value of n increases, the processing quality gradually improves:
when n = 5 image seem lightened; when n = 10, the restored image is indistinguishable from the
original image; when n = 12, the restored image is identically equal to the original image.
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calculation accuracy.
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8 33.43 26.70 22.95 22.52 20.03 16.63 16.43 13.39 14.20 10.97
9 40.17 33.43 28.32 28.10 25.62 22.46 22.83 19.97 19.32 18.34
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The results of simulation of the DWT of the 8-bit (M = 255) grayscale image “Lena” for different
values of n (n = 8, . . . , 15) and Daubechies wavelets db k

2 (k = 4, 8, 12, . . . , 40) are presented in Table 2.
The values of each cell from Table 2 are not lesser than the values of the corresponding cell

from Table 1. This difference is explained by the fact that in theoretical calculations, we are trying to
predict the worst case. Thus, the results of simulation of the DWT of images confirm the results of
theoretical calculations.

Let us compile Tables 3–5 as follows: we note the values of n, for which, according to
theoretical calculation and simulation results, the 8-bit (M = 255) grayscale images “Lena”, “Pepper”,
and “Baboon”, processed with the Daubechies wavelets db k

2 (k = 4, 8, 12, . . . , 40), symlets sym k
2

(k = 4, 8, 12, . . . , 40), and coiflets coi f k
6 (k = 6, 12, . . . , 30), reach a high (PSNR ≥ 40) and maximum

(PSNR = ∞) quality. For example, for a wavelet db2, a high quality of 40 dB is achieved at n = 9
(40.17 dB according to Table 1) and at n = 9 (47.00 dB according to Table 2); the maximum quality is
achieved when n = 12 (according to Table 1) and when n = 10 (according to Table 2). The remaining
columns are filled in the same way.
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Table 2. The results of simulation of “Lena” with Daubechies wavelets (PSNR, dB).

n db2 db4 db6 db8 db10 db12 db14 db16 db18 db20

8 39.54 32.82 29.00 28.59 25.97 22.55 22.41 19.29 20.21 16.94
9 47.00 39.59 34.29 34.01 31.61 28.42 28.92 25.90 25.33 24.35

10 ∞ 44.99 42.60 40.95 37.51 35.72 34.89 32.48 31.88 31.78
11 ∞ 53.40 50.53 48.63 46.00 44.42 40.59 39.78 38.76 38.09
12 ∞ ∞ ∞ ∞ 51.75 50.72 49.55 48.04 46.32 44.36
13 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
14 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
15 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 3. The values n at which the result of discrete wavelet transform (DWT) of images “Lena”,
“Pepper”, and “Baboon” with a Daubechies wavelets reaches quality of PSNR = 40 dB and PSNR = ∞.

PSNR Results db2 db4 db6 db8 db10 db12 db14 db16 db18 db20

40

Theoretical 9 11 11 11 12 12 12 12 13 13
Simulation

(“Lena”) 9 10 10 10 11 11 11 12 12 12

Simulation
(“Pepper”) 9 10 10 10 11 11 11 11 12 12

Simulation
(“Baboon”) 8 9 10 10 11 11 11 11 11 12

∞

Theoretical 12 13 13 14 14 14 14 14 15 15
Simulation

(“Lena”) 10 12 12 12 13 13 13 13 13 14

Simulation
(“Pepper”) 10 12 12 12 13 13 13 13 13 14

Simulation
(“Baboon”) 10 11 12 12 12 13 13 13 13 13

Table 4. The values n at which the result of DWT of images “Lena”, “Pepper”, and “Baboon” with a
symlets reaches the quality of PSNR = 40 dB and PSNR = ∞.

PSNR Results sym2 sym4 sym6 sym8 sym10 sym12 sym14 sym16 sym18 sym20

40

Theoretical 9 11 11 11 12 12 12 12 12 13
Simulation

(“Lena”) 9 10 10 10 11 11 11 11 12 12

Simulation
(“Pepper”) 9 10 10 10 11 11 11 11 12 12

Simulation
(“Baboon”) 8 9 10 10 11 11 11 11 12 12

∞

Theoretical 12 13 13 14 14 14 14 14 15 15
Simulation

(“Lena”) 10 12 12 12 13 13 13 13 13 13

Simulation
(“Pepper”) 10 12 12 12 13 13 13 13 13 13

Simulation
(“Baboon”) 10 11 12 12 12 13 13 13 13 13
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Table 5. The values n at which the result of DWT of images “Lena”, “Pepper” and “Baboon” with a
coiflets reaches quality of PSNR = 40 dB and PSNR = ∞.

PSNR Results coif1 coif2 coif3 coif4 coif5

40

Theoretical 10 11 11 12 12
Simulation
(“Lena”) 9 11 11 11 11

Simulation
(“Pepper”) 9 10 11 11 11

Simulation
(“Baboon”) 9 10 10 11 11

∞

Theoretical 13 13 14 14 14
Simulation
(“Lena”) 12 12 12 13 13

Simulation
("Pepper") 12 12 12 13 13

Simulation
("Baboon") 11 12 12 13 13

4. Discussion

We can make the following conclusions, based on the results of theoretical calculations and
simulation, partially presented in Tables 1–5.

1. All values of the PSNR obtained as a result of the theoretical calculations are not lesser than the
values of the PSNR obtained as a result of the simulation, as in theoretical calculations, we are
trying to predict the worst case.

2. The result of image processing “Baboon” with a high-frequency pattern is slightly superior in
quality to the result of images processing “Lena” and “Pepper” with low-frequency patterns for
each value of n for all wavelets used. Thus, the higher the frequency of the image pattern, the less
the effect of quantization noise.

3. Similar results were obtained using various types of wavelets. Thus, the number k of the wavelet
filter coefficients is the only important factor that affects the values of n and bit-width r of the
wavelet filter coefficients that is necessary for high-quality image processing.

4. The minimum values of n and bit-width r at which the result of a DWT of images does not contain
distortions visible to the viewer (PSNR ≥ 40) can be determined by the formula

n ≥ 10 +

⌊√
k
4

⌋
, r = n + 1 ≥ 11 +

⌊√
k
4

⌋
. (3)

5. The minimum values of n and bit-width r at which the result of a DWT of images does not contain
(PSNR = ∞) can be determined by the formula

n ≥ 12 +

⌊√
k
4

⌋
, r = n + 1 ≥ 13 +

⌊√
k
4

⌋
. (4)

Formulas (3) and (4) are approximate. The values obtained at their use are sometimes redundant,
that is, they exceed the digits presented in Tables 3–5.

The developed approach to the determination of the bit-width r of wavelet filter coefficients
can be used to reduce the hardware and time costs for the practical implementation of a system that
performs DWT of image. For example, in the literature [23], it is indicated that the representation of
the wavelet filter coefficients in the format of real numbers requires at least 32 bits. Further, the authors
of this paper prove the possibility of reducing this bit-width to 16 bits by converting the wavelet filter
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coefficients to the format of a fixed-point number. At the same time, in the literature [23], it is said
about the possibility of further decreasing the bit-width of the wavelet filter coefficients with the risk of
errors due to the overflow of the range of the computer system. Our theoretical and practical analysis
proves the possibility of reducing such a bit-width to 12–15 bits without the risk of errors, depending
on the type of wavelet used, which is 6–25% less compared with the results of the work of [23].

In the work of [24,25], the authors consider hardware implementations of systems implementing
DWT of signals with filters, the coefficients of which are quantized by 5 and 16 bits each. As noted
above, 16 bits is an excessive bit-width when processing images. At the same time, we have shown
that using only 5 bits will not allow us to obtain acceptable image processing quality.

The hardware implementation of our method has the following advantages.

1. Calculations are performed on fixed-point numbers faster than on floating-point numbers.
2. The operations of multiplying and dividing by 2n in a two complement correspond to a

comma shift to n digits to the right or to the left, respectively, which simplifies and speeds
up their execution.

3. Rounding up and rounding down are analogous to cutting the fractional part of the number
with increasing the integer part by one, in the case of rounding up. This avoids the difficulties
associated with determining the digits of the fractional part of the rounded numbers.

4. The resources used in the hardware implementation can be reduced when using a specific wavelet,
as the highest bits of the filters coefficients are zero.

5. Conclusions

This paper gives a contribution to solving the problem of choosing the efficient bit-width for
the coefficients of discrete wavelet transform (DWP) filter banks for image processing. The method
was developed for estimating maximum error of image processing that can arise as a result of DWT
of images by the Formula (2). The derived Formulas (3) and (4) allow determining the minimum
bit-width of filter banks coefficients, at which the result of DWT achieves high quality or the processed
image does not differ from the original one, depending on the wavelet type used. All calculations are
performed only in fixed-point numbers and the rounding operations are simplified.

The obtained results open the possibility for efficient hardware implementation of the DWT of
images on modern devices (FPGA, ASIC, etc.) for denoising and image processing in various areas,
such as medical image processing, biology, physics, and astronomy, as well as in industrial, defense,
and law enforcement fields and other fields of science and technology.
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