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Abstract: With the increasing size of cloud data centers, the number of users and virtual machines
(VMs) increases rapidly. The requests of users are entertained by VMs residing on physical servers.
The dramatic growth of internet services results in unbalanced network resources. Resource
management is an important factor for the performance of a cloud. Various techniques are used
to manage the resources of a cloud efficiently. VM-consolidation is an intelligent and efficient
strategy to balance the load of cloud data centers. VM-placement is an important subproblem of
the VM-consolidation problem that needs to be resolved. The basic objective of VM-placement is
to minimize the utilization rate of physical machines (PMs). VM-placement is used to save energy
and cost. An enhanced levy-based particle swarm optimization algorithm with variable sized
bin packing (PSOLBP) is proposed for solving the VM-placement problem. Moreover, the best-fit
strategy is also used with the variable sized bin packing problem (VSBPP). Simulations are done to
authenticate the adaptivity of the proposed algorithm. Three algorithms are implemented in Matlab.
The given algorithm is compared with simple particle swarm optimization (PSO) and a hybrid of levy
flight and particle swarm optimization (LFPSO). The proposed algorithm efficiently minimized the
number of running PMs. VM-consolidation is an NP-hard problem, however, the proposed algorithm
outperformed the other two algorithms.

Keywords: cloud computing; virtual machine placement; levy flight algorithm; particle swarm
optimization; variable sized bin packing

1. Introduction

In the cloud environment, many tasks may require resources from multiple resource providers [1].
There is a vast number of physical machines (PMs) in a cloud data center [2]. Virtualization technology
provides a facility of virtual machines (VMs). The users can run their applications on VMs. The facilities’
virtualization technology provides sharing of memory, CPU and storage resources [2]. Multiple
applications on VMs perform a task submitted by a user [3]. A bi-directional communication between
a user and application needs to use the network resources. In task processing, the capacity of network
resources plays an important role.
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There are two main parts of cloud computing: front end and back end. A user can only see the
front end which consists of a browser, connections etc. A back-end comprises servers, components,
data storage, hosts etc. [4]. Cloud computing provides three services: software as a service (SaaS),
platform as a service (PaaS), and infrastructure as a service (IaaS). SaaS provides a facility to use
the software online instead of installing or purchasing it; It provides access through a web browser.
PaaS is a middle-ware between SaaS and IaaS. It represents a whole environment for testing, deploying,
updating and managing applications. IaaS provides hardware components including servers, network,
and storage etc. Examples of SaaS, PaaS, and IaaS are shown in Figure 1.
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Figure 1. Cloud Services.

Mathematically, the process of managing and designing cloud computing is stated as an
optimization problem [4]. Load balancing is the main objective of a cloud data center. Two main
approaches are used for load balancing of a cloud. These are VM-integration and intelligent task
assignment. VM-integration includes efficient placement of VMs and migration of VMs. The basic
idea of VM-placement is to place the VMs according to each host capacity. VM-migration includes the
process of moving tasks from over-loaded or underloaded server to normal server. VM-migration is
triggered when a critical value is reached. Intelligent task assignment is another approach to balance
the load of a network efficiently. It is the process of selecting the appropriate VM according to the size
and capacity of a VM. However, migration of a task increases the total cost. Intelligent task assignment
also increases cost. VM-placement is an efficient way to balance the load of a cloud data center. Most of
the cloud computing problems including scheduling and load balancing can be done through bin
packing problem (BPP) variants.

This paper is an extension of [5]. The extended paper presents an enhanced levy-based particle
swarm optimization (PSO) with variable sized bin packing (PSOLBP) algorithm based on best-fit
strategy. Variable sized bin packing is used to balance the load of a cloud data center. The initial steps
are similar to simple PSO. The processes of making swarm in search space, finding local best and
global best are all the same as PSO. If the probability is greater than 0.5, the position and the velocity of
each particle are updated using a simple PSO method, otherwise levy flight is used to update velocity
and position of the particle.

The remaining part of the paper is organized as follows: related work is covered in Section 2,
PSO and levy flight algorithms are presented in Section 3 and Section 4. The proposed algorithm is
described in Section 5 while problem formulation is done in Section 6 and the bin packing problem is
presented in Section 7. Simulation results are discussed in Section 8. Conclusion and future work are
included in Section 9.
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1.1. Limitations of Research and Contributions

Cloud computing is a kind of distributed computing [1]. A cloud data center normally contains
a large number of PMs [2]. Cloud service providers offer consumers the facility of VMs to run their
applications [2]. The main objective of VMs is to minimize the usage of PMs [2]. The size of cloud
data centers is increasing dramatically so the number of VMs and applications are also rising rapidly.
The expeditious growth of Internet services causes an unbalanced load of data center resources.
To balance the resources of cloud data centers, two main approaches are used: VM-integration and
intelligent task assignment. VM-integration includes migration of VMs and optimal placement of
VMs in a cloud data center. The basic idea of VM-placement is to place the VMs reasonably according
to the processing capacity of each host. VM-migration is triggered when the utilization rate of VM
reaches a critical value. In an intelligent task assignment, a suitable host is selected according to the
size of a task and resource consumption of a task. However, it increases the overall operational cost [3].
VM-placement through variable-sized bin packing is an efficient strategy [4].

An efficient VM-placement algorithm is needed to reduce the usage of PMs. In this paper,
an efficient strategy is proposed to solve the VM placement problem in cloud data centers.
The proposed technique is a hybrid of PSO and levy flight. Furthermore, bin packing is used to
minimize the utilization rate of PMs. The best-fit strategy is used to reduce the resource wastage of
cloud resources. The best fit algorithm packs the maximum number of VMs into a small number of
PMs. The sole purpose of bin packing and best-fit strategy is efficient utilization of cloud resources.
Bin packing saves energies and reduces cost. The proposed algorithm is examined on ten well-known
unimodal and multimodal benchmark functions. The main contributions of the work are listed below:

• An improved levy-based PSO algorithm is proposed to solve the VM-placement problem
• Variable-sized bin packing is used to minimize the utilization rate of the running PMs
• The best-fit strategy is used to achieve an optimal solution without wasting any space of a

running PM
• Efficient use of cloud data center resources, i.e., packing a PM to its capacity without wasting

any resource

1.2. Implementation Practice Guidelines

The proposed technique is the hybrid of levy flight and PSO. The initial steps are similar to those
of a simple PSO including:

• Random distribution of population
• Evaluation of all particle fitness value
• Finding the personal best and global best values

If the probability is greater than or equal to 0.5, the velocity and position of each particle are
updated through PSO. Otherwise, use levy flight to update the velocity of the particle. The particle’s
velocity value becomes the value of its position. Bin packing is then used to pack the maximum
number of VMs into a small number of PMs. The main purpose of bin packing is to avoid wastage of
resources, save energies and reduce cost.

2. Related Work

In [1], the authors proposed a decentralized-belief-propagation-based method (PD-LBP) to
enhance the performance of task allocation in the cloud environment. In PD-LBP, the set of tasks and
agents both change constantly. In this paper, two steps (pruning and decomposition) are considered.
The achievements of the proposed method involve the best allocation of big scale tasks and efficient
performance in the dynamic cloud environment. However, PD-LBP is not feasible, i.e., an agent can
execute only one sub-task.
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Yang et al. solved the VM auto-scaling and VM-to-PM packing problem via shadow routing
based approach in [2]. The main purpose of the proposed work is to minimize the usage of PMs by
intelligently packing a number of VMs in it. It is done to save energies and minimize operational cost.
The proposed algorithm does not need to resolve the problem “from scratch”. It adapts automatically
according to the demand of requests. However, when there are a large number of VMs in a single PM,
there must be a chance of congestion in it.

The authors in [3] proposed a layered VM-migration algorithm to balance the load of network
resources. Two types of the algorithms are presented in this paper. The proposed work achieved a
powerful balancing of network resources. However, migration of one task at a time increases delay.

Abdel-Basset in [4] proposed an improved levy-based whale optimization algorithm. The main
purpose of the proposed scheme is to efficiently place the VMs with respect to the available bandwidth
in cloud computing. This work optimally balanced the load of a network. However, the tasks and
cloud size are increasing rapidly, due to which initial placement of VMs is not an efficient way to
balance the load.

In [6], R. Jensi et al. enhanced PSO by introducing a levy flight to update the velocity of a particle.
The given algorithm has been tested on 21 well-known test functions. Proposed approach enhanced
the capability of global search and increased convergence efficiency. However, this algorithm is used
to solve linear problems.

The authors proposed a multi-objective grey-wolf optimization algorithm in [7]. It mimics the
hunting behavior of grey wolves. A fixed size archive is also integrated to save and retrieve Pareto
optimal solutions. However, the proposed algorithm cannot handle uncertainties.

In [8], authors formulated cost as a function of consumed and overhead energy by the server.
This paper provides an efficient VM-placement approach. However, there is no guarantee of renewable
energy availability.

Djabir et al. proposed a priority assignment algorithm in [9]. Four priority levels are defined for
charging and discharging vehicles to stable grid load especially during on-peak hours. Electric vehicles
communicate with a power supply station. Station take electricity from the grid. Cloud is used to store
the data of grid for permanent storage. However, the disposal of batteries results in global warming.

The authors proposed a pricing scheme in [10]. Two types of instances are considered. One is
on-demand instance and the other is reserved instance. The tariff policy for on-demand instance is like
pay as you go. Reserved instance is for the users having long-term demands. However, the user has to
give upfront payment for reserved instance.

Hui et al. considered energy-aware VM-consolidation and VM-migration for green cloud
computing in [11]. The authors proposed a space-aware best-fit decreasing algorithm (SABFD).
The VM-migration is also done on the basis of high CPU utilization rate. The paper saves energy and
assures service level agreement (SLA). However, the migration cost is greater when VMs migrate too
many times.

A hybrid genetic wind-driven (GWD) algorithm is proposed by Javaid et al. in [12]. In a smart
grid, an energy management controller is designed for the residential area based on the heuristic
algorithm to flatten the load in grid area network. The proposed work scheduled the load of a single
and multiple homes. However, there is a chance of delay whenever the request rate is high.

In [13], authors proposed a network-topology-aware redundant VM-placement optimization
algorithm to minimize the consumption of network resources. The main objective of the proposed
technique is to increase the reliability of cloud resources. However, this approach does not work for a
complex cloud.

The authors in [14] proposed a novel orchestration method, i.e., a placement algorithm to deploy
the VMs automatically. It also manages the high availability zone. The main objective of the paper is
the global load balancing of multi-zone clouds. The proposed work efficiently schedule the tasks of a
cloud. However, the cost is increased.
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Vakilinia et al. proposed integer quadratic program (IQP) with linear and quadratic constraints
in [15]. The main objective of the proposed work is an optimization of power in data center.
The proposed work optimized the power consumption of servers, migration cost and network
communication via VM-placement. However, the given approach does not work for large-scale system.

The authors in [16] proposed a hybrid artificial bee ant colony optimization (HABACO) for
resource management in smart grid. The proposed work enhanced the performance of cloud
computing. The main focus of the presented work is the efficient utilization of smart devices. However,
the proposed algorithm does not work well for multiple load balancing applications.

Muqadda et al. proposed a hybrid gray wolf differential evolution (HGWDE) to balance the load
between generation and demand for electric power in [17]. The proposed work optimized electricity
cost and peak load demand. However, the cost is increased, and there is a trade-off between user
comfort and cost.

In [18], the authors proposed a hybrid elephant adaptive cuckoo search (HEAC) algorithm to
reduce the electricity bill and peak to average ratio. It also maximizes user comfort. The proposed
work give incentives to consumers. The main focus of the proposed work is to efficiently utilize the
available energy. However, the consumption cost is increased.

The authors in [19] presented a multi-level join VM-placement and migration algorithm (MJPM)
to reduce the operational cost. It also increases the quality of services through VM-placement.
The proposed work improved energy consumption. However, the migration cost is increased due to
the migration of one task at a time.

Adia et al. proposed a home energy management system to balance the load through coordination
in [20]. The main objective of the proposed work is to optimize the energy consumption. It minimized
the electricity cost and peak to average ratio. However, user comfort is ignored and it is the important
factor to be considered.

In [21], the authors proposed an evolutionary accretive comfort algorithm for optimal energy
consumption patterns. It maximizes user comfort and reduces cost, and energy consumption. However,
there is no solution for renewable energy shortage.

Irfan et al. proposed a secure distributed adaptive bin packing algorithm in [22]. The proposed
work efficiently allocated bins in cloud data centers. The main objective of the paper is efficient usage of
cloud resources. It minimized the number of active servers and improved energy efficiency. However,
cloud data centers are very complex, only relying on initial placement cannot balance the load of
a network.

Deep Q-learning based code offloading method is proposed in [23]. The main objective of the
proposed work is to reduce network delay or latency. It support heterogeneous and mobile and
geographically distributed mobile devices. The proposed work achieved energy efficiency in terms of
computation offloading solutions. However, the cost is increased by deploying number of fogs and
applying machine learning.

Habibi et al. proposed a request distribution method in a federated cloud environment in [24].
The main objective of the proposed work is to efficiently distribute the requests of users or VMs
according to their resources. The behavior of each request at a time is considered. However, considering
one request at a time is not realistic, because most of the time, number of users send multiple requests
at a time.

In [25], authors proposed an IOFollow scheme. This work improved the VM efficiency and
migration performance. The main objective of this work is to increase the performance of computer
server resources. Energy efficiency is also considered. It scheduled the migration sequence according
to the sequence of requests coming from users. It also improved the efficiency of cache management.
However, the migration of one task at a time may increase delay and cost.

The authors in [26] proposed a simplex linear programming (SLP) method. In distributed
cloud data centers, the hierarchical structure is also presented to show connections between them.
The technique presented in this paper is HM-SM-GrEA. This work is done allocate the resources
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optimally. The user requirements and services provided by resources are also considered in SLA and
QoS. The main achievement of the proposed work is reliability and availability of resources. The cost
and response time should be minimized and reliability and availability should be maximized. So there
is a trade-off between above objectives. However, there is a chance of more power consumption to
fulfil the requirements of a user.

Liu et al. proposed a VM-placement algorithm using evolutionary computing in [27]. It is done
through ant colony system (ACS). This work is done to minimize the number of active physical servers
i.e., utilization of underloaded servers to save energy. The main achievements of the paper are global
optimization, energy saving, and efficient use of different resources. However, VM-placement is not
an efficient way because the cloud data centers are very complex.

The authors in [28] proposed a framework to solve the VM-placement problem based on multi
objective genetic algorithm (GA) and Bernoulli simulation. The main objective of this work is to
minimize the number of running physical servers and reduce the resource wastage in each physical
server. This work is implemented in the real cloud platform and helped the company to optimize the
VM-placement problem efficiently. The operational cost is also reduced. However, the given work
is not efficient enough to handle big data. The data is increasing rapidly and this problem should
be tackled.

The authors in [29] proposed a hierarchical state space model. The authors have also modified
the transactive control systems in the smart grid. This work is done to manage the fluctuation of wind.
The authors have also described the advantages and challenges of the cloud platform. Furthermore,
resilient frequency regulation is proposed to mitigate the challenges of intermittent wind. The given
work provides robustness, optimality and flexibility of system resilience. However, the cost of energy
is increased by deploying more wind turbines.

A novel architecture is proposed for cloud computing in [30]. The resources of cloud computing
are leveraged to enable the consumption prediction. A time series forecasting is also done to uniformly
distribute the load of a cloud. A concept of controllability is also given to detect the connectivity
loss. However, detecting a connection loss is not a solution. A solution is still needed to ensure the
continuity of the network.

Liu et al. proposed a cloud energy storage pool in [31]. This is basically a pool of energy resources
to provide the services of storage to small customers. The main objective of the proposed work is to
minimize the energy storage cost. Cloud energy storage provided the facility of energy storage to the
consumers at a cheap cost. Two models are presented in this paper. In the first model it is assumed that
the consumer and cloud energy storage operator both have accurate forecast of load. In the second
model, it is assumed that cloud energy storage operators do not have perfect prediction of the load.
However, the implementation leads to the extra power loss.

The authors in [32] proposed an energy efficient approach for cloud data centers. The main
focus of the proposed work is to reduce the energy consumption of servers and cloud data centers.
The VM-placement problem through GA is also considered. This work is done to avoid the network
congestion, save network energy and to increase the transmission capacity of a network. The proposed
work minimized the transmission load and energy consumption. However, VM-placement is an
NP-hard problem. This problem still needs to be optimized.

Munshi et al. proposed smart grid eco system for big data in [33]. It is based on the Lambda
architecture. It can perform real time operations on distributed data. It is also stores the data of smart
grid devices such as smart meters, graphical and video data. The authors presented the implementation
of smart grid big data on cloud computing platform. Furthermore, data mining applications are also
performed on real data of smart grids. Data mining applications make groups of smart meter readings
on the basis of load consumption. However, there is a chance of congestion when considering big data.

The authors proposed an efficient identity-based encryption with equality test scheme along with
bilinear pairing in [34]. It is done to reduce the time consumption. The main focus of the proposed
work is to improve the performance of a cloud. Storage overhead, security energy consumption
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and computational cost are considered to make the system efficient. The proposed scheme reduced
the computational cost effectively. The authors claim that their technique can deploy a cloud more
efficiently. However, the energy consumption is increased.

The authors considered bi-objective problems in [35]. They investigated how to minimize the
migration cost to save as much energy as possible. The authors designed a consolidation score function
to give the optimum solutions of the aforementioned objectives. An improved grouping genetic
algorithm is proposed on the basis of swap operation and greedy heuristics. The major concerns of
the proposed work is an optimal VM-consolidation and reduction of energy consumption of cloud
data centers. However, the VM-consolidation is an NP-hard problem. This problem still needs to
be optimized.

The author proposed AVVMC to solve VM placement problem in [36]. They used ACO for this
purpose. The basic purpose of work done is to minimize the power consumption and wastage of cloud
resource. The proposed work efficiently balanced the network resources. However, VM placement is
an NP-hard problem.

A detailed survey of different VM placement techniques is presented by Challita et al. in [37].
The techniques are discussed to minimize power consumption, maximize utilization of resources,
prevent network congestion and reduce power cost. Detailed comprehension of VM placement
algorithms is discussed. However, critical analysis is not done.

The authors proposed reputation-based model in [38]. The sole purpose of the proposed work is
to provide quality of services. The cost is also considered in a multi-cloud environment. Furthermore,
response time is optimized. However, there is a chance of congestion. So, a mechanism is required to
avoid delay.

The related work is given in Table 1.

Table 1. Related Work.

Techniques Objectives Achievements Limitations

Decentralized belief
propagation based method
(PD-LBP) [1]

Performance of
task allocation

Best allocation of big tasks
and efficient performance
in dynamic cloud

An agent can execute only
one subtask

Shadow routing based
approach [2]

VM auto-scaling and
VM-to-PM packing

Save energies and
minimize operational cost

Chance of congestion in cloud
data center

Layered VM-migration
algorithm [3] Migration of VMs Efficiently balanced the

network resources
Migration of one task at a time
may increase delay

Improved levy-based
whale optimization
algorithm [4]

VM-placement Efficiently balanced the
load of a network

Initial placement of VMs is not
an efficient way to balance the
load of a whole network

Particle swarm
optimization with levy
flight (PSOLF) [6]

Increase convergence
efficiency Enhanced global search Only proposed for linear

problems

Multi-objective grey wolf
optimization algorithm [7]

Multi-objective
problem solving

Fixed size archive is
integrated along with
leader selection method

The proposed algorithm
cannot handle uncertainties

VM-placement
approach [8] Cost minimization Reduced energy

consumption
There is no guarantee of
renewable energy availability

Priority assignment
algorithm [9]

Charging and
discharging of electric
vehicle

Stabled grid during
on-peak hours

Disposal of batteries results in
global warming
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Table 1. Cont.

Techniques Objectives Achievements Limitations

Cost-oriented model [10] On-peak hours
grid stability

Efficient tariff policies
for users

User has to give upfront
payment for reserved instance

Energy aware
VM-consolidation and
space aware best
decreasing algorithm [11]

Save energy Saved energy and
assured SLA

Migration cost is great when
VMs migrate too many times

Hybrid genetic
wind-driven (GWD)
algorithm [12]

Load flattening in grid
area network

Scheduled the load of a
single home as well as
multiple homes

Chance of delay whenever the
request rate is high

Network-topology-aware
redundant VM-placement
optimization
algorithm [13]

Minimize the network
resources consumption Optimal VM-placement Does not work for

complex cloud

VM-placement
algorithm [14]

Global load balancing of
a cloud Efficient cloud scheduling Cost is increased

Secure distributed
adaptive bin packing
algorithm [22]

Efficient usage of
resources and minimize
number of active servers

Improved energy
efficiency and minimized
number of running servers

Initial placement cannot
balance the load of a network

Deep Q-learning based
code offloading
method [23]

Reduce network delay Efficient energy
consumption Cost is increased

Hierarchical state space
model [29]

Manage fluctuation
of wind

Provides robustness,
optimality and flexibility Energy cost is increased

Novel architecture for
cloud computing
platform [30]

Distribute the load of
cloud using time
series forecasting

Efficiently balanced the
load of a cloud

A mechanism is needed to
ensure the continuity of
the network

Cloud energy storage
pool [31]

Provide energy storage
resources to consumers
at cheap cost

Minimized the storage cost Extra power loss to implement
energy storage pool

3. Particle Swarm Optimization Algorithm

The PSO is a swarm-intelligence-based meta-heuristic technique for the solution of continual
optimization problem [6]. It is a simple, intelligent and powerful algorithm. It mimics the social
behavior of fishes and birds. In PSO, a particle is a candidate solution for an optimization problem.
A number of particles integrate together to make a swarm and search for a good solution of a given
optimization problem as shown in Figure 2. A search space is a set of all possible positions. Each particle
has some position and it shows a possible solution of the fitness function in d-dimension search space.
Each particle i maintains two vectors in search space [6]:

Position vector Xi = [xi1, xi2...xid] and
Velocity vector describes the movement of a particle.
Velocity vector Vi = [vi1, vi2...vid].
Each particle has its own best experience known as personal best (pbest) and all particles have best

experience called as global best (gbest). It helps the particles to move in the d-dimension search space.
pbest of particle i in d-dimension search space is represented as [6]:
pbesti = [pi1, pi2, pi3, ..., pid, ]
gbest in d-dimension search space is represented as [6]:
gbesti = [g1, g2, g3, ..., gd, ]
In initialization phase, a random initial position and velocity is given to each particle.



Electronics 2018, 7, 389 9 of 22

Itera�on #  0 Itera�on # N

Figure 2. Swarm of Particles.

3.1. Update Position

The position of the particle consists of a value given by the objective function. Each particle
memorizes the position of the best solution while moving in search space. Following equation is used
to find the position of a particle [6]:

X(t+1)
i = X(t)

i + V(t+1)
i (1)

where X(t+1)
i represents the position of ith particle at iteration t + 1, V(t+1)

i is the velocity of ith particle
at iteration t + 1 and Vi is the velocity vector.

3.2. Update Velocity

A particle moves with a velocity at each iteration of the algorithm. A velocity is the sum of three
components [6]:

• Previous velocity
• A velocity component that drives a particle towards the location in search space where it

previously found the best solution
• A velocity through which the best solution found by neighbor particles in search space

Following equation is used to find the velocity of a particle [6]:

V(t+1)
i = ω×V(t)

i + c1× rand()⊕ (pbesti − Xt
i )

+c2× rand()⊕ (gbest− Xt
i )

(2)

where ω is inertia weight, c1 is cognitive weighting factor, c2 is a social weighting factor, rand () is a
stochastic component of algorithm which is 0.5 and ⊕ shows the element by element multiplication.
The graphical representation of Equations (1) and (2) is shown in Figure 3.

The values of c1 and c2 are used to check that the particles are effected more locally or globally.
Inertia weight (ω) has controlling effect of previous velocity. It is used to balance exploitation and
exploration rate. Following equation is used to calculate ω [6]:

ω(t + 1) = ωmax −
ωmax −ωmin

tmax
(3)

where t is the current iteration, tmax and tmin shows the maximum and minimum inertia weights and
tmax is the maximum number of iteration. After updating position and velocity, minimum (Xmin)

and maximum (Xmax) values for search range is assigned. Then, for each particle’s fitness value is
calculated, pbest and gbest updates are performed. This procedure is continued until the stopping
criteria is satisfied.
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Xi(t) pbesti

gbest

� 

C1 rand ()

C2 rand()

Xi(t+1)
Vi (t+1)Xi(t+1)=Xi(t)+Vi 

(t+1)

Posi�on

+
Vi (t+1)=�(Vi(t))+

C1 rand()+(pbesti-Xit))+

C2 rand()+(gbest -Xi(t))

Velocity

Vi(t)

Figure 3. Graphical Representation of Personal Best and Global Best.

4. Levy Flight Algorithm

Levy flight is a class of random walk whose step length is drawn from levy distribution. Levy flight
starts from one best-known location and generates a whole new generation at a distance which is
randomly distributed according to levy distribution. The new generation will be evaluated to select
the most encouraging one. Two steps are involved in levy flight:

• The selection of random direction
• The production of new steps

Levy distribution can be approximated as power-law when a step size is large. The formula of
power-law is [6]:

L(s) ∼ |s|−1−β (4)

where 0 < β < 2 is an index.

4.1. Simple Levy Distribution

A levy distribution can be mathematically defined as [6]:

Dit =


L(s, γ, µ) =

√
γ

2π exp
[

γ
2(s−µ)

]
1

(s−µ)3/2
,

if 0 ≤ µ ≤ s ≤ inf
0, if s ≤ 0

 (5)

where µ is a shift parameter, γ > 0 is a scale parameter used to control the scale of distribution.

4.2. Fourier Transform

Generally, levy distribution is defined in terms of Fourier transform [6].

F(k) = exp[α|k|β], 0 < β ≤ 2 (6)

where α is a scale factor which is 0.5. β ∈ (0, 2) is referred as levy index.
For random walk, the length of a step is calculated through mantegna’s algorithm as [6]:

S =
u

|v|1/β
(7)

where u and v are drawn from normal distribution [6].

u ∼ N(O, σ2
u), v ∼ N(O, σ2

v ) (8)
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where

σu =
Γ(1 + β) sin(πβ/2)

Γ(1 + β/2)β2β−1/2
(9)

Then the size of each step is calculated through

stepsize = 0.01× S (10)

5. Proposed Levy Flight Particle Swarm Optimization with Variable Sized Bin Packing

In PSO, there is a problem of trapping and premature convergence in local optima.
Many researchers used different techniques to improve PSO. This work focuses on updating the
velocity using the levy flight method. The initial steps are similar to PSO, like random distribution of
particles in search space, evaluation of all particles fitness value and the finding of pbest and gbest.
When the probability is greater than or equal to 0.5, the velocity and position of each particle are
updated using Equations (1) and (2). Otherwise, use Equation (12) and then a particle’s velocity
becomes its position [6].

ω = 0.1 + 0.8×
(

1− it
Maxit

)
(11)

Vt+1
i = ω× Levywalk(X(t)

i ) + c1× rand()⊕ (pbesti − Xt
i )

+c2× rand()⊕ (gbest− Xt
i )

(12)

The particle takes long jump toward its best positions. In distribution of levy flight, β parameter
performs a main role. The distribution can be changed differently by applying different values of β.
In this paper, the value of β is constant, i.e., 1.5.

The proposed phenomenon avoided loss of divergence while updating the velocity. This work
improves a particle’s position after each iteration. The next position of a particle is calculated using
Equation (13) [6].

Xt+1
i = Vt+1

i (13)

and
Levywalk(X(t)

i ) = (X(t)
i ) + step⊕ random(size(Xi)) (14)

where
step = stepsize⊕ X(t)

i (15)

The fitness value of each particle is calculated after updating the velocity and position. If the
particle has a better value then update its pbest. Otherwise, there is no need to update the pbest value.
Then, find the gbest value of whole swarm. Repeat the procedure to achieve global optimum value.
The pseudocode and flowchart of the PSOLF is given Algorithm 1 and Figure 4 [6].
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Algorithm 1 Pseudocode of the PSOLF

1: Initialize the parameters
2: Initialize the particles with random positions
3: Evaluate fitness function value
4: it = 1
5: while (stopping criteria are not met) do do

6: ω = 0.1 + 0.8 ∗ (1− it)/MaxIt

7: for i:1 to Maxiter do

8: if rand() <0.5 then

9: change the position and velocity of the particle by Equations (14) and (15)

10: else

11: change the position and velocity of the particle by Equations (1) and (2)

12: end if

13: Evaluate the fitness function for new particle Xj

14: if f (Xj) < f (pbestj) then

15: Assign f (Xj)to f (pbestj), and pbestj=Xj in N-dimensional space

16: end if

17: end for

18: Record the gbest solution

19: it=it+1
20: end while
21: Output the gbest solution

Start

Itera�on=1

Ini�alize the parameters

Ini�alize the popula�on

Evaluate the �tness values

Is stopping 

condi�on 

met?

Yes

No
W= (0.1 +0.8×(1-itera�on/Maxiter))

Select j
th

 par�cle

Rand<0.5
YesNo

Update posi�on and velocity 

by using (1)and (2)

Update posi	on and velocity 

by using (14)and (15)

Evaluate 
tness func�on value for new 

par�cle F(Xi)

F(Xi)<f(pbesti)
Yes

No

J=j+1

J<=NP NoYes

Update pbest

Update gbest

Itera
on=itera�on+1

Output the solu�on

End

Figure 4. Flowchart of PSOLF.
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6. Problem Formulation

In this paper, the problem of VM-placement is formulated as a “variable-sized bin packing
problem (VSBPP)”with non-divisible items [4]. In VSBP, there are multiple bins of different capacities
to pack a set of items. VSBPP can be defined as a set of indivisible items along with their weights and a
set of variable-sized bins. The main objective of bin packing is to pack multiple items into a minimum
number of bins in such a way that the wasted spaces of bins or the sum of costs are minimized. VSBPP
can be described as follows [4]:

min
n

∑
j=1

m

∑
k=1

ck.yjk (16)

subject to
n

∑
j=1

xij = 1 (17)

m

∑
k=1

yjk ≤ 1 (18)

n

∑
i=1

wi.xij ≤
m

∑
k=1

Wk.yjk (19)

ck =
m

∑
k=1

Wk.yjk −
n

∑
i=1

wi.xij (20)

xij ∈ {0, 1}

yjk ∈ {0, 1}

for i = 1, ..., n j = 1, ..., n and k = 1, ..., m
where n is number of items and available bins, m is the number of types used, ck is the cost or the
wasted space of the bin of type k, yjk is a binary variable that shows if bin i of type k contains items,
xij is also a binary variable that indicates if item i is assigned to bin j, wj is weight of item and Wk is bin
capacity of type k. In the worst case, the number of bins is set to be equal to the number of items.

7. Bin Packing Problem

Bin packing is a process of fitting tasks neatly and efficiently inside the finite number of bin.
The main objective of bin packing is to minimize the number of bins [4]. There are four main steps
involved in the bin packing problem.

7.1. Lower Bound for the Problem

It is important to find the lower bound for the problem. Two steps are used to find the
lower bound:

• Add all items
• Then divide them with total capacity of a bin

Graphical representation is given in Figure 5.
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Group of Tasks

Used Bins  

Total capacity of a Bin = 7 Tasks

Total Number of Tasks = 21

Lower Bound = 21/7

Op�mal Solu�on = 3 Bins

Wasted Spaces = 0

+

+

+

+

+

6 6 66 6 6

5 55 5 5

44 4 4

3 3 3

2 2

1

Figure 5. Lower Bound of a Problem.

7.2. First Fit Algorithm

Take a group of tasks as they come and try to fit them in a bin. A graphical example of first fit
algorithm is given in Figure 6.

Group of Tasks

Used Bins  

Total capacity of a Bin = 7 Tasks

Total Number of Tasks = 21

Lower Bound = 21/7

Op�mal Solu�on = 4 Bins

Wasted Spaces = 7

+

+

+

+

+

6 6 66 6 6

5 55 5 5

44 4 4

3 3 3

2 2

1

2 2 1

6 66 6 6 6

43 3 3 4 4 4

5 55 5 5

Figure 6. First Fit Algorithm.
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7.3. Best Fit Algorithm

Arrange a group of tasks in descending order and then place them into a minimum number of
bins as shown in Figure 7.

Group of Tasks

Used Bins  

Total capacity of a Bin = 7 Tasks

Total Number of Tasks = 21

Lower Bound = 21/7

Op�mal Solu�on = 3 Bins

Wasted Spaces = 0

+

+

+

+

+

Group of Tasks in 

Descending Order

+

+

+

+

+

6 6 66 6 6

5 55 5 5

44 4 4

3 3 3

2 2

1

6 6 66 6 6

5 55 5 5

44 4 4

3 3 3

2 2

1

6 6 66 6 6 1

5 55 5 5 2 2

44 4 4 3 3 3

Figure 7. Best Fit Algorithm.

8. Simulation Results

The results are discussed in this section. For comparison purposes, the other two algorithms (PSO
and LFPSO) are also implemented [6]. The simple PSO algorithm is trapped in local optima. LFPSO
is a hybrid of PSO and levy flight. Levy flight is just used for random distribution of the particles.
The proposed algorithm is also a hybrid of PSO algorithm and levy flight for VM-placement based
on VSBPP. Levy flight is used to update the velocity of particles. The best-fit strategy is used along
with VSBPP. Best fit strategy is used because it provides optimal results. Best fit strategy packs the
maximum number of VMs in a single PM to avoid wastage of resources. The basic objective of this
paper is to minimize the number of running PMs. The basic purpose of packing VMs into PMs is to
save energy, minimize cost and reduce wastage of resources. The algorithm is proposed to provide
optimal results for both single objective and multi objective problems. The proposed algorithm is
tested on well-known unimodal and multimodal benchmark functions [6]. The population size is
based on the dimension, i.e., 30. Unimodal functions tested here can be considered as multimodal
functions in a search space of high dimension. All the algorithms are executed on Matlab with a
Windows operating system using Intel Core i7, 2.60 GHz, 3.88 GB RAM.

8.1. Benchmark Functions

Ten well-known benchmark test functions are listed in Table 2 in [6]. These benchmark functions
are used to evaluate the performance of the proposed algorithm. Two types of benchmark functions
are used: unimodal and multimodal. Unimodal functions have only one optimal solution, includes
four functions (SPHERE, SCHWEFEL 2.22, ROSENBROCK and NOISE). They can be taken as a
multimodal function in search space of high dimension. Multimodal functions have two or more
objective functions. Six complex multimodal functions are SCHWEFEL 2.22, RASTRIGIN, ACKLEY,
GRIEWANK, PENALIZED1 and PENALIZED2. The control parameters for the above algorithms are
given in Table 3 [6].
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Table 2. Benchmark Functions.

S. No. Function Name Formula Dimension Search Range

1 SPHERE∗ f1(x) = ∑d
i=1 x2

i 30 [−100,100]
2 SCHWEFEL2.22∗ f2(x) = ∑n

i=1|xi |+ ∏n
i=1 |xi | 30 [−100,100]

3 ROSENBROCK∗ f3(x) = ∑d−1
i=1 [(1− x2

i ) + 100(xi+1 − x2
i )

2] 30 [−100,100]
4 NOISE∗ f4(x) = ∑n

i=1 ix4
i + random()(0, 1) 30 [−100,100]

5 SCHWEFEL2.26+ f5(x) = 418.9828 ∗ d−∑d
i=1[xi sin(

√
|xi |)] 30 [−100,100]

6 RASTRIGIN+ f6(x) = 10d + ∑d
i=1[x

2
i − 10 cos(2πxi)] 30 [−100,100]

7 ACKLEY+ f7(x) = −20exp[−0.2
√

1/d ∑d
i=1 x2

i ] 30 [−100,100]
8 GRIEWANK+ f8(x) = 1/4000 ∑d

i=1 x2
i −∏d

i=1 cos(xi/
√

i) + 1 30 [−100,100]
9 PENALIZED1+ f9(x) = π/n(10 sin2(πy1)) + ∑n−1

i=1 (yi − 1)2[(i + 10 sin2(πy(i+1)))] + (yn − 1)2 + ∑n
i=1 u(xi , 10, 100, 4) 30 [−100,100]

yi = 1 + 1/4(xi + 1), uxi , a, k, m =

 k(xi − a)m, for xi ≤ a
0, for − a ≤ xi ≤ a
k(xi − 1)m, for xi < −a


10 PENALIZED2+ f10(x) = 1/10(sin2(3πy1) + ∑n−1

i=1 (xi − 1)2[(1 + sin2(3πx(i+1)))] + (xn − 1)2[1 + sin2(2πxn)] + ∑n
i=1 u(xi , 5, 100, 4) 30 [−100,100]
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8.2. Comparison of Algorithms

Three algorithms PSO [6], LFPSO [6], and PSOLBP are tested for each function independently
for about ten times on search space of dimension 30. LFPSO achieved better results than simple
PSO [6] however, the improved results are less when compared with the PSOLBP algorithm. PSOLBP
outperforms other two algorithms for four benchmark functions (NOISE, RASTRIGIN, ACKLEY
and GRIEWANK). LFPSO performs better for three functions, i.e., SCHWEFEL 2.26, PENALIZED1
and PENALIZED2. While simple PSO gets optimal results for the SPHERE, SCHWEFEL 2.22 and
ROSENBROCK. Simple PSO works better for unimodal functions and being trapped for multimodal
functions [6]. The LFPSO working is the same as that of PSO; the random distribution of the population
is done through levy flight. Proposed algorithm is a hybrid of simple PSO and levy flight. Mostly,
steps of PSO are followed; however, velocity is found using Mantegna’s algorithm. PSOLBP performs
much better than the simple PSO and LFPSO algorithms.

Table 3. Input Parameters.

Parameters PSO LFPSO PSOLBP

Population size (NP) 20 20 20
Maximum Fes 200,000 200,000 200,000
c1, c2 1.1931 1.1931 1.1931
Inertia weight (ω) 0.7213 ω = (Maxiter− it/Maxit) ω = 0.1 + 0.8× (1− it/Maxit)

8.2.1. Discussion of Convergence Progress

The convergence graphs of PSO, LFPSO and PSOLBP are graphically shown in Figures 8 and 9
to solve the ten well known test functions for search space of dimension 30. The convergence
progress of PSO, LFPSO and PSOLBP with unimodal benchmark functions (SPHERE, SCHWEFEL
2.22, ROSENBROCK and NOISE) is presented in Figure 8. While Figure 9 shows the convergence
progress for multimodal benchmark functions (SCHWEFEL 2.26, RASTRIGIN, ACKLEY, GRIEWANK,
PENALIZED1 and PENALIZED2).

For SPHERE function, PSO, LFPSO and PSOLBP obtained best results. PSOLBP converges quickly
and achieves the global optimal solution faster.

In SCHWEFEL 2.22 function, PSO performed better than LFPSO. LFPSO does not perform well.
PSOLBP convergence behavior is very fast and achieved optimal value.

On ROSENBROCK function, PSO performed better than other two algorithms. LFPSO is trapped
in local minima. However, PSOLBP gets stuck in local optimization.

Even PSO progress for NOISE is not good. PSO not performed well for a unimodal function i.e.,
NOISE. LFPSO and proposed PSOLBP performed well for NOISE.

For SCHWEFEL 2.26, LFPSO performed well. PSO converges but get trapped. However, PSOLBP
is also gets stuck in local minima.

For RASTRIGIN, ACKLEY and GRIEWANK, PSOLBP seems to be better than PSO and LFPSO.
However, LFPSO outperformed PSO and PSOLBP for PENALIZED1. For PENALIZED2, PSO and
LFPSO performed better than PSOLBP.

The proposed PSOLBP performance and convergence behavior is better than other two algorithms.
PSOLBP very fastly reaches optimal solution.
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(a) (b)

(c) (d)

Figure 8. Unimodal Functions. (a) SPHERE; (b) SCHWEFEL 2.22; (c) ROSENBROCK; (d) NOISE.

(a) (b)

Figure 9. Cont.
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(c) (d)

(e) (f)

Figure 9. Multimodal Functions. (a) SCHWEFEL2.26; (b) RASTRIGIN; (c) ACKLEY; (d) GRIEWANK;
(e) PENALIZED1; (f) PENALIZED2.

8.2.2. Unimodal Functions

Four unimodal test functions are used. They are used for single optimization problems. A simple
PSO performs better for single optimization problems trapped in local optima. In a high dimensional
search space, these functions can be considered as multimodal test functions. Simple PSO performed
well for SPHERE, SCHWEFEL 2.22 and ROSENBROCK. While PSOLBP gave better results for NOISE.

In SPHERE, SCHWEFEL 2.22 and ROSENBROCK, the simple PSO algorithm is being trapped in
local optima. PSO outperformed other two algorithms. The three algorithms are executed for 10 times
to check the adaptivity of the proposed algorithm. However, the proposed algorithm performed
well for NOISE. The PSO algorithm find global optimal or near global optimal value using SPHERE,
SCHWEFEL 2.22 and ROSENBROCK. While LFPSO performed well for SPHERE in global optimization.
For global optimization, PSOLBP gives better results with SPHERE, SCHWEFEL 2.22 and NOISE.

PSOLBP is insensitive to dimensionality. Extensive simulations are done after increasing and
decreasing the dimension of the search space.

8.2.3. Multimodal Functions

Six multimodal functions are considered to provide solutions for two or more optimization
problems. SCHWEFEL 2.26, RASTRIGIN, ACKLEY, GRIEWANK, PENALIZED1 and PENALIZED2
are tested with three algorithms. PSO does not perform well for more than one objective function
problem. LFPSO performed well for SCHWEFEL 2.26, PENALIZED1 and PENALIZED2. While the
proposed PSOLBP outperformed other algorithms for three functions i.e., RASTRIGIN, ACKLEY
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and GRIEWANK. The PSOLBP is proposed to give optimum results for more than one objective
function. For global optimization, PSO does not performed efficiently. LFPSO performed well in global
optimization problems with SCHWEFEL 2.26, PENALIZED1 and PENALIZED2. PSOLBP achieved
better results with RASTRIGIN, ACKLEY and GRIEWANK for global optimization.

8.3. PSOLBP

PSOLBP outperforms the other two algorithms when tested on benchmark functions; it is used
with VSBPP. In PSOLBP, the random distribution of the population is done through simple PSO.
The positions of the particles are also found through PSO. The levy flight is used to update the velocity
of the particles. A best-fit strategy is used to pack the maximum number of VMs into PMs. The main
objective of the proposed work is to minimize the usage of running PMs. The utilization rate of PMs is
minimized to save energies and cost. Bin packing problem is considered to avoid wastage of resources
and increase the efficiency of a cloud. A new PM is allocated when an old one is fully packed. With the
number of iterations, the utilization rate of running PMs become less. It can be noticed from Figure 10
that after some point the utilization rate of PMs is zero.

Figure 10. PSOLBP.

9. Conclusions

Cloud computing is turning into an emerging field. Cloud data centers are very complex.
The technology evolves causing the influx of a large amount of information. Efficient management
of cloud computing is needed. VM-integration and intelligent task assignment are used to optimally
manage the load of a cloud data center. This paper proposed an efficient VM-placement algorithm.
An enhanced PSOLBP is applied to the variable-sized bin packing problem. This is the hybrid of two
algorithms: levy flight and PSO. The best-fit strategy is used in BPP. Extensive simulations are done to
verify the efficiency and adaptivity of the proposed algorithm. Through this, the overall performance
of a cloud data center is improved. To evaluate the performance of the given algorithm, ten benchmark
functions are used. The proposed algorithm is easy to understand and simple to implement. It is also
insensitive to dimensionality.
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Future Studies

VM-placement is an NP-hard problem and most real-world engineering problems have more than
one objective to be optimized. So, further optimization is required to solve multi-objective problems.
In the future, the proposed algorithm will probably be used to solve multi-objective VM-placement,
as well as dynamic migration and scheduling problems.

Author Contributions: A.F., N.J., T.S., Y.A., M.A. and M.I. proposed, implemented and wrote heuristic schemes.
W.H., M.B. and S.S. wrote rest of the paper. All authors together organized and refined the paper.
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