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Abstract: Hearing-impaired people do not hear indoor and outdoor environment sounds, which
are important for them both at home and outside. By means of a wearable device that we have
developed, a hearing-impaired person will be informed of important sounds through vibrations,
thereby understanding what kind of sound it is. Our system, which operates in real time, can achieve
a success rate of 98% when estimating a door bell ringing sound, 99% success identifying an alarm
sound, 99% success identifying a phone ringing, 91% success identifying honking, 93% success
identifying brake sounds, 96% success identifying dog sounds, 97% success identifying human voice,
and 96% success identifying other sounds using the audio fingerprint method. Audio fingerprint is
a brief summary of an audio file, perceptively summarizing a piece of audio content. In this study,
our wearable device is tested 100 times a day for 100 days on five deaf persons and 50 persons with
normal hearing whose ears were covered by earphones that provided wind sounds. This study
aims to improve the quality of life of deaf persons, and provide them a more prosperous life. In the
questionnaire performed, deaf people rate the clarity of the system at 90%, usefulness at 97%, and the
likelihood of using this device again at 100%.

Keywords: wearable processing; real-time systems; quality of life; feature extraction; speech
processing; audio fingerprint

1. Introduction

Sound is a biometric feature used to distinguish people or species from one another. By processing
an existing audio signal, it is possible to detect whether this sound comes from a human or another
object. Since voices differ from one person to another, they can be used for voice recognition purposes.
It is also possible to control or direct various devices through words obtained from sound signals.
Therefore, the processing and use of an audio signal is very important [1]. Hearing is a very important
sensory function for people. Developing a device that can perceive and classify various voices at home,
and thereby improve the quality of life for hearing impaired people, is regarded as a basic requirement.
A fire alarm or a phone alert that warns against danger are some of the sounds that should be perceived
to encourage an urgent action.

In recent years, there have been many developments in the field of wearable technology, both
academically and industrially [2]. Due to factors including the high cost of modern health care,
development of microcontroller technology, reduction in sensor dimensions with respect to the
development of technology, and significant developments in wearable processing, applications of
wearable technology products in the healthcare field are becoming more frequent. Recently, health
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practices have been widely used in civilian life in both patient follow-up and treatment. Glove-operated
surgical robots that facilitate doctors’ operations are a current example of wearable technology in the
field of health care [1,3].

Using wearable objects and specialized signal processing methods presents new opportunities
and visualizations for applications. Development of technology has made it possible to produce low
cost, portable, remote-access patient monitoring systems. Real-time data analysis can be made by these
systems, and they can be worn directly on the human body [4]. In recent years, research, especially
on speech data, has gradually increased to meet the demands of developing world. This is because
speech data such as audio and voice data are those that are closest to human life, and that they can
best express daily life. Recently, research on audio-based systems and deep-learning technologies has
increased rapidly [5]. The first studies in this area predominantly addressed the content-based general
sound classification problem [6–8].

Various methods have started to be used in communication between people and machines in
parallel with developments in technology. One of the methods developed for communicating between
human and machine is voice recognition. A general structure of sound recognition systems is given in
Figure 1. First, speech/voice is exposed to the step of preprocessing. Generally, sound is made more
understandable in this step. In the step of feature extraction, distinctive features of sound data are
determined. Which sound data are new sounds is determined.

Figure 1. Speech/voice recognition system.

2. Related Works

Ma et al. [9] presented an adaptable system for classification of environmental sounds, as well as
experimental results of this system. They used the Mel Scale Cepstrum Coefficients (MFCC) method
in feature extraction from audio files of environmental sounds, and used the Hidden Markov Model
(HMM) algorithm as a classifier in model training. Additionally, they performed a separate test, where
people listened to audio files. The overall success rate was reported at 92%. When these tests were
applied to people, the correct detection rate of the classes remained at 35%.

Eronen et al. [10] conducted a study on the identification of environmental sounds. In the
proposed system, HMM and K Nearest Neighbors (KNN) algorithms were used as classifiers for
model training. While the performance of the system of environmental sound recognition was 69%,
the success rate declined to 58% when the test was performed on real people.

Su et al. [11] designed a system for ambient sound detection. They used the Local Discriminant
Bases technique in their study. With this technique, the distinction of time–frequency subspaces for
ambient sounds is defined. Evaluation of their study indicated that they obtained 74.3% and 81%
accuracy rates. However, when audio with background noise in the dataset was used, the overall
accuracy percentage declined to 28.6%.

Wang et al. [12] proposed a system classifying 12 ambient sound voices. They applied Support
Vector Machine (SVM) and KNN methods as classifiers in model training.

Reed and Delhome [13] researched whether environmental sounds can be recognized with the
help of a tactile wearable.

Chu et al. [14] studied identification of ambient sounds. By separating the sound signals into
different levels, this study showed different representations of the same signal. They reported that
sounds can be better defined in this manner.
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Alias et al. [15] presented an up-to-date review of the techniques for revealing features of
developed speaking, music and environmental sounds to analyze the most common sound signals in
their studies.

Shin et al. [16] studied coughing for the detection of a patient’s unusual health conditions.
This application, designed in real-time, can follow a medical condition and detect abnormalities
using acoustic information. A mixed model consisting of artificial neural networks (ANN) and HMM
was used during classification to distinguish the cough sound from other voices in the environment.
This proposed mixed model yielded better results than conventional systems designed using the HMM
classifier and the MFCC feature.

Schröder et al. [17] proposed a system for the detection of ambient sounds. Their study consisted
of a two-layer GMM classifier.

Niessen et al. [18] proposed methods for classifying ambient sounds. They used different methods,
such as MFCC and Zero Crossing Rate (ZC), for feature extraction from audio files. They reached an
accuracy of 34.51% resulting from evaluations based on a sound clip.

Kugler et al. [19] focused on grounded applications, and proposed a voice recognition method
designed for ambient voices.

Jeyalakshmi et al. [20] offered a speech recognition system for normal hearing and hearing-
impaired children. This system was developed using MFCC feature extraction and HMM. Its accuracy
was determined to be 92.4% for hearing impaired speech, and 98.4% for normal speech. This system
can be used by others to recognize speech from those who are hearing-impaired.

Sakajiri et al. [21] developed a voice step control system with the aim of helping their songs via a
touch screen for deaf in their studies.

Kingsbury et al. [22] studied a robust speech recognition system, free of noise, using a modulation
spectrogram. They classified the cleaned sound samples with a modulation spectrogram using ANN
and HMM.

Reynolds et al. [23] developed a speaker-recognition system that makes authentication.
The Gaussian method was used for recognition in the system.

Lozano et al. [24] developed an application to resolve daily issues that could lead to serious
problems for hearing-impaired people.

Oberle and Kaelin [25] submitted a signal-recognition system for touch-sensitive hearing
instruments using HMM.

Beskow et al. [26] developed a Home Hearing (HAH) project in their study. This HAH is an
innovative media center solution that provides real-time speech and reading support with a variety of
integrated features including audio raise, audio reduction, audio classification and event perception.
These features support speech and audio perception for hearing support. The average accuracy of this
classifier was found to be 82%.

Seoane et al. [27] developed a project to conduct speech processing with wearable biomedical
measurement systems.

Shull and Damian [28] in their review determined that a wearable devices with a function for
hearing loss has been developed.

Deep Neural Network (DNN), which has manyf hidden layers and is trained using new methods,
has sometimes shown better performance than Gaussian mixture models (GMMs) with a big difference
in various speech recognition criteria [29]. Salomon and Bella [30] proposed a DNN architecture for
the classification of ambient sounds. Dahl et al. recommended a new content-dependent model for
speech recognition with broad identification. This model takes advantage of the latest developments
in the use of DNN for phone recognition [31]. Deng et al. presented experimental proof that DNN
with MFCC is outstanding in terms of speech spectrogram features [32].
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3. System Description

As shown in Figure 2, our device consists of four parts. Raspberry Pi (Rpi), which is the size of a
credit card, was developed by the Rpi Company (Bath, UK) to teach basic computer sciences at schools.
The developed Rpi is expressed as a mini computer [33]. The grove is a shield card that allows us to use
grove sensors, as it possesses over 15 sensor connections. A microphone is used to receive and process
ambient sounds. Microphone obtain sound data, which are processed in Raspberry Pi environment.
Thanks to USB Sound Card, it is connected to Raspberry Pi environment. After sound is obtained, the
nature of the sound is determined using various methods. A vibration motor sends a warning to the
user, which is perceived through the sense of touch. For each sound, a different vibration stimulus is
given to the hearing-impaired person so that they can identify each sound in this manner.

Figure 2. Our developed wearable device.

Our wearable, real-time operational device detects the sound first with a microphone, identifies
the sound, and conveys this information to the user through vibrations. The coding of our real-time
operating system was done using the Python (version 2.7) programming language. The wearable
device we developed is mounted on the person in the outdoor and external environment. When our
system senses a dog’s sound, it transmits it to the deaf person. In this way, it is thought that deaf
person would have a safer life. In addition, this device can successfully identify the sound of a bell
ringing in the home environment, as well as easily distinguish important voices. Our system produces
a different level of vibration and intensity for each sound. First, the user is trained for 10 min, during
which a vibration is given for each sound as explained in the training phase. After this training, the
user can easily distinguish between different sounds.

4. Methods

For voice recognition to be performed using a computer, many pre-process applications are
required from the perception of sound to sound recognition. Correct identification of the appropriate
pre-processes depends on the performance of the voice recognition operating successfully.
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4.1. Zero Crossing Rate

The crossing number of an audio signal through zero is known as Zero Crossing Rate (ZC).
This number increases due to the presence of high-frequency noise in aural expression recordings in
the areas where the audio signal is not found. The ZC is low in sections where aural expressions are
included. This feature is used to determine the start and end points of aural expressions. With a ZC
value, it is possible to measure the frequency of a signal. Since there are two zero crossings in each
period of a sinusoidal signal, the signal frequency can be calculated by taking half the number of zero
crossings. The number of zero crossings allows for period estimations of some sections of the signals
that can change over time and obtain the frequency value for a periodic signal [34].

4.2. Mel Scale Cepstrum Coefficients

Mel Scale Cepstrum Coefficients (MFCC) are one of the most-used feature extraction methods, as
it delivers high performance in sound recognition applications. MFCC models the way the human
ear perceives sound. Sampling and windowing operations are applied to extract an MFCC vector
from an audio signal. The continuous signal provided during sampling is discretized and multiplied
by a function in the time domain during the windowing phase. Thus, the signal section intended
for processing is taken. There are many windowing functions used in the MFCC feature extraction
method, such as rectangle, Barlett, Kaiser, and Hamming [35,36].

4.3. Spectral Subband Centroids

Paliwal [37] proposed Spectral Subband Centroids (SSC), with the consideration that higher
amplitude portions of a spectrum are relatively less affected by noise. SSC is used as a characteristic
in addition to cepstral coefficients in speech and speech recognition. SSCs are calculated as central
frequencies of lower bands and catch overriding frequencies in a short-term spectrum. SSCs are
calculated as frequency centroids for every lower band coming from the power spectrum of a speech
signal. Since SSCs catch almost constant spectral peaks in noisy environments, they can also be
obtained safely under noisy conditions [37].

4.4. Line Spectral Frequencies

Line Spectral Frequency (LSF) parameters are another audio feature vector widely used in audio
analysis speech recognition applications. LSF parameters occupy a unit circle, and concentrate on the
places where the signal spectrum has high values. In other words, the LSF parameters indicate the
shape of the spectrum. LSF parameters also indicate the property of distortion independence [38,39],
meaning that any change in an LSF parameter does not have a global effect, and only affect the
frequency spectrum close to it. Since the human ear is not very sensitive to higher frequencies, LSF
parameters at higher frequencies can be represented with fewer bits using this feature.

4.5. Linear Prediction Cepstral Coefficients

Linear Prediction Coefficients (LPC) are used to indicate the envelope and short-term power
spectrum of speech in different speech processing applications. Linear foresight expresses up-to-date
values for a discrete signal as a linear function of the past values of that signal. Linear Prediction
Cepstral Coefficients (LPCC) method is mainly based on the principle of transforming LPC coefficients
into cepstral coefficients by Fourier transformation. First, LPC coefficients are obtained, followed by the
other processes required in this method. The steps of the LPCC method are as follows: pre-emphasis,
framing, windowing, autocorrelation analysis, LPC analysis, LPC-LPCC parameter transformation,
parameter weighting, and derivative calculation. Consequently, parametric expressions are named as
feature vectors. The aim of pre-emphasis is to equal spectral energy by empowering high-frequency
components in a speech signal. LPCC is a spectral feature used in the implementation of practical
sound recognition systems [40,41].



Electronics 2018, 7, 50 6 of 17

4.6. Linear Prediction Coefficients

Several algorithms can be used to recognize speech in the digital signal processing domain.
The most important of these is the LPC. The basic principle in this technique is that sound samples are
estimated using past examples. The sound sample is thought to be a linear combination of old samples,
and the characteristic coefficients of the audio signal are calculated by approximation. The idea of LPC
is based on a speech production model that uses an all-pole filter—a characteristic of the voice path.
As such, LPC is the coefficients of this multipolar filter, and is equivalent to the softened envelope of
the log spectrum of speech. Therefore, LPC can be calculated from the windowed speech section using
direct autocorrelation or covariance methods [42].

4.7. Log Area Ratio

Log area ratios (LAR) can be used to represent the reflection coefficients for transmission over a
channel. Although LAR is not as effective as line spectral pairs (LSP), it is easier to calculate log area
ratios. LAR coefficients are obtained using LPC [43]. LAR is an objective measure of speech indicating
it has more correlations with the quality of speech when it is subjectively evaluated by people.

4.8. K Nearest Neighbors

In this study, K Nearest Neighbors (KNN) was used for classification after the use of the attribute
methods mentioned above. KNN is a trained learning algorithm aimed at classification of existing
learning data when a new sample arrives. When a new sample arrives, the algorithm decides the class
of the sample by looking at its nearest neighbor. The K value should primarily be determined in the
KNN algorithm. When the K value has been determined, the distance to all learning samples must be
calculated. Next, sorting is completed according to minimum distance. After the sorting process, the
class value that the sample belongs to is identified [36,44].

In the KNN algorithm, which class it belongs to is determined when a sample comes from outside
the training set. Choice of the value K is important here. The value K determines how many values
sample are taken. To choose the most appropriate value of the value K, 10-Fold Cross Validation
was used. Primarily, our training set was divided into 10 equal parts. Then, validation results were
compared with respect to the values of K. As a result, the best classification achievement was obtained
at K = 5.

4.9. Audio Fingerprint

An Audio Fingerprint (AF) is a brief summary of an audio file, perceptively summarizing a piece
of audio content, and storing it in a database. When presented with unlabeled sound, its fingerprint
was calculated and matched to sounds stored in the database. Firstly, spectrograms were obtained
from the sound data. Next, the peaks were found and an extract fingerprint is created. Our system
then identified this sound. According to the Nyquist theorem, effective sampling was performed with
a sampling frequency at least twice as large as the sound frequency. In this study, 44,100 samples were
taken per second.

Samples were taken from a song as signal with FTT repeatedly used in small time windows
during sampling to create a spectrogram of a song. Spectrograms are 2D arrays at wave amplitude
as time and frequency functions. The FFT showed the signal strength, or amplitude, at a specific
frequency giving a column. After carrying out this action enough times in the sliding window, we put
them together, and obtained a 2D array spectrogram and used the created spectrogram to define the
uniqueness of a voice. As sound fingerprint, combinations composed by taking advantage of time
and frequency differences of peak points in spectrogram were used. Its magnitude was lower than
other pairs and it provided that noise decreases. Even if some new peak points occurred because
of noise, it would not affect other peaks greatly, because peaks were locally independent from each
other. First, we found amplitude peaks from a spectrogram of the audio signal. A time–frequency



Electronics 2018, 7, 50 7 of 17

point in a spectrogram is the peak when it has a higher energy level than all neighboring peaks in that
region. Peak points are defined as the time–frequency pair corresponding to the largest neighboring
amplitude value. Other pairs around this value are low in terms of amplitude, and, therefore, likely
receive less noise. After removing noise-resistant peaks, points of interest of a sound that describes it
were found. Despite some new peaks due to noise, they did not affect other peaks, since the peaks
were locally independent of each other. Similarly, if some peaks were deleted, most were maintained.
This representation is called a constellation map in the literature. Fingerprint combinations were
obtained by matching the peaks of the constellation map in binary combinations. Anchor points were
selected, and each anchor point had a target region, where each anchor point paired up with a peak
point within the target region. It is important to determine the number of anchor points and the size of
the target region. The number of anchor points selected and the size of the target region determine
the number of combinations to be created, the resulting storage space requirement and the cost of the
calculation [45].

As seen in Figure 3, our system was composed of four phases. Primarily, sound was sensed. Then,
that sound was determined using AF method. Finally, by giving different vibrations for every sound,
user could sense sound was ensured. In the phase of AF method, sampling of the sound was done
first. Sampling is the process of transforming analog signal into sample series. Energy between two
sampled points was not considered; if rate of sampling was chosen at a certain value, sampled signal
contained the same data with original signal according to Nyquist’s theorem. This rate should be at
least two times more the highest value of frequency. The samples are signals; FFT was used repeatedly
from samples of the sound on little time windows to create spectrogram of the sound. Using it with a
shifting time window repeatedly ensured that the time–frequency graph or spectrogram showing the
change of frequency constituents over time could be obtained. We found the peak points of maximum
from spectrogram of the sound signal. Time that corresponds to maximum, the highest one amongst
neighborhoods around the peak point, is a frequency twin. Finally, fingerprint hashing is done. By
combining peak points with fingerprints, we find the appropriate trace for that sound. Hash function
has been used for this reason.

Figure 3. Our wearable device system.

Spectrograms of dog barking and honking in real environments are shown in Figure 4.
The spectrogram peak points of the real-time honking sound are also shown in Figure 4.
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Figure 4. Different sounds spectrograms.

5. Experimental Results

5.1. Test Environment

The prediction of sounds that arrive in real-time was made by means of wearable device we have
developed. As shown in Figure 5, the wearable device placed on the user’s back region instantly
responds to the user. In this way, the hearing-impaired user can easily understand the voices around
them, thereby experiencing an increased standard of living. The wearable device we have developed
has been tested by three men whose average age is 41 and two women whose average age is 33.
Normal hearing individuals in this study consisted of 45 men and five women, whose ears were
covered by wind-voiced earphones. The best results in the computer environment were obtained by
AF method. For this reason, in real-time tests, AF method was used.

Figure 5. Our wearable device test environment.
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A different level and magnitude of vibration has been given for every sound. Thus, eight different
sounds have been distinguished thanks to recognition of different vibrations. With regard to education,
these states have been described to a deaf person step-by-step, and quickly understood which level
of vibration is for which sound. For example, a vibration has been given for indoor sounds, such as
telephone, alarm and doorbell, for vibrating once, twice and three times, respectively. The differences
have been made based on magnitude and period between vibrations. With these vibrations, a deaf
individual can distinguish between outdoor sounds such as a honk, a dog barking, and a brake sound.

5.2. Performance Criteria

The information obtained as a result of the tests can be expressed in a confusion matrix.
The structure of the confusion matrix is given in Table 1. According to the matrix, the rows represent the
actual classes of the samples in the test set, and the columns represent the estimated values. The most
popular and simple method used to measure model performance is the model’s accuracy rate, which
is the ratio of the number of correctly classified samples (True Positives (TP) + True Negatives (TN))
to the total sample number (True Positives (TP) + True Negatives (TN) + False Positives (FP) + False
Negatives (FN)). In this study, accuracy, sensitivity and specificity were used as evaluation criterion.
Their calculation is expressed by Formulas (1)–(3). In this study ROC curves were used as another
evaluation criterion.

Table 1. Confusion matrix.

Predicted Class

Actual Class
Positive Negative

Positive TP (True Positive) FN (False Negative)
Negative FP (False Positive) TN (True Negative)

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

The construction of the confusion matrix occurred at the end of our study, as presented in Table 2.

Table 2. Confusion matrix of sounds in real time.

Telephone Alarm Ringtone Honk Brake Dog Human Other Sounds

Telephone 1240 3 7 0 0 0 0 0
Alarm 12 1228 10 0 0 0 0 0

Ringtone 48 30 1165 0 0 0 1 6
Honk 0 0 0 690 380 123 7 50
Brake 0 0 0 153 1030 29 8 30
Dog 0 0 0 75 14 1139 5 17

Human 2 1 1 18 22 35 1114 57
Other sounds 0 0 0 15 18 65 53 1099

After the part including first 800 ms of data of the sound coming from our system was taken,
vibration has been given by determining which sound it is by AF method within 1100 ms. Thus,
operating time lasts for 1900 ms. In our real-time system, the best results were obtained by the AF
method, as shown in Figures 6 and 7. A high success rate was obtained for both indoor and outdoor
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sounds using the AF method. As shown in Figure 7, people can sense, with general city noise and
other effects, 55 dB(A) on average such outdoor sounds as honk, brake and dog barking.

Figure 6. Comparison of indoor sounds.

Figure 7. Comparison of outdoor sounds.

A fingerprint is created for every sound. New sound data are transmitted to user by going
through the same phases after pairing with any sound. Dogs may have different sounds. In this study,
14 different dog sounds have been recognized and all of them have been classified as dog sound. At the
same time, seven different honk sounds, four different brake sounds, five different doorbell sounds
and three different alarm sounds have been recognized in the step of training. The best results have
been achieved by MFCC after AF method. The ROC curves of the results of telephone, alarm, and
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ringtone obtained from real-time indoor sounds are shown in Figure 8. The ROC curves of the results
of honk, brake, dog and human voices obtained from real-time outdoor sounds are shown in Figure 9.
The results from real-time tests are shown in Table 3.

Figure 8. Indoor sounds (a) Telephone, (b) Alarm, (c) Ringtone ROC curves.

Figure 9. Outdoor sounds (a) Honk, (b) Brake, (c) Dog Barking, (d) Human ROC curves.

Table 3. Real-time test accuracy, sensitivity and specificity values.

Telephone Alarm Ringtone Honk Brake Dog Human Other Sounds

Accuracy 0.99 0.99 0.98 0.91 0.93 0.96 0.97 0.96
Sensitivity 0.99 0.98 0.93 0.55 0.82 0.91 0.89 0.87
Specificity 0.99 0.99 0.99 0.97 0.95 0.97 0.99 0.98
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As shown in Table 4, our method achieved better success than other methods. As shown in
Figure 10, the AF method has been tested in both real-time and indoor PC environments. In the
computer studies, sound was given by a speaker and has been guessed. In Figures 6 and 7, tests
were conducted in both indoor and outdoor environments and conclusions are shown. Our study
has been tested by giving sounds on speaker on PC environment at the same time. Using these tests
without noise, the method we developed has obtained a high achievement in all sounds. As shown in
Figure 10, the level of success in the outdoor environment seriously declines. PC environment means
the results of tests performed on computer. Thus, honk data are recorded on PC and which sound it is
was determined. For instance, honk sound is blown and it is determined on PC whether it is honk
sound. High achievement rate has been obtained because there is no noise on PC.

Table 4. Method comparison using environmental sounds.

General Accuracy
Accuracy (Real

Time, Real People
or with Noise)

Method Database

Ma et al. [9] 92% 35% MFCC + HMM 12 kinds of acoustic environment,
10 different acoustic environments

Eronen et al. [10] 69% 58% HMM, KNN 225 real-world recordings,
24 different contexts

Su et al. [11] 81% %28.6 Local Discriminant Bases 10 audio scenes and 21 sound
events

Wang et al. [12] 85.1% DVM + KNN
12 common kinds of home
environmental sound (totally
527 sound files)

Wang et al. [46] 89.78%
(Clean Sound)

84.25%
(SNR: 15 dB) MFCC 469 sound files (10 Classes)

Wang et al. [46] 90.63%
(Clean Sound)

88.51%
(SNR: 15 dB) Wavelet Subspace-based 469 sound files (10 Classes)

Our study 98%
(Clean Sound)

90%
(SNR: 15 dB) Audio Fingerprint 10,000 sound (8 Classes)

Our study 98%
(Clean Sound)

94%
(SNR: average 20 dB) Audio Fingerprint 10,000 sound (8 Classes)

Figure 10. Audio fingerprint method comparison in different test environment.

Comparison between those who are deaf and those with normal hearing after using the device is
shown in Figure 11. Deaf people, who have significant problems sensing important sounds, sensed
sounds in our real-time study at a high level. For example, sounds such as immediate vehicular
braking, or an aggressive dog approaching a person can be considered an important outdoor sound
that can cause fear in a person who is deaf, as well as decreased quality of life. As Figure 10 shows, a
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very high achievement has been provided in indoor sounds in the study with deaf people. While a
deaf individual is sleeping, a doorbell or telephone may ring. Using the wearable device we developed,
this person can sense a telephone ringing sound at 98%, an alarm sound at 98%, and a doorbell sound
at 97%. This device allows a deaf individual to have an improved quality of life, comfortably sensing
sounds in a home environment similar to those with normal hearing. With respect to outdoor sounds,
there is an achievement in a honk sound at 85%, a brake sound at 87% and a dog sound at 90%.

Figure 11. Comparison of deaf and normal hearing people.

6. Discussion

In this study, we first analyze the detection of sounds in an indoor and outdoor environment.
The results show that the method we have developed has advantages over conventional methods,
as it produces real-time results and achieves a high success rate. Our wearable device, consisting of
Rpi, a microphone sensor and a vibration motor, is placed on the back of the hearing-impaired person.
This device benefits from a low cost of production and high success rate (general accuracy is 94%),
allowing it to be easily used in daily life.

The greatest feature of our study is that the device we have developed operates in real-time, and
can be worn over a long period of time. Our device responds within average 1.9 s after receiving the
voice. This systematic delay is a level that can be overlooked. The disadvantage of our system is that
a sound comes and another sound may come at the same time. For instance, when there is a honk
sound, a human sound may come. In that case, the first coming sound is sensed. In future studies, it is
thought to transmit more important sound to user by recording coming sounds to prevent this case.
Especially, honk, brake and dog sounds are of huge significance for disabled people outside. From this
respect, it is thought that these sounds should be determined quickly with high achievement.

In our experimental studies, our rates of success declined in noisy environments. For instance,
while the sound of vehicular horns can be determined correctly at 97% with the AF method on a
computer, this rate decreases to 91% in a real-time environment. The main reason for this decline is
that the sound is far away and there is noise.

Ma et al. [9], Eronen et al. [10], Su et al. [11] Wang et al. [12] and Wang et al. [46] studied
environmental sound recognition, and have suggested the rates of success at 69%, 92%, 81%, 85%
and 89.78%, respectively. When these rates of success are tested in real-time, there are dramatic declines.
For instance, the rate of success reported by Su et al. [11] decreased to 28.6% in cases with noise, and
the rate of success of Eronen et al. [10] decreased to 58% in cases where their process was tested on
real people. In the study by Ma et al. [9], the human listening tests gave an overall accuracy of 35%.
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Wang et al. [46] used three S/N ratio (SNR) levels: 15 dB, 10 dB, and 5 dB. The rate of success of
Wang et al. [46] decreased to 84.25% in cases with 15 dB noise. The rate of success of Wang et al. [46]
decreased to 77.44% in cases with 5 dB noise. In our study, the rate of success decreased to 94% on
average in the real-time tests applied on real people in an indoor and outdoor environment. In our
study, SNR has been calculated as 20 dB on average. It has been calculated by averaging real-time
studies in indoor and outdoor environments. In the trials in SNR at 15 dB, success has been gained at a
rate of 90%.

In this study, a different vibration has been assigned for every sound. Different vibrations are
sometimes complicated for deaf people. In this respect, vibration events in this system will be improved
in future studies, and turned into a more user-friendly system. Since the sense of touch is active in
deaf people, vibrations have been chosen as the means of communication. There is only a vibration
motor the size of a coin wrapped over the finger of deaf person. Our wearable device is on the user’s
back, positioned at a level that will not disturb them, and can be used for a long time.

Our system first carries out process with respect to voice it senses. For example, there are dog’s
and human’s sounds, if dog’s sound comes first, it can sense that. When a mixture of sounds comes
together, it is decided whether it is an important mixture of sounds by considering spectrogram of
the sound. For example, when human voice and dog barking come at the same time, spectrogram
can be determined by their (higher or lower) frequency magnitude levels. In that case, it has been
ensured that deaf person can sense those sounds by giving vibrations that can help him to sense them.
Our system senses the sound within 1.9 s if there is no coincidence. It decides with respect to loudness
of voice if two sounds come at the same time. Our system misses it if a new sound comes within the
period of sensing. However, it will be fixed in the next studies. In the future studies, it is thought that
visualization will be added after sound is sensed. A new system will be developed for deaf people to
understand sound better in the next studies.

Our system also works for the sounds coming from a distance. In our trials for dog’s sound, time
of response decreased to 1.3 s. First 200 ms is enough for dog’s sound. By AF method, our wearable
device predicts that it is dog’s sound in 1.3 s. A special mode has been thought about for dog bark.
For it, a second Rpi system that is mounted and works only for dog bark has been considered.

While deaf people are walking, running or doing physical work, our system works. Tests are
performed while people are walking in outer environment. In home environment, tests are performed
while they are doing what they do in daily life. For instance, while a deaf person is cooking in the
kitchen, doorbell is rung and it is expected that the deaf person senses it. Our wearable device is a
device which is appropriate for long-term use and is user-friendly.

The wearable device we have developed is an easy-to-use and wearable device giving rapid
output. Our device designed for deaf people is understandable and has a rapid decision-making
mechanism for important sounds for deaf people. For instance, a deaf person does not hear door bell
and telephone sound while sleeping and at home alone. Thanks to the device we have developed, a
deaf person would sense these sounds very comfortably and have a life standard similar to normal
people. As seen in the answers to the survey of deaf people using the device, everyone wants to
use our device and thinks that it is beneficial. The questionnaire issued in this study indicates that
deaf people perceived the clarity of the system to be 90%, the usefulness of the system to be 97%,
and the likelihood of using this device again as 100%. Furthermore, one deaf patient wrote in the
comments section of the questionnaire that his self-confidence increased following this study, and that
he can sense such sounds as dog barking and vehicular braking in particular. Furthermore, the deaf
patient indicated that this study will be very beneficial for those who are deaf, should this system be
developed. This fulfills one of our major goals for this study, which is to improve quality of life for
deaf individuals.
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