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Abstract: The elderly are constantly in danger of falling and injuring themselves without anyone
realizing it. A safety-monitoring system based on microwaves can ease these concerns. The authors
have proposed safety-monitoring systems that use multiple-input multiple-output (MIMO) radar to
localize persons by capturing their biological activities such as respiration. However, our studies to
date have focused on localization, which is easier to achieve than an estimation of human postures.
This paper proposes a human posture identification scheme based on height and a Doppler radar
cross section (RCS) as estimated by a MIMO array. This scheme allows smart home applications to
dispense with contact and wearable devices. Experiments demonstrate that this method can identify
the supine position (i.e., after a fall) with 100% accuracy, and the average identification rate is 95.0%.
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1. Introduction

Recent studies have targeted smart home systems for safety-monitoring and energy saving.
However, the aging of society raises new social concerns such as lonely deaths and traffic accidents by
the elderly. The increase in the number of elderly people demands safety-monitoring systems that
can obviate these concerns by detecting the posture of the elderly. Existing solutions for indoor use,
such as networked video cameras [1] and wearable sensors [2,3], employ IoT (Internet of things)
devices. However, the former is an invasion of privacy, particularly in spaces such as the bathroom
and restroom. Some people also have an aversion to being continuously watched. Furthermore, such
a system provides only line-of-sight (LOS) coverage. The latter allows the state of the subject to be
discerned. However, it forces the elderly to wear a device and thus places excessive physical and
mental burdens on the user. Such a system is also unsuitable for the elderly because observation is not
possible when the person forgets to wear the device.

To avoid these problems, living-body sensing systems [4–6] have been studied. The use of
microwaves yields several key advances including privacy protection, contactless observation, and
non-line-of-sight (NLOS) coverage. Examples of microwave-based monitoring techniques include
direction of arrival (DOA) and direction of departure (DOD) estimation based on multiple-input
multiple-output (MIMO) radar systems [7,8]. Though these methods can localize targets, they
suffer from weak precision because the desired signal is buried by undesired waves due to the
multi-path environment. To solve this problem, human localization methods suitable for multi-path
environments have been proposed. There are three approaches to human localization: time difference
of arrival (TDOA) estimation [9,10], object localization [11] based on the multiple signal classification
(MUSIC) method [12], and the trigonometry methods based on DOA/DOD estimation using the
MUSIC method [13–15]. Though the TDOA methods can quickly localize targets even in multi-path
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environments by using frequency-modulated continuous-wave (FMCW) radar, this method is
expensive as it requires a wide bandwidth of 1.79 GHz (from 5.46 to 7.25 GHz). Additionally, they need
static channels, i.e., the environment must be measured without human interference in advance.
Moreover, the measurements must be repeated if the environment is changed, e.g., a piece of furniture
is shifted. Localization based on MUSIC [11] uses a low-frequency band, 250 MHz, and estimates
the target location by using spherical-mode MUSIC to process the oscillating return signal. However,
the array aperture is comparable to the estimated distance because of the low frequency, and this
method requires observation periods of over 10 s. Trigonometry-based localization [13–15] uses
MIMO radar with DOA estimation by the fast Fourier transform (FFT) technique [16]. However, this
method needs to observe the channel for several tens of seconds to accurately capture human activity
information.

The authors have proposed a fast living-body localization algorithm where the time-differential
channel is used to attain rapid DOA/DOD estimation in multi-path environments [17]. This algorithm
identifies the differences among observation times that correspond to cyclic human body activities
such as respiration and heartbeat. The living-body locations are estimated by applying the
two-dimensional MUSIC method [18] to the time-differential channel. This algorithm has an
observation period that corresponds to one cycle of biological activity. Its key feature is that this
method does not require calibration to the environment in advance. However, the above techniques
can estimate only target location. That is unfortunate as estimating human posture is very important in
detecting safety-related events such as falls. Therefore, human posture detection is needed for
comprehensive safety-monitoring systems.

In this paper, we propose a human posture identification scheme that uses a MIMO array.
This method estimates a three-dimensionally target location by using the time-differential channel
technique [17]; the Doppler radar cross section (RCS) is calculated from the power reflected from
the target and the distance between the estimated location and the receiver/transmitter. The human
posture is identified by applying the nearest neighbor algorithm [19] to the estimated height and
the Doppler RCS information. The three-dimensional localization procedure and the Doppler RCS
calculation are described below. Experiments are carried out in an actual indoor environment to
demonstrate that the proposed method can accurately estimate the human location and identify
human posture with over 90% accuracy.

2. Human Posture Identification Based on Height Doppler RCS of Subject Estimated by
MIMO Array

The authors previously proposed a fast localization algorithm that estimates subject locations by
using the time-variant channel in multi-path environments [17]. In this study, we apply the localization
method to the observation channel, and the 3-dimensional location of the subject is estimated by
MIMO radar. The Doppler RCS is calculated from the received power and the distance between
transmitter/receiver and the estimated target location. Human posture is estimated from the height
and the Doppler RCS of the subject as estimated by MIMO radar. The following text explains this
method in detail.

2.1. Three Dimensional Localization of Human Subject

This study assumes a MIMO array consisting of an Mr element array receiver and an Mt element
array transmitter. In a multi-path environment containing one person, the time-variant channel is
generated by the fluctuation of the human body’s surface due to body motion, respiration, and
heartbeat. We start by expressing the Mr ×Mt time-variant MIMO channel as

H(t) =

 h11(t) . . . h1Mt(t)
...

. . .
...

hMr1(t) . . . hMr Mt(t)

 , (1)
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where hij is the complex channel response from the j-th transmitter element to the i-th receiver element,
and t represents the observation time. Mr ×Mt MIMO radar can be considered to be an Mr Mt × 1
virtual single-input multiple-output (SIMO) radar [7]. The Mr Mt × 1 SIMO channel is expressed as

h(t) = [h11(t), . . . , hMr1(t), . . . , hMr Mt(t)]
T (2)

where {·}T is transposition. Though DOA and DOD can be estimated using this virtual SIMO channel,
unwanted path components disturb the estimation of the living-body location. Unwanted path
components consist of the direct wave from transmitter to receiver and waves reflected from the walls,
floor, and furniture, and these components are static. Therefore, we exclude the undesired components
by applying the fast localization algorithm [17] to the converted SIMO channel; the time-differential
channel is defined as

hsb(t, tsb) = h(t)− h(t + tsb) (3)

where tsb represents the time difference. The instantaneous correlation matrix, using the
time-differential channel hsb(t, tsb) with observing time t and time difference tsb, is defined as

Ri(t, tsb) = hsb(t, tsb)hsb(t, tsb)
H (4)

where {·}H means complex conjugate transposition. To recover eigenvalue rank, a correlation matrix is
calculated by averaging over the time, where both t and tsb are swept. This is expressed as

R = Ri(t, tsb), (0 ≤ t ≤ Tmax/2, Tmin/2 ≤ tsb ≤ Tmax/2) (5)

where {·} is the averaging operator, Tmax and Tmin are the maximum and minimum periods
corresponding to the biological activities, respectively. By eigenvalue decomposition, the averaged
correlation matrix R is given by

R = UΛUH , (6)

U = [u1, ..., uMr Mt ], (7)

Λ = diag([λ1, ..., λMr Mt ]) (8)

where U and Λ represent the eigenvector and the diagonal matrix representing eigenvalues,
respectively. At this time, the eigenvalues, Λ, are related as follows:

λ1 > λ2 = · · · = λMr Mt = σ2
f (9)

where σ2
f represents the expected value of the energy of the channel fluctuation component due to

noise. The eigenvector corresponding to noise, [u2, · · · , uMr Mt ], is expressed as UN . In this study,
subject location is estimated via three-dimensional MUSIC with a spherical mode vector—the original
MUSIC method [12] extended to cover the 3D domain. The three-dimensional spherical mode vector
a(x, y, z) is expressed as

a(x, y, z) = at ⊗ ar, (10)

at(x, y, z) = [e−j2πDt1/λ, . . . , e−j2πDt Mt /λ]T (11)

ar(x, y, z) = [e−j2πDr1/λ, . . . , e−j2πDr Mr /λ]T (12)

Drp =
√
(x− xrp)

2 + (y− yrp)
2 + (z− zrp)

2 (13)

Dtq =
√
(x− xtq)

2 + (y− ytq)
2 + (z− ztq)

2 (14)
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where at(x, y, z) and ar(x, y, z) are the steering vectors at the transmitting and receiving side,
respectively. ⊗ represents the Kronecker product, and λ is wavelength. Drp is the distance between
position (x, y, z) and the p-th receiver element, and Dtq is the distance between position (x, y, z) and
the q-th transmitter element, respectively. (xrp , yrp , zrp) and (xtq , ytq , ztq) are the positions of the p-th
receiver element and the q-th transmitter element, respectively. Here, the evaluation function of the
MUSIC method (MUSIC spectrum) is calculated as

P(x, y, z) =
aH(x, y, z)a(x, y, z)

aH(x, y, z)UNUH
N a(x, y, z)

. (15)

This MUSIC spectrum peak represents the estimated target location.

2.2. Doppler Radar Cross Section and Human Posture Identification

The first eigenvector, u1 of Equation (7), corresponds to target location. The converted SIMO
channel, h(t), (2), and the first eigenvector, u1, are multiplied to enhance the biological component of
the target, and this signal y(t) is expressed as

y(t) = uH
1 h(t). (16)

The observed signal, y(t), is Fourier-transformed, and is defined as F(ω). The received power
Pr(ω) is expressed as

Pr(ω) =
|F(ω)|2
Mr Mt

(17)

where ω represents frequency. Here, we define the Doppler radar cross section (RCS) by solving the
radar range equation for σ; this is expressed as

σ =
(4π)3R2

r R2
t

GrGtλ2Pt

∫ f2

f1

Pr(ω)dω (18)

where Rr and Rt represent the distances of the estimated target location from the centers of the receiver
and transmitter, respectively. Pt represents the transmitting power, and Gr and Gt are the gains of the
receiving antenna and transmitting antenna, respectively. f1 and f2 define the frequency range that
encompasses the vital sign effects.

First, we create training data of human posture. The dataset of the estimated height and the
Doppler RCS with N trials are made. To exclude sample outliers, we use the data lying within 30–70%
of the estimated height. The training data is made from every posture dataset. We evaluate the posture
identification rate of the K-nearest neighbor (k-NN) algorithm [19]. In this study, k is set to 1, and the
one nearest neighbor classifier is used.

3. Results

3.1. Experimental Condition and Measurement Setup

Table 1 and Figure 1 overview the measurement setup. The experiments used a 16× 16 MIMO
configuration. As shown in Figure 1, a single-pole 64 throw (SP64T) switch was used at the transmitting
side. Though the exact observation time is not the same for all elements in the MIMO channel
matrix, the time differences among the elements are so short compared to the vital activity that
they can be ignored. A continuous wave (CW) signal of 2.47125 GHz was used. The transmitting
power at the antennas was set to −28 dBm. The CW signal was split to the receiver side since
accurate synchronization between transmitting and receiving sides is needed. At the receiver side,
received signals are input to a down-converter unit by way of a low-noise amplifier (LNA) unit.
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The down-converted baseband signals (I1, Q1,∼I16, and Q16 ) were digitized by a data-acquisition unit
(DAQ) with a sampling frequency of 20 kHz. The snapshot rate of the MIMO channel is determined by
the switching speed of the SP64T. In the experiments, the rate for taking a snapshot of the MIMO
channel was set to 100 Hz.

Table 1. Measurement conditions.

Antenna Element (Tx/Rx) 16-Element Patch Antenna

Distance between Tx and Rx, d 4 m
Height of the Tx/Rx, h 0.8 m

Frequency 2.47125 GHz
Tx power −28 dBm

Snapshot rate 100 Hz
Database channel measurement time 10 s

Channel measurement time 2.56 s

Tx array Rx array

Y

X

Z

Signal

generator

Data acquisition

unit (DAQ)

Down
converter

LNASP64T

Amplifier

Q16I16Q1I1
…

… …

m

m

…

Figure 1. Measurement setup: low-noise amplifier (LNA), data-acquisition unit (DAQ).

Figure 2 shows a photo of the array antenna. The receiver and transmitter arrays have 16 patch
antennas in a vertical 4 × 4 array. All array antennas used a PTFE substrate, and an antenna
thickness, width, and height were 1.6, 60, and 240 mm, respectively. All antenna elements have
vertical polarization. The element space of the arrays of receiver and transmitter was half wavelength.
The array’s center was set to h = 0.8 m, the trunk height of the subjects. The straight line distance
between transmitting and receiving antennas was set to 4.0 m. The receiver and the transmitter faced
the center of the room.

Patch antenna

PTFE substrateFixture

Figure 2. Photo of the multiple-input multiple-output (MIMO) array: polytetrafluoroethylene (PTFE).
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In this study, the observation time for localization and calculating Doppler RCS was set to 2.56 s.
Thus, the number of snapshots was 256. The transmission components of S parameters were used as
the propagation channel. The number of targets was determined following the MUSIC method.
In this study, time difference tsb was set to 0.05 (s) ≤ tsb ≤ 2.5 (s) for localization, while the range of
frequency was set from 0.39 to 10.16 Hz in calculating the Doppler RCS; antenna gain Gr and Gt was
4.96 dB, and the averaged gain value was from −40◦ to 40◦.

Figure 3 shows the experimental environment. The experiment was carried out in a room
containing desks and shelves. The room had concrete walls and its width, depth, and height were 7.0,
6.0, and 2.7 m, respectively. One side of the room had four windows.

6.0 m

7.0 m

4.0

3.0

2.0

0

1.0

1.0 2.0 3.0 4.0

0 Rx Tx

Shelf

WindowDesk

X[m]

Y[m]

Target

Figure 3. Experimental environment.

Figure 4 shows the subject posture when the channel was observed. When the channel was
measured, the subject assumed positions in which he was standing (a), sitting on a chair (b), sitting
on the floor (c), and lying on his back (d); the measurement location was set to (X, Y) = (2.0, 2.0) (m).
The target faced the wall against which the antennas were set when the subject was standing and
sitting. The subject lay down with his feet toward the wall against which the antennas were set, and the
trunk of the subject was set at the measurement location. In all postures, the number of measurements
was 500, and the number of trials of posture identification was 3000.

(a) (b) (c) (d)

Figure 4. Photo of a target undergoing measurement. (a) The subject standing. (b) The subject sitting
on a chair. (c) The subject sitting on the floor. (d) The subject lying on his back.
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3.2. Results

3.2.1. Results of Measured Channel and Three Dimensional Localization

Figure 5 shows an example of the time-variant channel response, h11(t), of the observation
channel, H(t), for all postures. In this figure, “Static” indicates the channel response without a
living-body. In comparison with the static channel, all time-variant channels with a living-body,
Figure 5, exhibited change because the living-body’s activities altered the path. The variation
demonstrates the periodicity of biological activities such as respiration. Additionally, the standing
posture yielded the largest channel response. Moreover, standing created non-periodic components
due to gross body motion. The other positions, on the other hand, yielded far cleaner patterns,
as biological activity was the dominant factor.

-58
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-50

-48

0 5 10 15
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p
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tu
d

e 
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B
]

Observation time [s]

Standing

Sitting on the floor

Sitting on the chair

Lying Static

Figure 5. Example of the time-variant channel response.

Figure 6 shows an example of the MUSIC spectrum for living-body localization when the subject
stood at (X = 2.0 m, Y = 2.0 m). Figure 6a,b are the XY plane and the ZX plane at the spectrum
peak (i.e., estimated location), respectively. In these figures, the x-mark represents the spectrum peak,
and the human silhouette is displayed on the MUSIC spectrum. In this case, the estimated location is
(X, Y, Z) = (2.01, 1.83, 0.88) (m). These figures confirm that the estimated location lies close to the
human body, and the spectrum peak appears at the subject’s abdomen because the abdomen exhibits
the largest surface fluctuation.
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(b)

Figure 6. Example of the multiple signal classification (MUSIC) spectrum for localization when the
subject stood at (X = 2.0 m, Y = 2.0 m). (a) Example of the MUSIC spectrum in the XY plane.
(b) Example of the MUSIC spectrum in the ZX plane.
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Figure 7a,b show examples of the MUSIC spectrum for living-body localization in the XY and
ZX planes when the subject sat on a chair at (X = 2.0 m, Y = 2.0 m), respectively. In this result,
the estimated location is (X, Y, Z) = (1.98, 1.76, 0.74) (m). Figure 7a shows that the estimated location
(x-mark) appears on the subject’s face. The result of Figure 7b shows that the spectrum peak tracks the
subject’s abdomen, and the estimated height is lower than that of the standing position.
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Figure 7. Example of the MUSIC spectrum for localization when the subject sat on a chair at (X = 2.0 m,
Y = 2.0 m). (a) Example of the MUSIC spectrum in the XY plane; (b) Example of the MUSIC spectrum
in the ZX plane.

Figure 8 shows an example of the MUSIC spectrum for living-body localization when the subject
sat on the floor at (X = 2.0 m, Y = 2.0 m). The estimated location is (X, Y, Z) = (2.01, 1.83, 0.55) (m).
Figure 8a shows that the spectrum peak appears at the subject’s location. Figure 8b shows that the
estimated height was lower than that in the standing or sitting positions, and the peak appears close to
the chest of the subject.
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Figure 8. Example of the MUSIC spectrum for localization when the subject sat on the floor at
(X = 2.0 m, Y = 2.0 m). (a) Example of the MUSIC spectrum in the XY plane. (b) Example of the
MUSIC spectrum in the ZX plane.
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Figure 9 shows examples of the MUSIC spectrum for living-body localization in XY and ZX
planes when the subject lay on his back at (X = 2.0 m, Y = 2.0 m), respectively. The spectrum peak
appears at (X, Y, Z) = (1.92, 1.68, 0.11) (m). In this case, the subject’s body looks large on the XY
plane, the estimated location is again the abdomen of the subject. Additionally, the spectrum peak is
the lowest among all states. Therefore, the results show that the estimated location depends on the
subject’s posture, and the peak generally matches the abdomen of the target.
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Figure 9. Example of the MUSIC spectrum for localization when the subject lay on his back at
(X = 2.0 m, Y = 2.0 m). (a) Example of the MUSIC spectrum in the XY plane. (b) Example of the
MUSIC spectrum in the ZX plane.

Figure 10 shows the cumulative distribution function (CDF) of the estimation error in the XY
plane. The estimation error was defined by the Euclidean distance between the actual target location
and the estimated location in the XY plane. Table 2 shows the results of Figure 10. The median, the
90% value, and the root mean square error (RMSE) of the estimation error are used as the evaluation
metrics. For the standing position, the median, the 90% value, and the RMSE are 0.177 m, 0.271 m,
and 0.201 m, respectively. The median, the 90% value, and the RMSE of the sitting-on-a-chair position
are 0.101 m, 0.178 m, and 0.167 m, respectively. For the sitting-on-the-floor position, the median,
the 90% value, and the RMSE are 0.124 m, 0.160 m, and 0.202 m, respectively. When the subject lay
on his back, the median, the 90% value, and the RMSE of the estimation error were 0.237 m, 0.254 m,
and 0.236 m, respectively. The subject has a width of about 0.4 m, and the center of the subject was
always set on the vertical axis of the measurement location. Therefore, these results show that subject
location can be accurately estimated for all postures.

Table 2. All posture estimation error of the median, the 90% value, and the Root Mean Square
Error (RMSE).

Median Error (m) 90% Value (m) RMSE (m)

Standing 0.177 0.271 0.201
Sitting on the chair 0.101 0.178 0.167
Sitting on the floor 0.124 0.160 0.202
Lying on his back 0.237 0.254 0.236
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Figure 10. Cumulative distribution function (CDF) of the estimation error of all postures in the
XY plane.

3.2.2. Results of Human Posture Identification

Figure 11 shows the scatter diagram of the training data based on the estimated height and
the Doppler RCS for all postures. These postures have non-overlapping distributions in this
figure. In this figure, the estimated heights of the standing and the sitting-on-a-chair positions
are nearly unchanged, but they do have large variance in the Doppler RCS. On the one hand,
the sitting-on-the-floor position shows large variance in estimated height and in the Doppler RCS.
The lying position yields the smallest distribution of all postures.
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 h
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Figure 11. Scatter diagram of the training data based on the estimated height and the Doppler Radar
Cross Section (RCS).

Figure 12 shows the confusion matrix of the identified posture classified by the proposed method.
The number of the trials to identify each posture was 3000. In this figure, the true positive rate
(TPR) of the standing, sitting-on-a-chair, sitting-on-the-floor, and lying positions were 92.4%, 96.5%,
91.2%, and 100%, respectively. The lying position yielded the highest TPR because its distribution
is clearly different from the others, see Figure 11. Therefore, the proposed method can be used
by safety-monitoring systems to detect that a person has fallen. Note that the sitting-on-the-floor
position has the smallest TPR due to the large variation in height estimates. However, the TPR of
the sitting-on-the-floor position, 91.2%, indicates high accuracy. The average TPR in our experiments
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was 95.0%. Therefore, it is confirmed that human posture can be accurately identified by the
proposed method.

Predicted class

Standing
Sitting 
on the 
chair

Sitting
on the 
floor

Lying TPR

Actual 
class

Standing 2772 166 62 0 92.4%

Sitting on 
the chair

0 2894 106 0 96.5%

Sitting on 
the floor

80 166 2737 17 91.2%

Lying 0 0 0 3000 100%

Averaged TPR 95.0%

Figure 12. Confusion matrix of the identified posture classified by the proposed method: true positive
rate (TPR).

4. Conclusions

This paper proposes and demonstrates a human posture identification method that uses two
microwave (2.47125 GHz) MIMO arrays. This method is a non-contact and non-wearable technique
and thus well suits smart home applications. The MIMO antenna arrays measures the time-variant
channel created by the subject, and the target location is estimated in three dimensions by using the
time-differential channel technique and the Doppler RCS. The key is detecting the target’s vital signs
from the power reflected from the target and the relationship between the estimated location and
the receiver/transmitter. Human posture is identified by applying the nearest neighbor algorithm to
the estimated height and the Doppler RCS information. Experiments were carried out in an indoor
environment. The results showed that all postures had RMSE values of within 0.25 m. The results
demonstrated that the proposed method identified the supine posture with 100% accuracy, and
the average TPR was 95.0%. Therefore, we confirmed that the proposed method can identify human
posture with very high accuracy.
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Abbreviations

The following abbreviations are used in this manuscript:

MIMO Multiple-Input Multiple-Output
RCS Radar Cross Section
IoT Internet of Things
LOS Line-of-Sight
NLOS Non-Line-of-Sight
DOA Direction of Arrival
DOD Direction of Deperture
TDOA Time Difference of Arrival
MUSIC MUltiple SIgnal Classification
FMCW Frequency Modulated Continuous Wave
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FFT Fast Fourier Transform
SIMO single-input multiple-output
k-NN K-nearest neighbor
SP64T Single-Pole 64 Throw
LNA Low-Noise Amplifier
DAQ data-acquisition unit
CDF cumulative distribution function
RMSE root mean square error
TPR True Positive Rate
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