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Abstract: The imperfect array degrades the direction finding performance. In this paper, we investigate
the direction finding problem in uniform linear array (ULA) system with unknown mutual coupling
effect between antennas. By exploiting the target sparsity in the spatial domain, the sparse Bayesian
learning (SBL)-based model is proposed and converts the direction finding problem into a sparse
reconstruction problem. In the sparse-based model, the off-grid errors are introduced by discretizing
the direction area into grids. Therefore, an off-grid SBL model with mutual coupling vector is
proposed to overcome both the mutual coupling and the off-grid effect. With the distribution
assumptions of unknown parameters including the noise variance, the off-grid vector, the received
signals and the mutual coupling vector, a novel direction finding method based on SBL with unknown
mutual coupling effect named DFSMC is proposed, where an expectation-maximum (EM)-based
step is adopted by deriving the estimation expressions for all the unknown parameters theoretically.
Simulation results show that the proposed DFSMC method can outperform state-of-the-art direction
finding methods significantly in the array system with unknown mutual coupling effect.

Keywords: compressed sensing; direction finding; sparse Bayesian learning; mutual coupling effect

1. Introduction

In the direction finding problem, the traditional discrete Fourier transform (DFT)-based method
can only find one signal in one beam-width, so the resolution of such a method is too low to estimate
multiple signals. Therefore, the super-resolution methods have been proposed including multiple
signal classification (MUSIC) method [1,2], Root-MUSIC method [3], and the estimating signal
parameters via rotational invariance techniques (ESPRIT) method [4]. Additionally, the subspace
methods have also been improved to estimate the correlation signals, such as the spatial smoothing
MUSIC method [5]. However, the subspace methods only distinguish the noise and signal subspaces
and have not exploited additional characteristics of the received signals.

The compressed sensing (CS)-based methods have been proposed to estimate the directions by
exploiting the signal sparsity in the spatial domain [6–14]. Notably, the sparse Bayesian learning (SBL)
and the relevance vector machine (RVM) proposed in [15] can achieve better estimation performance in
the CS-based direction finding methods, where the directions are estimated by reconstructing the sparse
signals in the spatial domain with the corresponding distribution assumptions of unknown parameters.
Consequently, the SBL-based CS method, named CS-SBL, is developed in [16] to reconstruct the sparse
signals. However, in the CS-SBL method, the discrete grids are adopted to formulate the CS-based
system model, so the estimation performance is limited by the grid size. To further improve the
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estimation performance, dense grids can be adopted, but it will improve the computational complexity
in the sparse reconstruction algorithm.

Additionally, the dense grids improve the correlation between the grids and decrease the
performance of sparse reconstruction. The off-grid CS-based methods were proposed [17,18] to
overcome the grid problem in the CS-based model, such as the off-grid sparse Bayesian inference
(OGSBI) method proposed in [19]. In the off-grid CS-based system model, the ground-truth directions
are approximated by the Taylor expansion, so the performance of direction estimation can be improved
in the off-grid methods when the same grids are adopted. Moreover, by solving the roots of a
specific polynomial in an off-grid model, the Root-SBL method [20] was also proposed to decrease the
computational complexity of the SBL-based method. The grid evolution method was proposed in [21]
to refine the grids for the SBL-based method, and a dictionary learning algorithm is proposed in [22].

In a practical direction finding problem, the imperfection of the antenna array will decrease the
estimation performance, so the mutual coupling effect between antennas cannot be ignored [23,24].
The direction finding methods were proposed in [25–27] to decrease the mutual coupling effect.
However, in the existing sparse-based methods, the unknown mutual coupling effect is not considered,
especially in a scenario with off-grid effect.

In this paper, a symmetric Toeplitz matrix [28–30] is used to describe the mutual coupling effect,
and a novel direction estimation method is proposed. With both the off-grid and the mutual coupling
effect, the direction finding problem is investigated. A novel system model is formulated to describe
both the off-grid and the mutual coupling effect. Then, by exploiting the signal sparsity in the spatial
domain, a novel direction finding method based on SBL with unknown mutual coupling effect, named
DFSMC, is proposed. Additionally, with the distribution assumptions, we theoretically derive the
estimation of all unknown parameters using the expectation-maximum (EM)-based method in DFSMC,
where the unknown parameters include the mutual coupling vector, the noise variance, the signals,
the off-grid vector, et al. Finally, the proposed DFSMC method is compared with the state-of-art
methods in the direction finding performance. To summarize, we make the contributions as follows:

• The SBL-based system model with mutual coupling effect: With considering both the off-grid
and the unknown mutual coupling problems, a novel system model is formulated and transforms
the direction finding problems into a sparse reconstruction problem.

• The DFSM method for direction finding estimation: With the distribution assumptions of
all unknown parameters, a novel SBL-based direction finding method with unknown mutual
coupling effect, named DFSMC, is proposed. DFSMC method estimates the directions via
updating all the unknown parameters alternatively and achieves better estimation performance
than the state-of-art methods.

• The theoretical estimation expressions for all unknown parameters: In the proposed DFSMC
method, the EM method is adopted to estimate all the unknown parameters including the noise
variance, the received signals, the mutual coupling vector, and the off-grid vectors, et al. With the
distribution assumptions, we theoretically derive the expressions for all the unknown parameters.

The remainder of this paper is organized as follows. The system model for direction finding with
unknown mutual coupling effect is formulated in Section 2. The direction finding method based on
SBL is given in Section 3. The simulation results are given in Section 4. Finally, Section 5 concludes
the paper.

Notations: IN denotes an N × N identity matrix. E {·} denotes the expectation operation.
CN (a, B) denotes the complex Gaussian distribution with the mean being a and the covariance
matrix being B. ‖ · ‖2, ⊗, Tr {·}, (·)∗, (·)T and (·)H denote the `2 norm, the Kronecker product, the
trace of a matrix, the conjugate, the matrix transpose and the Hermitian transpose, respectively. R{a}
denotes the real part of complex value a. Additionally, for a vector a, [a]n denotes the n-th entry of a,
and diag{a} denotes a diagonal matrix with the diagonal entries from a. For a matrix A, A:,n denotes
the n-th column of A, and diag{A} denotes a vector with the entries from the diagonal entries of A.
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2. ULA System for Direction Finding

We consider the direction finding problem in the uniform linear array (ULA) system, where N
antennas are adopted and the inter-antenna element spacing is d. As shown in Figure 1, K unknown
signals with different directions (θk, K = 0, 1, . . . , K− 1) are received by the ULA. Thus, the received
signals in the N antennas can be expressed as

y(t) =
K−1

∑
k=0

Ca(θk)sk(t) + n(t) = CAs(t) + n(t), (1)

where the matrix C ∈ CN×N denotes the mutual coupling matrix, and the signals are collected into a

vector s(t) ,
[
s0(t), s1(t), . . . , sK−1(t)

]T
with the k-th signal being sk(t). Then, the received signals in

the ULA antennas can be expressed as y(t) ,
[
y0(t), y1(t), . . . , yN−1(t)

]T
, and the zero-mean additive

white Gaussian noise (AWGN) with the variance being σ2
n is n(t) ,

[
n0(t), n1(t), . . . , nN−1(t)

]T
. In this

paper, we suppose that the noise variance σ2
n is unknown. A ∈ CN×K denotes the steering matrix for

the K signals, and can be expressed as

A ,
[

a(θ0), a(θ1), . . . , a(θK−1)
]

, (2)

where the steering vector for the k-th signal can be written as a(θk) ,
[

a0(θk), a1(θk), . . . , aN−1(θk)
]T

,

an(θk) = ej2π nd
λ sin θk , and λ denotes the wavelength.

In this paper, we consider the direction finding problem with unknown mutual coupling effect
between antennas, and the mutual coupling effect can be described usually by a symmetric Toeplitz
matrix [29]. As expressed in (1), the mutual coupling matrix can be represented as

C =


1 c1 . . . cN−1

c1 1 . . . cN−2
...

...
. . .

...
cN−1 . . . c1 1

 , (3)

where cn (n = 1, 2, . . . , N − 1) denotes the mutual coupling coefficient between the n1-th antenna and
the n2-th antenna, and |n1 − n2| = n.

The signal model in (1) is a contiiuous domain model, and after the uniform sampling, a discrete
model can be obtained in a matrix form as

Y = CAS + N, (4)

where the sampling interval is Ts, the number of the samples is M. Y ∈ CN×M, S ∈ CK×M and
N ∈ CN×M are expressed as Y =

[
y(0), y(Ts), . . . , y((M− 1)Ts)

]
, S =

[
s(0), s(Ts), . . . , s((M− 1)Ts)

]
,

N =
[
n(0), n(Ts), . . . , n((M− 1)Ts)

]
. To simplify the notations, we define ym , y(mTs), nm , n(mTs)

and sm , s(mTs), so we have Y =
[
y0, y1, . . . , yM−1

]
, S =

[
s0, s1, . . . , sM−1

]
, N =

[
n0, n1, . . . , nM−1

]
.

However, the system model in (4) is hard to solve directly with the unknown mutual coupling
matrix C, so we try to express the matrix C in a vector form. The mutual coupling matrix in (3) can be

described alternatively by a vector c as C = Toeplitz{c}, where c ,
[
1, c1, . . . , cN−1

]T
is the first
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column of C, and Toeplitz{·} denotes the Toeplitz transformation. Therefore, after the simplification,
the received signals during the m-th sampling interval in (4) can be rewritten as

ym = CAsm + nm = Q(sm ⊗ c) + nm, (5)

where the mutual coupling effect is expressed by a vector c, and we use a matrix Q ∈ CN×KN to
rearrange the steering matrix A.

According to the lemma in [29,31,32], the matrix Q in (5) can be obtained as

Q ,
[

Q(θ0), Q(θ1), . . . , Q(θK−1)
]

. (6)

The k-th sub-matrix Q(θk) ∈ CN×N is Q(θk) = Q1(θk) + Q2(θk), where Q1(θk) and Q2(θk)

respectively are

Q1(θk) ,


a0(θk) a1(θk) . . . aN−1(θk)

a1(θk) a2(θk) . . . 0
...

...
. . .

...
aN−2(θk) aN−1(θk) . . . 0
aN−1(θk) 0 . . . 0

 , (7)

Q2(θk) ,


0 0 . . . 0 0
0 a0(θk) . . . 0 0
...

...
. . .

...
...

0 aN−3(θk) . . . a0(θk) 0
0 aN−2(θk) . . . a1(θk) a0(θk)

 . (8)

Therefore, by collecting the M samples into a matrix, the received signals in (4) can be finally
rewritten as

Y = Q(S⊗ c) + N. (9)

In this paper, we will propose a high resolution method to estimate the directions (θ0, θ1,. . . ,θK−1)
from the received signal matrix Y , where the signal matrix S, the mutual coupling vector c and the
noise variance σ2

n are all unknown.

θ
κ

…

θ
κ

θ
κ

θ
κ

d d

s
κ
(t) s

κ
(t) s

κ
(t) s

κ
(t)

Figure 1. The ULA system for direction finding.
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3. Direction Finding Method Based on Sparse Bayesian Learning

In this section, we propose a novel SBL-based method to estimate the directions (named Direction
Finding based on SBL with Mutual Coupling effect, DFSMC). The sparse model will be established
first, and the DFSMC will be proposed with the distribution assumptions of unknown parameters.

3.1. Sparse-Based Signal Model

Since the received signals are sparse in the spatial domain, we propose a sparse-based model to
estimate the directions with unknown mutual coupling effect. In the sparse-based model, the dictionary
matrix must be established first, so an over-complete dictionary matrix can be formulated by
discretizing the signal direction uniformly in the spatial domain

D ,
[

Q(ζ0), Q(ζ1), . . . , Q(ζU−1)
]
∈ CN×UN , (10)

where ζu denotes the u-th discretized direction (u = 0, 1, . . . , U − 1), U denotes the number of
discretized directions, the grid size is defined as δ , |ζu+1 − ζu|, and we use a vector to contain
all the discretized directions ζ ,

[
ζ0, ζ1, . . . , ζU−1

]
.

With the discretized directions and the system model in (9), a sparse-based on-grid direction
finding model can be expressed as

Y = D(X ⊗ c) + N, (11)

where X is a sparse matrix

X ,
[

x0, x1, . . . , xM−1

]
∈ CU×M. (12)

The structure of sparse matrix X is shown in Figure 2, and the sparse vectors (x0, x1, . . . , xM−1)
have the same support sets. When the direction of the k-th received signal θk is equal to the uk-th
discretized direction ζuk , we have Xuk ,m = Sk,m, so the u-th row and m-th column of X is

Xu,m =

{
Sk,m, u = uk

0, otherwise
. (13)

The sparse-based model in (12) assumes that the directions of received signals are exactly on the
discretized grids. However, in the practical direction finding system, when the direction θk is not on
the discretized grids, the direction θk can be represented by ζuk , which is a grid nearest to θk. Thus,
the corresponding matrix Q(θk) in (2) can be approximated by

Q(θk) ≈ Q(ζuk ) + (θk − ζuk )Ω(ζuk ), (14)

where the first-order derivative is defined as Ω(ζuk ) ,
∂Q(ζ)

∂ζ

∣∣∣
ζ=ζuk

. For example, as shown in Figure 3,

the direction of signal sk(t) is θk, and the nearest grid is ζ3. Thus, the corresponding matrix Q(θk)

in (14) can be written as Q(θk) ≈ Q(ζ3) + (θk − ζ3)Ω(ζ3).
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… … … …!

0 0 0 0!

S0,0 !S0,1 S0,2 S0,M-1

0 0 0 0!

Sk,0 !Sk,1 Sk,2 Sk,M-1

0 0 0 0!

… … … …!

The 0-th signal

The k-th signal

X=

The (M-1)-th samples

Figure 2. The structure of sparse matrix X.
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Figure 3. The off-grid approximation for direction.

Therefore, with the approximation in (14), the received signal in (9) can be approximated by a
sparse-based off-grid model

Y ≈ Ψ(ν)(X ⊗ c) + N, (15)

where Ψ(ν) , D +Ξ (diag {ν} ⊗ IN), Ξ ,
[
Ξ0, Ξ1, . . . , ΞU−1

]
, and the u-th submatrix of Ξ is denoted

as Ξu , Ω(ζu). Additionally, a vector ν ∈ RU×1 is used to represent the off-grid directions, and the
u-th entry is

νu =

{
θk − ζuk , u = uk

0, otherwise
. (16)

Finally, an off-grid sparse-based model is formulated for the direction finding problem in (15).
We will estimate the directions by reconstructing the sparse matrix X. The positions of non-zero entries
in X indicate the directions of received signals. Simultaneously, the unknown parameters including
the mutual coupling vector c, the noise variance σ2

n and the off-grid vector ν will also be estimated.

3.2. Distribution Assumptions

In the proposed DFSMC method, the sparse Bayesian learning theory is adopted, and the method
is established based on the distribution assumptions of all the unknown parameters. We assume that
the unknown parameters follow the following distributions:

• Noise N: Gaussian distribution;
• The precision of noise variance αn: Gamma distribution;
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• Sparse matrix X: Gaussian distribution;
• The precision of signal variance ι: Gamma distribution;
• Mutual coupling vector c: Gaussian distribution;
• The precision of mutual coupling variance ϑ: Gamma distribution;
• Off-grid vector ν: Uniform distribution.

The relationships between all the unknown parameters are given in Figure 4, and we will describe
the distributions more clear in the following contents.

Received signal 

Y
Sparse matrix X

Mutual coupling 

vector c

Off-grid vector 

ν

Hyperparameter a

Hyperparameter c

Hyperparameter d

Hyperparameter b

Hyperparameter eHyperparameter f

Signal variance 

precision ι

Mutual coupling 

variance precision ν

Grid space δ

Noise  N

Noise variance 

precision α
n

Figure 4. Graphical model of sparse bayesian learning for direction estimation.

3.2.1. The Distribution of Noise

When the received signals are independent between different samples, with the assumption of
circular symmetric white Gaussian noise, the distribution of noise can be expressed as

p(N|σ2
n) =

M−1

∏
m=0
CN (nm|0N×1, σ2

n IN), (17)

where σ2
n denotes the noise variance, and the complex Gaussian distribution with the mean being µ

and the covariance matrix being Σ is expressed as

CN (x|µ, Σ) =
1

πN det(Σ)
e−(x−µ)HΣ−1(x−µ). (18)

3.2.2. The Distribution of Noise Variance σ2
n

In this paper, the noise variance is unknown. Since the Gamma distribution is a conjugate prior of
Gaussian distribution, the posterior distribution also follows a Gamma distribution. Therefore, using
the Gamma distribution can simplify the following analysis. With the unknown noise variance σ2

n,
we use a Gamma distribution to describe the precision of noise variance αn , σ−2

n , and we have the
following Gamma distribution

p(αn) = g(αn; a, b), (19)

where a and b are the hyperparameters for αn, and g(αn; a, b) , Γ−1(a)baαa−1
n e−bαn , Γ(a) ,∫ ∞

0 xa−1e−xdx.
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3.2.3. The Distribution of Sparse Matrix

With the independent received signals S among samples, we can assume that the sparse matrix X
follows a zero-mean Gaussian distribution

p(X|Λx) =
M−1

∏
m=0
CN (xm|0U×1, Λx), (20)

where the covariance matrix Λx ∈ RU×U is a diagonal matrix with the u-th diagonal entry being σ2
x,u.

3.2.4. The Distribution of Signal Variance

Similarity, with the unknown signal variance Λx, we define the precision vector ι ,[
ι0, ι1, . . . , ιU−1

]T
, where ιu , σ−2

x,u , so ι can be expressed by a Gamma prior

p(ι; c, d) =
U−1

∏
u=0

g(ιu; c, d), (21)

where c and d are the hyperparmaters for ι.

3.2.5. The Distribution of Mutual Coupling Vector

With the unknown mutual coupling vector, when the mutual coupling coefficients are
independent between antennas, the distribution of mutual coupling vector c can be expressed as
a Gaussian distribution

p(c|Λc) =
N−1

∏
n=0
CN (cn|0, Λc), (22)

where the covariance matrix Λc ∈ RN×N is a diagonal matrix with the n-th diagonal entry being σ2
c,n.

3.2.6. The Distribution of Mutual Coupling Variance

By defining the precisions ϑ ,
[
ϑ0, ϑ1, . . . , ϑN−1

]T
(ϑn , σ−2

c,n ), we use a Gamma distribution to
describe the distribution of ϑ

p(ϑ; e, f ) =
N−1

∏
n=0

g(ϑn; e, f ), (23)

where both e and f are the hyperparameters of ϑ.

3.2.7. The Distribution of Off-Grid Vector

We can assume that the off-grid vector ν follows a uniform distribution, and the distribution of νu

can be expressed as

p(νu; δ) = Uνu

([
−1

2
δ,

1
2

δ

])
, (24)

where the uniform distribution is defined as

Ux ([a, b]) ,

{
1

b−a , a ≤ x ≤ b

0, otherwise
. (25)
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3.3. DFSMC Method

With the distribution assumptions of unknown parameters, a novel direction finding method
based on the SBL is proposed with the unknown mutual coupling effect, named DFSMC.
In the SBL-based method, the posterior probabilities for all the unknown parameters are
theoretically derived.

To estimate the directions, we formulate the following problem to maximize the posterior probability

℘̂ = arg max
℘

p(℘|Y), (26)

where a set ℘ ,
{

X, ν, c, σ2
n, ι, ϑ

}
is used to contain all the unknown parameters. However,

the problem (26) is too complex and cannot be solved directly. The expectation maximum (EM)-based
method is used to realize the proposed DFSMC method. Additionally, with the received signal Y ,
the joint distribution with unknown parameters can be expressed as

p(Y ,℘) = p(Y |℘)p(X|ι)p(c|ϑ)p(αn)p(ι)p(ϑ)p(ν). (27)

The details to estimate all unknown parameters are given as follows.

3.3.1. The Sparse Matrix

Given the received signal Y and the parameters (℘\X) excepting X, the the posterior of X can be
expressed as

p(X|Y , ν, c, αn, ι, ϑ) =
p(Y |℘)p(X|ι)

p(Y |ν, c, αn, ι, ϑ)
∝ p(Y |℘)p(X|ι), (28)

where both p(Y |℘) and p(X|ι) follow Gaussian distributions, and can be calculated as

p(Y |℘) =
M−1

∏
m=0

αN
n

πN e−αn‖ym−Ψ(ν)(xm⊗c)‖2
2 , (29)

p(X|ι) =
M−1

∏
m=0

(
U−1

∏
u=0

ιu

)
1

πU e−xH
m diag{ι}xm . (30)

Therefore, the posterior of X is also a Gaussian function

p(X|Y , ν, c, αn, ι, ϑ) =
M−1

∏
m=0
CN (xm|µm, ΣX), (31)

where the mean µm and covariance matrix ΣX are obtained from (29) and (30) as

µm = αH
n ΣH

X TH(ν, c)ym, (32)

ΣX =
[
αnT

H(ν, c)T(ν, c) + diag{ι}
]−1

, (33)

and we define the following function

T(ν, c) , Ψ(ν)(IU ⊗ c). (34)

Additionally, to simplify the notations, the u-th entry of µm is denoted as µu,m, and we can collect

all the mean µm as a matrix µ ,
[
µ0, µ1, . . . , µM−1

]
.
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To estimate the other unknown parameters ℘\X, with (27), we can formulate the following
likelihood function

L(ν, c, αn, ι, ϑ) = E
{

ln p(Y |℘)p(X|ι)p(c|ϑ)p(αn)p(ι)p(ϑ)p(ν)
}

. (35)

where we just use E{·} to represent EX|Y ,ν,αn,ι,ϑ{·}. Thus, the EM-based method can be used to estimate
℘\X, and the details are given in the following contents. Additionally, the derivatives for the complex
vector and matrix are given as the following lemma.

Lemma 1. With both the complex vectors (u ∈ CP×1, v ∈ CP×1) and the complex matrix A ∈ CM×P being
the function of a complex vector x ∈ CN×1, the following derivations can be obtained

∂uHv
∂x

= vT ∂(u∗)
∂x

+ uH ∂v
∂x

, (36)

∂Au
∂x

=
[

∂A
∂x0

u + A ∂u
∂x0

, . . . , ∂A
∂xn

u + A ∂u
∂xn

, . . .
]

. (37)

Proof. See: Appendix A.

3.3.2. The Mutual Coupling Vector

Ignoring terms independent thereof in L(ν, c, αn, ι, ϑ), we can obtain the following likelihood
function for the mutual coupling vector c

L(c) = E {ln p(Y |X, ν, c, αn)p(c|ϑ)}

= E
{

ln
M−1

∏
m=0
CN (ym|Ψ(ν)(xm ⊗ c), α−1

n IN)

}
+ ln

N−1

∏
n=0
CN (cn|0, ϑ−1

n ) (38)

∝ −αnMG1(c, ν)−
M−1

∑
m=0

αnG2,m(c, ν)− G3(c),

where we have

E {ln p(Y |X, ν, c, αn)} =MN ln
αn

π
− αnMG1(c, ν)−

M−1

∑
m=0

αnG2,m(c, ν), (39)

and G1(c, ν) , Tr
{
TH(ν, c)T(ν, c)ΣX

}
, G2,m(c, ν) , ‖ym −Ψ(ν)(µm ⊗ c)‖2

2, G3(c) , ∑N−1
n=0 ϑn|cn|2.

To estimate the mutual coupling vector c, we can maximize the likelihood function L(c),
and we have

ĉ = arg max
c
L(c). (40)

Therefore, by setting ∂L(c)
∂c = 0, the mutual coupling vector can be obtained. We can calculate

∂L(c)
∂c

= −αnM
∂G1(c, ν)

∂c
−

M−1

∑
m=0

αn
∂G2,m(c, ν)

∂c
− ∂G3(c)

∂c
. (41)

In (41), ∂G1(c,ν)
∂c , ∂G2,m(c,ν)

∂c and ∂G3(c)
∂c can be calculated as follows.

• For ∂G1(c,ν)
∂c : With the derivations of complex vector and matrix in Appendix A, ∂G1(c,ν)

∂c is a row
vector, and the n-th entry can be calculated as[

∂G1(c, ν)

∂c

]
n
= Tr

{
∂TH(ν, c)T(ν, c)ΣX

∂cn

}
. (42)
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Additionally, we can calculate

∂TH(ν, c)T(ν, c)ΣX

∂cn
=

∂(IU ⊗ c)H

∂cn
ΨH(ν)T(ν, c)ΣX] + TH(ν, c)Ψ(ν)

∂(IU ⊗ c)
∂cn

ΣX

= TH(ν, c)Ψ(ν)

(
IU ⊗

∂c
∂cn

)
ΣX = TH(ν, c)T(ν, eN

n )ΣX, (43)

where eN
n is a N × 1 vector with the n-th entry being 1 and other entries being 0. Therefore,

the n-th entry in (42) can be simplified as[
∂G1(c, ν)

∂c

]
n
= cH

(
U−1

∑
p=0

U−1

∑
k=0

ΨH
p (ν)Ψk(ν)ΣX,k,p

)
eN

n , (44)

and we finally have the derivation of G1(c, ν) as

∂G1(c, ν)

∂c
= cH

(
U−1

∑
p=0

U−1

∑
k=0

ΨH
p (ν)Ψk(ν)ΣX,k,p

)
.

• ∂G2,m(c,ν)
∂c can be simplified as

∂G2,m(c, ν)

∂c
= −[ym −Ψ(ν)(µm ⊗ c)]HΨ(ν)

∂µm ⊗ c
∂c

= −[ym −Ψ(ν)(µm ⊗ c)]HΨ(ν)(µm ⊗ IN). (45)

• ∂G3(c)
∂c can be simplified as ∂G3(c)

∂c = cH diag{ϑ}.

Therefore, with (41), the mutual coupling vector can be finally estimated as

ĉ = H−1z, (46)

where

H =
M−1

∑
m=0

αnP
H(ν, µm)P(ν, µm) + αnM

(
U−1

∑
p=0

U−1

∑
k=0

ΨH
p (ν)Ψk(ν)ΣX,k,p

)H

+ diag{ϑ}, (47)

z =
M−1

∑
m=0

αnP
H(ν, µm)ym, (48)

and we define P(ν, µm) , Ψ(ν)(µm ⊗ IN).

3.3.3. For the Precision of Signal Variance

Ignoring terms independent thereof in L(ν, c, αn, ι, ϑ), we can obtain the likelihood function of
ι as

L(ι) =E {ln p(X|ι)p(ι)} = E
{

ln
M−1

∏
m=0
CN (xm|0U×1, Λx)

}
+ ln

U−1

∏
u=0

g(ιu; c, d). (49)

Then, the precision of signal variance can be estimated by ι̂ = arg maxι L(ι).
By setting ∂L(ι)

∂ι = 0, the u-th entry of ι can be obtained as

ι̂u =
M + c− 1

d + MΣX,u,u + ∑M−1
m=0 |µu,m|2

. (50)
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In the iterative algorithm, (50) can be rewritten as

ι̂i+1
u ≈

M− 1− ι̂iu ∑M−1
m=0 |µu,m|2

d + MΣX,u,u
, (51)

where ι̂i+1
u and ι̂iu are the esitmated results at the (i + 1)-th and the i-th iterations, respectively.

3.3.4. For αn

Ignoring terms independent thereof in L(ν, c, αn, ι, ϑ), we can obtain the likelihood function

L(αn) = E {ln p(Y |X, ν, c, αn)p(αn)}

= E
{

ln
M−1

∏
m=0
CN

(
ym|Ψ(ν)(xm ⊗ c), σ2

n I
)}

+ ln g(αn; a, b). (52)

The precision of noise variance can be estimated by

α̂n = arg max
αn
L(αn). (53)

By setting ∂L(αn)
∂αn

= 0, we can obtain

α̂n =
MN + a− 1

MG1(c, ν) + ∑M−1
m=0 G2,m(c, ν) + b

. (54)

In the iterative algorithm, (54) can be rewritten as

α̂i+1
n ≈

MN − 1− α̂i
n ∑M−1

m=0 G2,m(c, ν)

MG1(c, ν) + b
., (55)

where α̂i+1
n and α̂i

n are the esitmated results at the (i + 1)-th and the i-th iterations, respectively.

3.3.5. For the Precision of Mutual Coupling Variance

Ignoring terms independent thereof in L(ν, c, αn, ι, ϑ), we can obtain the likelihood function

L(ϑ) = E {ln p(c|ϑ)p(ϑ)} = E
{

ln
N−1

∏
n=0
CN (cn|0, ϑ−1

n )

}
+ ln

N−1

∏
n=0

g(ϑn; e, f ). (56)

The precision of mutual coupling variance can be estimated by ϑ̂ = arg maxϑ L(ϑ).
By setting ∂L(ϑ)

∂ϑ = 0, we can obtain the n-th entry of ϑ as

ϑ̂n ≈
1

f + cH
n cn

. (57)

3.3.6. For the Off-Grid Vector

Ignoring terms independent thereof in L(ν, c, αn, ι, ϑ), we can obtain the likelihood function

L(ν) = E {ln p(Y |X, ν, c, αn)p(ν)} ∝ −MG1(c, ν)−
M−1

∑
m=0
G2,m(c, ν). (58)
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The off-grid vector can be estimated by

ν̂ = arg max
ν
L(ν). (59)

Then, ∂G1(c,ν)
∂ν ∈ R1×U is a row vector, and the u-th entry is[

∂G1(c, ν)

∂ν

]
u
= Tr

{
∂TH(ν, c)T(ν, c)ΣX

∂νu

}
= Tr

{[
0,TH(ν, c)Ξuc, 0

]
ΣX

}
+ Tr

{[
0,TH(ν, c)Ξuc, 0

]H
ΣX

}
= 2R

{
U−1

∑
m=0

cHΨH
m(ν)ΞucΣX,u,m

}
= 2R

{[
TH(ν, c)Ξuc

]H
ΣX,:,u

}
. (60)

∂G1(c,ν)
∂ν can be simplified as

∂G1(c, ν)

∂ν
= 2R

{
diag

{
ΣXT

H(ν, c)Ξ(IU ⊗ c)
}T
}

. (61)

Additionally, ∂G2,m(c,ν)
∂ν can be obtained as

∂G2,m(c, ν)

∂ν
= −2R

{
[ym −Ψ(ν)(µm ⊗ c)]H

∂Ψ(ν)(µm ⊗ c)
∂ν

}
(62)

= −2R
{
[ym −Ψ(ν)(µm ⊗ c)]HΞ(diag{µm} ⊗ c)

}
.

Therefore, with ∂L(ν)
∂νu

= 0, we can obtain

ν̂ = G−1z, (63)

where the entry of the u-th row in G ∈ RU×U is

Gu,: =R
{

McHΞH
u Ξ(diag {ΣX,:,u} ⊗ c)

}
+

M−1

∑
m=0
R
{

µm,ucTΞT
u Ξ*(IU ⊗ c∗)diag∗ {µm}

}
, (64)

and the u-th entry of z ∈ RU×1 is

zu =
M−1

∑
m=0
R
{
[ym − D(µm ⊗ c)]HΞuµm,uc

}
−MR

{
cHΞH

u D(IU ⊗ c)ΣX,:,u

}
. (65)

In Algorithm 1, we show the details of the proposed DFSMC method for the direction finding with
the unknown mutual coupling effect. In the proposed DFSMC algorithm, after the iterations, we can
obtain the spatial spectrum PX of the sparse matrix X from the received signal Y . Then, by searching
all the values of PX, the corresponding peak values can be found. By selecting positions of peak values
corresponding to the K maximum values, we can estimate the directions with ζ + ν.
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Algorithm 1 DFSMC algorithm for direction finding with the unknown mutual coupling effect.

1: Input: received signal Y , the number of samples M, the numbers of iterations N1, N2 and N3

dictionary matrix D, the first order derivative of dictionary matrix Ξ. Usually, we have N1 = 103,

N2 = 300, N3 = 50, b = d = f = 10−3, and a = c = e = 1 + b.

2: Initialization: iiter = 1, smethod = 0, imethod = 1, ĉ = ϑ̂ = [1, 01×(N−1)]
T , and ν̂ = 0U×1.

3: Ψ(ν̂)← D + Ξ (diag {ν̂} ⊗ IN).

4: while iiter ≤ N1 do

5: Obtain T(ν, c) from (34).

6: Obtain the mean µm (m = 0, 1, . . . , M − 1) and covariance matrix ΣX from (32) and (33),

respectively.

7: Update the precision of noise variance α̂n from (55).

8: Update the precision of signal variance ι̂ from (51).

9: Obtain the spatial spectrum PX =

[
1
ι̂0

, 1
ι̂1

, . . . , 1
ι̂N−1

]T
.

10: if iiter ≥ N2 and smethod = 1 then

11: imethod ← imethod + 1.

12: if imethod = N3 then

13: imethod ← 1.

14: smethod ← 0.

15: end if
16: Update the off-grid vector ν̂ from (63).

17: Ψ(ν̂)← D + Ξ (diag {ν̂} ⊗ IN).

18: end if
19: if iiter ≥ N2 and smethod = 0 then

20: imethod ← imethod + 1.

21: if imethod = N3 then

22: imethod ← 1.

23: smethod ← 1.

24: end if
25: Update the precision of mutual coupling variance ϑ̂ from (57).

26: Update the mutual coupling vector ĉ from (46).

27: end if
28: iiter ← iiter + 1.

29: end while
30: Output: the spatial spectrum PX, and the directions (ζ + ν).
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4. Simulation Results

Extensive simulation results have been conducted. All experiments are conducted in Matlab
R2017b on a PC with a 2.9 GHz Intel Core i5 and 8 GB of RAM, and Matlab codes have been made
available online at https://drive.google.com/drive/folders/1XwzbNtHXfjTrN4-wylAhGI-CwIY3u3K1.
The mutual coupling effect can be generated by the following expression

cn =

(1 + ξc)ejφc10
αc(1+0.5n)

20 , n < 5

0, otherwise
, (66)

where ξc ∼ Uξc ([−0.05, 0.05]), φc ∼ Uφc ([0, 2π]), and we use the parameter αc in dB to measure the
mutual coupling effect between adjacent antennas. Additionally, we use the independent Gaussian
distribution to generate the received signals, and for the m-th sample in the n-th antenna, we have
sn,m ∼ CN

(√
2ej π

2 , 1
)

.
In this paper, to compare with the state-of-art direction estimation methods, we compare the

proposed DFSMC method with the following algorithms:

• CS-SBL (The MATLAB code was downloaded at http://people.ee.duke.edu/~lcarin/BCS.html),
the Bayesian compressive sensing method proposed in [16].

• OGSBI (The MATLAB code was downloaded at https://sites.google.com/site/zaiyang0248/pu
blication), the off-grid sparse Bayesian inference method proposed in [19].

• MUSIC, the multiple signal classification method [1,2].

With the simulation parameters in Table 1 and the the mutual coupling between adjacent antennas
being αc = −8 dB, the spatial spectrum is given in Figure 5, where the proposed DFSMC is compared
with MUSIC, CS-SBL and OGSBI methods. The estimated directions for K = 3 signals are given
in Table 2. Additionally, the iteration processes of DFSMC, CS-SBL, and OGSBI methods are also
given in Figure 6. With both the mutual coupling effect and off-grid, the proposed DFSMC method is
advantageous in this scenario.

As shown in Figure 6, in the first 300 iterations, DFSMC method only updates the parameters
µm, ΣX and ι. Then, during the 301 to 350 iterations, the mutual coupling parameters c and ϑ are
updated. For the next 50 iterations, the off-grid parameter ν is updated. With repeating the 50
iterations to update the mutual coupling parameters and the off-grid parameter, the direction error
can be decreased. Moreover, as shown in Figure 6, when only the mutual coupling parameters
are updated, the direction estimation performance can be not improved with the correct estimated
directions. However, for the next off-grid estimation, the better performance can be achieved with the
updated mutual coupling parameters.

Table 1. Simulation Parameters.

Parameter Value

The signal-to-noise ratio (SNR) 20 dB

The number of samples M 100

The number of antennas N 20

The number of signals K 3

The space between antennas d 0.5 wavelength

The grid space δ 1◦

The direction range [−60◦, 60◦]

The hyperparameters b, d, f 10−3

N1 in Algorithm 1 N1 = 103

N2 in Algorithm 1 N2 = 300

N3 in Algorithm 1 N3 = 50

https://drive.google.com/drive/folders/1XwzbNtHXfjTrN4-wylAhGI-CwIY3u3K1
http://people.ee.duke.edu/~lcarin/BCS.html
https://sites.google.com/site/zaiyang0248/publication
https://sites.google.com/site/zaiyang0248/publication
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Table 2. Estimated directions (αc = −8 dB).

Methods Signal 1 Signal 2 Signal 3

Ground-truth directions −8.268◦ 18.128◦ 30.428◦

OGSBI −8.267◦ 17.69◦ 30.02◦

CS-SBL −8◦ 18◦ 30◦

MUSIC −8◦ 18◦ 30◦

DFSMC −8.254◦ 18.13◦ 30.27◦
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Figure 5. The spatial spectrum for direction estimation (αc = −8 dB).
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Figure 6. The estimation error with iterations (αc = −8 dB).

The estimated spatial spectrum is shown in Figure 5. It can be seen that the positions of peak
spectrum are closer to the ground-truth directions using the DFSMC method than the OGSBI, CS-SBL
and MUSIC methods. The corresponding estimated directions are given in Table 2. When we use the
following expression to measure the estimation performance

e1 =

√
1
K
‖θ̂− θ‖2

2, (67)

where θ̂ denotes the estimated directions. Then, the estimation errors (in deg) of DFSMC, OGSBI,
CS-SBL and MUSIC methods can be obtained as 0.092◦, 0.346◦, 0.301◦ and 0.301◦, respectively.
Therefore, since the mutual coupling effect is estimated in the proposed DFSMC method, the direction
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estimation performance is much better than the existing methods including OGSBI, CS-SBL
and MUSIC.

When the mutual coupling effect increases from αc = −8 dB to αc = −5 dB, the corresponding
iteration processes and the spatial spectrums of DFSMC, CS-SBL, OGSBI and MUSIC methods are given
in Figures 7 and 8. The estimated directions are given in Table 3, and the estimation errors (in deg) of
DFSMC, OGSBI, CS-SBL and MUSIC methods can be obtained as 0.134◦, 1.024◦, 1.128◦ and 1.495◦.
Compared with the direction estimation performance in the scenario αc = −8 dB, the performance in
the scenario αc = −5 dB decreases for all the methods, so the mutual coupling effect has a great effect
on the direction estimation performance. However, the proposed DFSMC method can also achieve
much better performance than existing methods.

With the 100 trails, the direction estimation performance with different SNRs is given in
Figure 9, where we use the following root-mean-square error (RMSE) expression to measure the
estimation performance

e2 =

√√√√ 1
KP

P−1

∑
p=0
‖θ̂p − θp‖2

2, (68)

where P denote the number of trails, θp denotes the directions in the p-th trail, and θ̂p denotes the
estimated directions in the p-th trail. As shown in Figure 9, the proposed DFSMC method achieves
the best estimation performance when the SNR of received signals is greater than 0 dB. Almost the
same estimation performance is achieved by the MUSIC and CS-SBL method. However, with the
mutual coupling effect, the direction grids usually cannot be estimated correctly, so the further off-grid
optimization in OGSBI cannot improve the estimation performance. Figure 9 indicates that our
proposed DFSMC method is very advantageous in the cases when the SNR of received signals is large.

�
��
��
��
�
�
r�
��
�
�r
d�
��
g

sI2

2

����������

s x�2sx 6�2sx 3�2sx ��2sx 2s4

Figure 7. The estimation error with iterations (αc = −5 dB).

Table 3. Estimated directions (αc = −5 dB).

Methods Signal 1 Signal 2 Signal 3

Ground-truth directions −8.268◦ 18.128◦ 30.428◦

OGSBI −8.222◦ 17.29◦ 31.99◦

CS-SBL −8◦ 17◦ 32◦

MUSIC −8◦ 18◦ 33◦

DFSMC −8.260◦ 18.11◦ 30.66◦
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Figure 8. The spatial spectrum for direction estimation (αc = −5 dB).
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Figure 9. The direction estimation performance with different SNRs.

With different mutual coupling effects between antennas, we show the simulation results
in Figure 10, where the mutual coupling effect αc between adjacent antennas is from −16 dB to
−2 dB. Since the proposed DFSMC method estimates the mutual coupling vector c iteratively,
and DFSMC achieves the best estimation performance among the existing methods including CS-SBL,
OGSBI, and MUSIC. It can be seen that with optimizing the off-grid and the mutual coupling vector,
the performance of direction estimation can be improved by estimating the sparse signals in the
continue domain using the DFSMC method. The computational complexity of the proposed algorithm
mainly depends on step 6, step 16 and step 26. The computational complexity of step 6, step 16 and
step 26 can be obtained as O(MU2N + UN2 + U3), O(U3 + MNU2) and O(U3 + MU2N). Therefore,
the computational complexity of the proposed algorithm can be obtained as O(U3 + MU2N + UN2).
Additionally, with U ≥ N, the computational complexity can be simplified as O(MUN2).
The computational complexity of the proposed algorithm has the same order of the SBL-based
algorithms, such as the OGSBI algorithm and the SBL algorithm.
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Figure 10. The direction estimation performance with different mutual coupling effect.

5. Conclusions

The direction finding problem with the unknown mutual coupling effect has been investigated
in this paper. The novel DFSMC method has been proposed to estimate the directions, the means,
and variance of received signals, the mutual coupling vector, the noise variance, and the off-grid
vector, et al. iteratively. Additionally, the expressions to estimate the unknown parameters have been
theoretically derived using the EM method. Simulation results confirm that the proposed DFSMC
method outperforms the existing direction finding methods in the ULA system with the unknown
mutual coupling effect. Future work will focus on the extension of the proposed DFSMC method in
the scenario with correlated signals.
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Appendix A. Proof of Lemma 1

When the complex vectors u and v are the functions of x, we can obtain

∂uHv
∂x

=
[

∂uHv
∂x0

, ∂uHv
∂x1

, . . . , ∂uHv
∂xN−1

]
=
[

∂ ∑M−1
m=0 u∗mvm

∂x0
, . . . , ∂ ∑M−1

m=0 u∗mvm
∂xn

, . . .
]

=
[
. . . , ∑M−1

m=0
∂u∗m
∂xn

vm + u∗m
∂vm
∂xn

, . . .
]
=

[
. . . ,

(
∂u∗
∂xn

)T
v + uH ∂v

∂xn
, . . .

]
= vT

[
∂u∗
∂x0

, . . . , ∂u∗
∂xn

, . . .
]
+ uH

[
∂v
∂x0

, . . . , ∂v
∂xn

, . . .
]

= vT ∂(u∗)
∂x

+ uH ∂v
∂x

. (A1)
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With A and u being the function of x, we can obtain the entry in m-th row and n-th column of
∂Au
∂x as

∂ [Au]m
∂xn

=
∂ ∑P−1

p=0 Am,pup

∂xn
=

P−1

∑
p=0

∂Am,p

∂xn
up + Am,p

∂up

∂xn
(A2)

= uT ∂[AT]m
∂xn

+ [AT]Tm
∂u
∂xn

=

[
∂A
∂xn

u + A
∂u
∂xn

]
m

,

so the n-th column of ∂Au
∂x is [

∂Au
∂x

]
n
=

∂A
∂xn

u + A
∂u
∂xn

, (A3)

and

∂Au
∂x

=
[

∂A
∂x0

u + A ∂u
∂x0

, . . . , ∂A
∂xn

u + A ∂u
∂xn

, . . .
]

. (A4)
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