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Abstract: The onset of cloud computing brought with it an adoption of containerization—a lightweight
form of virtualization, which provides an easy way of developing and deploying solutions across
multiple environments and platforms. This paper describes the current use of containers and comple-
mentary technologies in software development and the benefits it brings. Certain applications run
into obstacles when deployed on the cloud due to the latency it introduces or the amount of data
that needs to be processed. These issues are addressed by edge intelligence. This paper describes
edge intelligence, the deployment of artificial intelligence close to the data source, the opportunities it
brings, along with some examples of practical applications. We also discuss some of the challenges in
the development and deployment of edge intelligence solutions and the possible benefits of applying
containerization in edge intelligence.
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1. Introduction

“Data is the new oil” were words Clive Humby spoke in 2006 [1]. Similarly to oil, the
value of the data lies in its wide variety of uses, but it is worthless when raw [2]. The recent
decade saw a massive rise in cloud computing popularity [3], but this approach has its
drawbacks. Berisha et al. [4] mention that the amount of data generated per person was
around 1.7 MB per second in 2022, which came out to around 44 zettabytes per day in total.
According to a report by ZepDo [5], the global internet traffic reached around 4 zettabytes
in 2023. By comparing these values, we can see that a tremendous amount of data never
makes its way to the cloud, potentially being wasted without ever extracting any useful
information from it.

One of the obstacles in cloud processing is latency, which is caused by the distance
between the data source and the cloud. Real-time applications cannot function properly
when deployed on the cloud [6]. Edge computing (EC) emerged as a potential solution
to some of the problems inherent to cloud computing, mostly latency issues, network
dependency, and privacy concerns. We see more companies adopting artificial intelligence
(AI) every day. As these models require a large amount of data, they are traditionally
trained and deployed in the cloud, where they can access virtually limitless resources. Edge
intelligence (EI) is a combination of EC and AI, where the models are deployed on devices
located close to the data source, allowing them to either process the data entirely within the
edge or in collaboration with the cloud. This approach aims to solve the abovementioned
problems and allow for faster, better, and more secure data processing in AI applications.

Modern cloud data centers rely on virtualization to split a single device between
multiple users and to prevent a user from accessing another user’s data. While more
traditional hardware virtualization is still widely used, containerization has come out
on top and is the de facto standard in cloud-native applications [7]. Containerization
allows us to package our applications together with all the required supplementary files,
such as libraries, and deploy them on any supported device, ensuring compatibility and
consistency across different environments.
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Due to the proliferation of containerization and artificial intelligence in cloud comput-
ing, we wanted to take a look at the combination of these technologies in edge intelligence.
We will start with a short introduction to edge intelligence and what we consider to be the
challenges in developing and deploying such solutions. To understand containerization
and other trends in software development, Section 3 will contain descriptions of virtualiza-
tion, containerization and supplementary technologies and techniques. We will expand on
these technologies in Section 4 by describing them in more detail. Section 5 will provide
specific examples of edge intelligence solutions utilizing containers in various scenarios.
We will then discuss the challenges still present in edge intelligence and how the adoption
of containers could address them.

2. Edge Intelligence

The transition from the cloud environment, made up of large and powerful servers, to
an edge environment with small devices offering only a fraction of the performance of the
cloud alternatives poses a large set of challenges and opportunities [8–10].

The heterogeneity of devices used in edge computing is something not found in cloud
computing. The hardware side of the traditional server space is mature and adheres to
a set of standards [11]. The computers are made up of standard parts and use common
interfaces to communicate. While there is a performance difference between servers, the
standardization allows for easier management and better support for different libraries and
programs. In edge computing, the devices used can differ massively. The management of
such a diverse environment can prove problematic, as the devices use different hardware
architectures, different interfaces, and offer different hardware capabilities [12,13].

The performance of edge devices poses a big problem in the field of edge intelligence
on all levels. The current approach to artificial intelligence expects a high-performance
device to be available, which is not commonly found on the edge [14]. The total performance
of edge devices is hindered by multiple factors [15–17]:

• Size—Edge devices often need to be smaller as they need to be placed closer to the
data source without being intrusive.

• Power—Edge devices use less power as they do not have the space for a large cooling
solution or can be battery-powered.

• Computing performance—Both of the previously mentioned factors result in lower
performance of the device as it has to deal with limited resources and space.

More direct access to the data source provides edge devices with unseen opportunities,
helps alleviate bandwidth issues, and lowers the reliance on cloud solutions.

3. Containerization

Virtualization allows for the abstraction of the hardware present on a physical ma-
chine [18]. This abstraction allows for greater control over access to the devices present
on the hardware level of the machine. Modern devices allow for virtualization of various
components such as memory, storage, networks, and more. In 2019, the European Edge
Computing Consortium presented the Reference Architecture Model Edge Computing [19].
The authors mention virtualization as a vital part of edge computing and, by extension,
edge intelligence. The full reference architecture is shown in Figure 1. The virtualization of
an entire hardware platform is called hardware virtualization or platform virtualization.
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Figure 1. Reference architecture for Model Edge Computing [20].

3.1. Hardware Virtualization

Hardware virtualization separates the operating system from the hardware present
on the physical machine. The software or firmware taking care of this separation is called
a hypervisor. The machine running the hypervisor is called the host, and the deployed
machines are called guests. This virtualization type allows multiple operating systems
(OS) to be deployed on the device concurrently. Figure 2 [21,22] shows the two types of
hypervisors used.

Figure 2. Comparison of hypervisors and containers.

3.1.1. Type 1 Hypervisor

Serving as an additional layer between the hardware and each operating system
running on the device, this hypervisor provides drivers for the guest OS to communicate
directly with the hardware [23]. The configuration process tends to be more complex when
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compared with Type 2 Hypervisors, but the scalability, security, and performance are
also higher. Examples of such hypervisors include VMware ESXi, KVM, Oracle VM, and
Microsoft Hyper-V.

3.1.2. Type 2 Hypervisor

This type of hypervisor runs on the host OS as any other application would. Unlike a
Type 1 Hypervisor, the guest OS communicates with the host OS, which communicates with
the hardware. The host is unaware of the guest OS running on the hypervisor and treats it
like any other program. The setup required is simpler but also more limited. Examples of
such hypervisors include Oracle Virtualbox and VMware Workstation [23]. The traditional
use cases include non-production environments where the requirements for performance
are not as strict.

3.1.3. Performance Comparison of Type 1 vs. Type 2

There is a measurable difference in performance between Type 1 Hypervisors and
Type 2 Hypervisors as described by Dhule et al. [24]. The authors tested five different
hypervisors—Type 1 Hypervisors KVM, vSphere, and XenServer, and Type 2 Hypervisors
VMWare Workstation and VirtualBox. Each test focused on a different component—CPU
performance, memory performance, disk I/O performance, and network performance.
The biggest difference they measured was in CPU performance, where VirtualBox reached
a little below 60% of native performance and VMWare Workstation slightly above. The
lowest among Type 1 Hypervisors was XenServer, with 79%. KVM and vSphere reached
around 87% and 94%, respectively. The performance differences were much smaller in
memory tests, with VirtualBox and VMWare Workstation achieving around 67% and 75%,
respectively. Type 1 Hypervisors all achieved between 90 and 94%, much closer to the
native performance. In disk I/O tests, KVM was the clear winner, achieving around 98–99%
of native performance. vSphere achieved around 94% and XenServer around 90%. The
performance of Type 2 Hypervisors switched during this testing, with VirtualBox coming
ahead of VMWare Workstation at around 77% to 73%. The last testing performed focused
on networking. KVM and vSphere achieved similar performance at around 90%, with
XenServer slightly behind at around 87%. VirtualBox achieved around 61% and VMWare
Workstation around 68%. The differences between Type 1 and Type 2 Hypervisors vary
based on the area of focus, but Type 1 achieved better performance in all scenarios.

3.2. Containerization—Operating System Level Virtualization

In recent years, the rise of OS-level virtualization, also known as containerization, can
be attributed to the shift in software solutions architecture. Traditionally, software solutions
were created as a singular block, also known as a monolithic architecture, in which different
parts of the solution were interconnected inside the application itself. This approach
can be easier to develop, test, and maintain in smaller solutions, but as the complexity
of the solution increases, so does the maintenance required to keep it working. In the
era of cloud computing, a new architecture was adopted—a microservice architecture. In
microservice architecture, different parts of the solution are split into separate applications
interconnected through a common interface. This separation allows for the solution’s
greater customizability, reusability, and scalability. Separate services can be modified
and deployed without affecting any of the other services. They can also be scaled and
deployed independently, according to the user needs [25]. The current approaches to
software development are closely connected with containerization. The application of
DevOps methodology is intertwined with CI/CD, which utilizes containers during the
product lifecycle.

3.2.1. Definition

In hardware virtualization, each guest runs in a separate virtual machine with its own
kernel. Running multiple versions of the same kernel or different kernels altogether is not
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a problem. In OS-level virtualization, the host kernel is shared among all the containers.
Running different kernels, for example, the Linux kernel and the Windows kernel, is
currently not possible. This distinction is perhaps the biggest strength while also the
biggest weakness of containers. As shown in Figure 2, the container engine runs on top of
the host OS [26].

Isolation is integral to virtualization as it provides additional security and prevents
mishaps from damaging other guests. In hardware virtualization, the isolation is managed
by a hypervisor, and each guest has a separate kernel. The kernel is shared in containers,
and different techniques must be employed to achieve similar results. Containers take
advantage of the features of the Linux kernel, more specifically namespaces and cgroups.

3.2.2. Namespaces

Namespaces divide the kernel resources between processes, so a set of resources is
only visible to selected processes [27]. By utilizing namespaces, each container can see a
different set of resources such as host name, process identification number, mount points,
networks, inter-process communication, and even time. Unless specified otherwise, the
containers are unaware of other containers running the host using different namespaces.
They cannot see other processes, networks, or data stored on the host [28].

3.2.3. Cgroups

Cgroups is a “Resource management and resource tracking” solution in the Linux
kernel [29]. In hardware virtualization, the hypervisor is told what resources to allocate to
which guest [30], be it CPU cores, RAM, or even storage. The kernel is shared in containers,
as are the available resources. To prevent a single container from consuming all resources
due to the high hardware requirements or a bug in the code, cgroups can divide the
available hardware resources between containers [31].

3.3. Performance of OS-Level Virtualization

OS-level virtualization tends to require fewer resources than hardware virtualization.
It is considered more lightweight because it does not entail the performance overhead of
virtual machines. However, the performance difference is not as clear-cut as it might seem.

Aniruddh et al. [32] compared the performance of VMs and containers in multiple
scenarios representing common uses. In the first test, which represented Infrastructure as
a Service (IaaS), the performance difference was minimal, with hardware virtualization
performing slightly better in more tests. The test compared the CPU and RAM usage during
a sysbench test. In the second test, which represented Platform as a Service (PaaS), the
container was a clear winner, outperforming the VM by a large margin. MySQL was used
as a database, and the authors compared the speed and the hardware utilization during
read–write–access operations. In the final test, which represented Software as a Service
(SaaS) , the container was again a winner with almost a 100% better performance in some
scenarios. The scenario contained two parts—a MySQL database and a Django website,
which performed CRUD (Create, Read, Update, Delete) operations on the database.

Abuabdo and Al-Sharif [33] focused on testing multi-threaded algorithms comprising
matrix multiplication written in both Java and C. These algorithms were then tested on two
virtual machines—Windows 10 and Ubuntu—and in a Docker container. Both the Ubuntu
machine and the container performed similarly to the host machine in single-threaded tests
with smaller matrices but performed measurably worse with larger matrices. Only the
Windows 10 VM could utilize the multi-threaded performance, but only in some scenarios
and to a much lesser degree than the native OS.

Watada et al. [34] provide an excellent overview and comparison of hypervisors and
containers in various tasks. The authors tested random access performance, CPU perfor-
mance, network, and memory bandwidth performance. Their tests show that containers
achieve performance similar to or better than other virtualization techniques in some tasks
while lagging behind in others.
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3.4. Containers and Data

Containers are ephemeral—the data in them is stored only for a short time and can
be lost at any time. It is not uncommon to re-deploy containers every few days. Each de-
ployment creates a new container with its own data, separated from other containers or the
host. The data should, therefore, be separated from the processing itself to prevent losses.

Containers stop whenever they finish their tasks. Because of this, there is a high risk of
losing any data not stored elsewhere. The easiest way to share data between containers and
the host is using volumes. Volumes create a shared folder that persists through container
deletion and can be shared to multiple containers.

As edge intelligence mostly deals with real-time data, the data must somehow enter
the container. This is often achieved using an API inside the container, which allows the
user to send any data into the container for processing. Data can be exchanged between
containers through internal container networking, which Docker supports. These networks
are separated from the host and each other.

3.5. DevOps

DevOps combines two important parts of a product lifecycle—development and
operations. It is described as a set of principles or methods bridging the gap between
the development and operations teams [35]. It is not a set of tools but rather guidelines
or best practices to which the teams should adhere. Consisting of eight steps, shown in
Figure 3, the DevOps cycle is a collaboration and a seamless transition from operations
to development and vice versa. By bridging them together, the product can be delivered
faster, more reliably, and to the specification of the consumer [36]. The team receives feature
requests from the customers, which are translated into a set of tasks for the developers.
The tasks are planned ahead of development to ensure the feasibility of delivering them on
time. The developers then write the necessary code, which in turn is built and tested to
catch errors and bugs as soon as possible. After the feature is finished, the application is
ready to be released and awaits deployment. The application is then deployed and released
to the customers, where it is monitored using various performance tools that collect data.
The new feedback is collected along with the data, a new set of feature requests is collected
from the customers, and the cycle repeats.

Figure 3. CI/CD pipeline diagram.

3.6. CI/CD

Continuous integration and continuous delivery (CI/CD) has become essential to
developing and maintaining software and is vital to the DevOps cycle [37]. The current
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agile approach in software development leads to small changes being made to the product.
These changes then need to be deployed in small increments, where either the whole
application or a part of it needs to be rebuilt and re-deployed. The idea of introducing
automation into the development, testing, deployment, and monitoring leads to a shorter
lifecycle of apps [38].

In continuous integration, developers upload their changes more often, and the appli-
cation is tested using automated testing software before being integrated into the code base.
This type of automation can find bugs quickly and without any user interaction. Conflicts
can occur in a multi-developer environment where each developer has their own tasks.
Fixing such conflicts is time-consuming and often needs to be performed manually. By
uploading the changes in smaller increments and testing often, the conflicts can be detected
early and fixed before they become a bigger problem.

Continuous delivery is the next stage, where the code is prepared to be deployed to
any environment at any time. The implementation of the CI/CD is referred to as a CI/CD
pipeline, where the stages take place in succession after the previous one has successfully
finished. An example of such a pipeline is shown in Figure 3. According to a survey by
JetBrains from 2023, [39], 63% of developers use Docker, the most used container software ,
during the CI/CD lifecycle.

Containerization allows the application to be packaged with the required libraries,
supplementary software, and files. This package is also called an image. The image can then
be shared and deployed on another device where it is deployed as a container. The container
runtime should ensure that the image behaves consistently across different devices. The
process of packaging, uploading, and deploying can be fully automated inside the CI/CD
pipeline, leading to a shorter time from writing code to deploying it.

3.7. Security

Containers are flexible and used in a wide variety of ways. The recommended way
to use containers is as part of the microservice architecture, where each container runs a
single service and contains only the tools necessary to perform this service. Adhering to
this approach reduces the vulnerabilities by reducing the number of possible attack vectors.
The problem comes when the size of the image used increases. Including more libraries
and background processes in the container increases the possibility of a vulnerability in
any one of them [40,41].

Using containers as a replacement for a VM has also become widespread use. As
with a single application, the entire OS can be packaged together into a single image and
shipped to users. This increases hardware requirements, as the container now runs multiple
processes and services, opens more communication channels between the container and the
host, and provides a much larger attack surface [42]. As previously mentioned, containers
share a single kernel between themselves and the host. In hardware virtualization, the
guests are separated from the host, and the hypervisor is responsible for the security. By
attacking the hypervisor, each guest can then be attacked. Vulnerabilities in the OS running
in a guest VM can also be an attack vector, allowing the guest to start communicating
directly with the host, bypassing the hypervisor [43].

3.8. Creating a Container Image

Containerizing an application requires the creation of an image—a blueprint for the
containers. The Open Container Initiative (OCI) [44] provides definitions and specifications
of an OCI-compliant image, but it is not necessary for a user to be familiar with said
specifications. We will use Docker images as an example, as they are OCI-compliant and
represent the widest user base. The images comprise two main parts—the application and
the configuration.

The Dockerfile serves as the configuration file, containing instructions on how to build
and run the image. An important feature of containers is the ability to build images from
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other images. An example Dockerfile is shown in Listing 1, containing the instructions to
create a Flask application.

Listing 1. Dockerfile Example.

FROM python : 3 . 8 − a lp ine
WORKDIR /app
RUN pip i n s t a l l f l a s k
COPY ./ app . py /app
ENV FLASK_APP app . py
ENTRYPOINT [ " f l a s k " ]
CMD [ " run " , "−− host " , " 0 . 0 . 0 . 0 " ]

The first command, FROM, defines the base image—in this case, Python, version 3.8,
with Alpine serving as the environment. WORKDIR configures the working directory of
the image. RUN executes the commands while building the image. This step is typically
used to download additional libraries and tools that the application needs. Using this
command when creating an image ensures a constant environment, preventing dependency
incompatibility stemming from software updates. COPY is used to copy files from our
system to the container. These files can be the source code, compiled application, or
supplementary files. ENV configures the environment variables and should be used to
define values which should not change during deployment or require a default value.
The last two commands, ENTRYPOINT and CMD, define the instructions executed when
running a container. Each command creates a new layer, a read-only set of files. The
layers are stacked on each other, creating an image. Any change to the image requires the
creation of a new layer. More commands are available, as documented by Docker [45],
but the abovementioned commands represent a minimal setup required to containerize
an application.

After creating the image, it can be deployed on any device supporting the selected
platform or other compatible platforms.

4. Tools

A wide range of tools is available for containers, spanning from container runtimes to
orchestrators. This section will describe the most popular offerings in different categories.

4.1. Docker

Docker is perhaps the most well-known container platform as it offers an easy-to-
understand set of tools to package, deploy, and run applications across different platforms
and devices [46]. It is an open-source platform and an establishing member of the OCI,
which aims to establish a set of open standards for containers. The name “Docker” has
been used to refer to almost any part of the Docker platform, from the highest level tools
offered—the Docker Desktop and the Docker CLI, both of which provide the user with an
easy way of sending commands—to a lower-level tool, the Docker daemon, which will be
described later. The use of Docker as an edge computing platform has been described by
Ismail et al. [47].

Docker client refers to the user interface, which can be graphical or terminal. Docker
offers tens of commands to build, manage, deploy, and monitor containers. The commands
can be modified using hundreds of options and arguments, giving the user complete control
over the containers. An example is setting environmental variables inside the container or
limiting the memory available to the container. The client then relays the commands to the
server, the Docker daemon.

Docker daemon is a service running on the host computer and takes on a role similar
to a hypervisor in hardware virtualization. The daemon executes the requested command
whenever the user enters a command using the client. It is also responsible for the man-
agement of other objects, which include images, containers, networks, volumes, plugins,
and more. Whenever a user requests an image that is unavailable locally, the daemon
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communicates with the image registry, an external storage for container images. It ensures
that the image is downloaded and added to the local registry. The daemon can then take
the image, which serves as a template, and create a container according to the specifications
of the image. The division of containers into namespaces and cgroups also falls under
the scope of the daemon’s responsibilities, providing the needed process, storage and
network isolation.

The creation and management of containers themselves is delegated to another dae-
mon referred to as a low-level container runtime, which in Docker is containerd. The user does
not interact with the runtime; the entire responsibility is on the Docker daemon instead.
Containerd edges the line between a high-level container runtime, with which the user can
communicate via an API, and a low-level runtime, with which the user has no interaction.
In practice, containerd is rarely used by itself and is instead part of a more extensive system
where another service takes the place of the high-level container runtime.

One of the most significant drawbacks of the Docker platform was and still is the
need to run the containers with root privileges, sparking security concerns. This issue
is well known to the creators [48] as well as researchers [41,42]. Some solutions were
developed [49,50]; however, the problem has created other tools, such as Podman, Buildah,
runC, Buildkit, LXD, and Containerd, which aim to fix this and other vulnerabilities and
prevent malicious attacks through containers.

4.2. Kubernetes

Docker is a great tool when running a small set of applications on several devices.
It is not a great choice when dealing with a large number of applications or running an
app on many devices. Container orchestrators are tools to automate some parts of the
container lifecycle, namely, the provisioning of resources, deployment, scaling, networking,
and self-healing [51]. Kubernetes (k8s) is the most used container orchestrator, with reports
hovering around 70% market share [52].

Kubernetes (k8s) operates based on Pods, which package single or multiple con-
tainers with volumes running in the same environment [53]. They usually represent a
single application or a part of an application, and all the containers in a Pod run on the
same device, which k8s calls nodes. When deploying new Pods, another object is created
first—Deployment. A Deployment contains the desired state of our Pods, which entails the
definitions of Pods and a number of replicas to deploy. The Deployment then creates an-
other object called ReplicaSet, whose purpose is to scale the Pods according to specification
and maintain them in a healthy state. Deployments and ReplicaSets sound similar but differ
in their responsibilities. Deployments are responsible for the entire state of the deployed
solution and ensure updates and rollbacks. ReplicaSets are responsible for achieving the
desired state defined in a Deployment and are not recommended to be used directly outside
of Deployments.

Many different k8s distributions are aimed for use in EC, such as k3s, k0s, or Microk8s.
Edge devices are often performance-constrained, and the low-performance overhead that
comes with containerization while maintaining all the other advantages—such as easy
deployment, consistency, and portability—can help create edge solutions. The devices
also often support different operating systems or different versions of the same operating
system, which leads to compatibility issues, which the use of containers can also address.
Using ReplicaSets, the solution can also be easily distributed across multiple devices,
allowing for better load balancing and better reliability [54].

4.3. Anaconda

Anaconda, or more specifically, its package manager, conda, is a popular choice for the
development of AI, ML, or data science applications [55]. There are some areas between
containers and conda that overlap, so we see it appropriate to mention it here.

Conda is a package manager [56] responsible for installing and managing Python
packages and libraries. It was created as an alternative to pip, the default package manager
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used in Python. Pip installed the requested package and all the required dependencies
without checking for any conflicts with previously installed packages. This could result
in broken environments or incompatible versions of packages, as it only cared about the
newest package and its dependencies. Conda, on the other hand, checks for conflicts across
all the installed packages and tries to solve any conflicts that arise. These packages are
installed inside separate environments, allowing multiple versions of the same package to
be used on the same device. The developer can switch between these environments easily
and ensure the correct versions are used for each project.

The environments can be shared similarly to containers, but these platforms have
some major differences. Conda is responsible for the packages, or libraries, used in the
solution and is limited to Python and R. Docker, or similar containerization platforms,
allow for the management of the entire environment. This includes OS libraries, other
software components, or files. The biggest difference is in the execution of the software.
Docker is responsible for the execution of the container and the separation from other
processes running on the device. Conda does not execute the software and only prepares
the environment for Python to execute the program correctly. It is more of an environment
manager and not a virtualization platform.

5. Solutions and Architectures on Edge

Three hierarchical levels are typically used to divide up the computer resources. The
hierarchy is depicted in the context of IoT in Figure 4; however, this divide is not exclusive
and may also be used in other paradigms. The data sources—things, in the case of the
Internet of Things—are positioned at the bottom of the hierarchy since they are the most
numerous and have the least amount of processing capacity available. Depending on the
topic of interest, several data sources can be used instead of these.

Figure 4. Traditional three-layered computing architecture, made up of edge, fog, and cloud.

The cloud serves as the final destination for most of the data. The cloud is defined by
NIST [57] by the following properties:

• On-demand self-service—The user can automatically provision resources and services
through an online interface.

• Broad network access—Access to the resources and services is available through
standard networks and interfaces, such as the Internet.

• Resource pooling—The provider’s resources are pooled to serve multiple consumers,
with dynamic assignment and reassignment of virtual and physical resources accord-
ing to consumer demand.

• Rapid elasticity—The resources available to the user should be scalable both up and
down without much user configuration. The process should be available at any time.
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• Measured service—The usage is monitored according to appropriate criteria (storage,
processing time, bandwidth, etc.), and these metrics are available to the user at any
time, together with the associated costs.

The cloud is a collection of (almost) limitless resources accessible via the Internet at
any time or location. One benefit of cloud computing is that part of the duties is delegated
to the provider, such as network management, cooling and cleaning, hardware upgrades,
and updates. The primary drawback of cloud computing is the delay in communications.
There is a notable latency due to the distance and the number of network hops needed
to get to the cloud, as the application’s data centers may be hundreds of kilometers away.
Because of this, real-time applications are not appropriate for the cloud.

The fog serves as an extension of the cloud closer to the network’s edge. According to
the OpenFog Consortium [58], the fog should preserve all the benefits of the cloud while
offering other advantages. The advantages mentioned by the OpenFog Consortium are:

• Security—Additional security to ensure safe, trusted transactions.
• Cognition—Awareness of client-centric objectives to enable autonomy.
• Agility—Rapid innovation and affordable scaling under a common infrastructure.
• Latency—Real-time processing and cyber-physical system control.
• Efficiency—Dynamic pooling of local unused resources from participating end-user

devices.

The computer resources that are near the data source are represented as the edge. The
edge’s maximum distance from the data source is not well defined. Most people agree
that the edge must have real-time data processing capabilities; therefore, to avoid latency
problems, the processing should happen locally on the network. The processing may
happen on the same device gathering the data or on a different nearby device. Depending
on the use case, these devices can be MCUs, SBCs, Mini-PCs, or mini datacenters. The
latency, size, and performance requirements for edge computing vary depending on the
use case.

The differences between fog and edge are not clearly defined and are a subject of
debate amongst both researchers and industry. We understand fog as the layer between the
edge and the cloud, which moves some of the tasks from the cloud closer to the edge while
not offering the full advantages of the edge. We see fog as more fit for short-term data
storage and data analysis where some processing takes place, whereas edge is for real-time
data processing. The definition of how long the real-time data processing should last varies
across different scenarios. However, we understand it as the timeframe during which the
value of the data does not diminish and the reaction to the data results in a positive change.

Zhou et al. [59] divide edge intelligence into six levels, which are summarized in
Table 1 and described in more detail later:

1. Cloud-Edge Coinference and Cloud Training—the model is trained in the cloud,
where the performance allows for faster and better performance of the model. The
data from the edge is partially offloaded to the cloud for inference.

2. In-Edge Coinference and Cloud training—the model is trained in the cloud, as in the
previous level. The inference occurs in-edge, where the data can be fully or partially
offloaded to nearby nodes or devices without leaving the edge.

3. On-Device Inference and Cloud Training—the model is trained in the cloud, but the
inference occurs on the edge device itself. No data offloading is conducted.

4. Cloud-Edge Cotraining and Inference—both the model training and inference are
conducted in cooperation between the edge and the cloud.

5. All In-Edge—Both the training and the inference are conducted in-edge, with edge
devices cooperating and offloading data.

6. All On-Device—Both the training and the inference are conducted on-device, with
each device working by itself.

The authors [59] focused on deep learning, the most promising part of artificial in-
telligence, which has seen massive leaps in the last few years. In 2023, OpenAI released



Electronics 2024, 13, 1335 12 of 23

ChatGPT 4, a deep-learning large language model that sparked a widespread interest in
artificial intelligence. According to an article from Bilan [60], 49% of the top 1000 companies
utilize ChatGPT, and 30% more plan to in the future. The main areas of adoption are
marketing, customer support, and programming. The training of such models is very
hardware-intensive and is, therefore, typically performed on the cloud. The main disad-
vantage of a cloud-based approach is the need for the data to travel to the cloud. Devices
are producing much more data than the cloud can transfer and process in a reasonable
time. This has sparked an interest in edge intelligence, an approach to artificial intelli-
gence taking advantage of the environment around the data sources. Moving some or all
of the processing closer to the data can increase the total performance and decrease the
processing time.

Table 1. Description of training and inference on edge intelligence levels.

Level Training Training Description Inference Inference Description

1 Cloud Data are aggregated in the cloud, where the
entire model is trained Cloud-Edge

The model is split between the edge and the
cloud, utilizing methods such as

network splitting

2 Cloud Data are aggregated in the cloud where the
entire model is trained In-Edge

The model can be split between multiple
edge devices like network splitting, or use

dedicated inference nodes to which the data
are offloaded

3 Cloud Data are aggregated in the cloud, where the
entire model is trained On-Device

The cloud-trained model is deployed on a
single device, often utilizing methods such

as pruning, quantization, or knowledge
distillation to achieve better performance

4 Cloud-Edge

Data are shared between the cloud and the
edge; both parts are responsible for a part of

the training, utilizing methods such as
network splitting

Cloud-Edge
The model is split between the edge and the

cloud, utilizing methods such as
network splitting

5 In-Edge

Data are shared between edge devices with
part of the training taking place at each

device or a subset of dedicated
training devices

In-Edge

The model can be split between multiple
edge devices in a manner similar to network
splitting or use dedicated inference nodes to

which the data is offloaded

6 On-Device

Data are not shared anywhere, and a single
device is responsible for the entire training,

which is often optimized for that
specific device

On-Device The model is deployed on a single device,
often utilizing approaches such as TinyML

In Level 1 edge intelligence, the model is trained strictly in the cloud, as it offers
incomparable performance to the edge. During inference, the edge and the cloud cooperate
by exchanging the data. There are multiple approaches to this cooperation. Network splitting
separates the model into two parts—one for edge deployment and one for cloud deploy-
ment [61]. The NN can be split into layers, with the first layers of the network deployed on
the edge and the later layers deployed in the cloud. Applying some of the processing on
the edge lowers the amount of data sent to the cloud. The bandwidth required is, therefore,
lower and could lead to improved latency. Banitalebi-Dehkordi et al. [62] applied this
approach and expanded on it by trying to find the ideal split. The model needs to be split
correctly to ensure the balance between the network latency and edge performance.

In Level 2, the training is the same as in Level 1. The difference lies in the inference. The
nodes can share the data they are to process with other nodes on the edge. This offloading
can be performed fully, where the device offloads the entire processing to another node. In
partial offloading, the approach is similar to the node splitting mentioned above, where
part of the processing takes place on one node and the rest on another node. By removing
the need for a constant cloud connection, the external network bandwidth requirements are
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lower. On the other hand, the requirements for the local network increase to ensure smooth
data sharing. The node performance requirements also rise, as the processing should be
conducted in real-time. Yang et al. [63] proposed a pipelined cooperation scheme in which
the NN is split into layer segments and assigned to device clusters. The authors then
compared their approach with three other parallelization approaches, with the proposed
approach being 1.7–6.5 times faster.

Level 3 edge intelligence relies on the cloud for training and a single device for
inference. As previously mentioned, AI models tend to require more performance than what
typical edge devices can offer. To address this issue, multiple techniques were developed
to transfer larger models to lower power devices. The first such approach is pruning—a
process of removing elements from a model [64]. The complexity of neural networks
introduces unnecessary elements that can be removed with little to no effect on the precision
of the network. The removed elements include neurons, weights, or entire layers. The
second approach is quantization—the reduction in elements’ precision representation [65].
YOLO, a popular real-time object detection system, has undergone many iterations, as
described by Terven [66]. Some models, aimed at increased performance for edge devices,
take advantage of quantization. The third approach is knowledge distillation—training a
smaller student model using a larger teacher or multiple models. There are many more
approaches, described in greater detail in the following surveys [65,67,68].

In Level 4 edge intelligence, training and inference are performed cooperatively between
the edge and the cloud. With some of the training occurring close to the data source, the variety
of data can increase. The edge node can also anonymize the data during training before being
sent to the cloud. Xu et al. [69] proposed two approaches to cloud–edge collaboration. Both
approaches use network splitting, which was mentioned in the Level 1 EI, by dividing
the network between the edge and the cloud. The edge contains one randomly selected
controller node, which communicates with the cloud, and agent nodes, which communicate
with the controller node. The split is selected according to multiple criteria: throughput,
energy consumption, processing speed, and available memory. In the first approach, which
is more akin to Level 1 EI, the model is trained in the cloud and then deployed to the edge
via the master node and to the cloud. The abovementioned algorithm splits the network.
The second approach is more complex, as the training occurs on both the edge and the
cloud. Before the training starts, the network is split and deployed across nodes with
initialization parameters. The output from the last layer present on the edge is sent to the
cloud, where the rest of the network is located. The cloud then calculates the loss function
and adjusts the parameters, which are then sent back to the edge nodes. The authors also
employ an early exit strategy by deploying a simplified cloud model to the controller node.
This strategy is applied in case of network problems or the incapability of the network to
complete the inference in the required time.

Level 5 is the first level not to utilize the cloud resources. Without access to the
processing power of the cloud, the training is performed in cooperation between multiple
edge nodes. The nodes share and offload the data between each other or offload it to
nodes focused solely on training. Galanopoulos et al. [70] implemented this level of EI
in a face recognition application. The authors state that their approach is 50% faster
and 30% more accurate than competitive approaches while consuming fewer resources.
Their approach considers each node’s processing capabilities as the nodes are aware of
each other’s resources and can better select where to offload their processing. The two-
stage approach, in which the first step is the feature extraction and the second step is the
classification, achieved better results when dividing the steps between two devices. The
accuracy of the solution increased by 10% and the delay decreased by 16%. The solution
can also be modified to focus on either accuracy or latency.

In Level 6, training and inference occur on a single device. As previously mentioned,
the edge comprises various types of devices—SBCs, MCUs, or Mini-PCs. The performance
restrictions on some of these devices led to the creation of AI models focused on smaller
sizes and faster processing. One interesting area is the adoption of TinyML—machine
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learning aimed at use in microcontrollers [71]. Whereas other devices possess an OS,
allowing greater freedom in selecting a programming language or platform to work on,
MCUs are more restricted. Developing a TinyML model focuses on taking advantage
of the selected device’s hardware resources. No communication overhead is introduced
by placing such a model right at the data source. We would like to draw attention to
MCUNet [72], a highly optimized deep learning framework aimed at low-cost MCUs. The
authors trained three models: ImageNet, Visual Wake Words, and Speech Commands.
In image recognition, their approach achieved a record 70.7% accuracy on a device with
512 kB memory and 2 MB storage. The solution reduced the memory usage by 3.5×
when compared to ResNet-18 and MobileNetV2-0.75, other networks created for use in
resource-restricted devices. In Visual Wake Words, a dataset created for speech recognition,
the network achieved 2.4× faster inference than the previous state of the art. Their works
highlight the potential of using very low-power devices for edge intelligence.

The relevant publications are summarized in Table 2 and assigned to each level of
edge intelligence.

Table 2. Levels of edge intelligence and relevant publications.

Level Title Reference

1 DeepSplit: Dynamic Splitting of Collaborative Edge-Cloud Convolutional Neural Networks [61]
Auto-Split: A General Framework of Collaborative Edge-Cloud AI [62]

2 Towards Efficient Inference: Adaptively Cooperate in Heterogeneous IoT Edge Cluster [63]
3 Literature Review of Deep Network Compression [64]

AI on the edge: a comprehensive review [65]
A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8
and YOLO-NAS [66]

Model Compression for Deep Neural Networks: A Survey [67]
Edge Computing Technology Enablers: A Systematic Lecture Study [68]

4 A collaborative cloud-edge computing framework in distributed neural network [69]
5 Cooperative Edge Computing of Data Analytics for the Internet of Things [70]
6 TinyML Meets IoT: A Comprehensive Survey [71]

MCUNet: Tiny Deep Learning on IoT Devices [72]

Many edge intelligence solutions already utilize containers. This section will provide
examples and describe how the containers are helping. We will also provide examples in
which containers could be a beneficial extension of an already existing solution.

5.1. Federated Learning

The distribution of processes and data has been used in the fields of data processing,
data storage, and AI for many years already. Whenever a single computer lacks the
resources to solve the task by itself, the process can be split between multiple computers.
Traditionally, the computers were abstracted to represent a single system, with the data
being split according to their capabilities. While this approach is sufficient in many cases, it
does not address data privacy issues. The data are freely shared between computers, which
can lead to privacy concerns and network congestion.

Federated learning (FL) serves as the embodiment of edge intelligence, using the
advantages of edge computing while simultaneously solving many problems inherent to
such an environment. Unlike in the traditional approach to distributed computing, the
data are not shared between devices. Instead, each device has access only to its data. Each
device is trained on a separate dataset during the model training, and only the resulting
model is shared. This approach mitigates or outright eliminates many of the security and
privacy concerns. After each training, the models are collected and adjusted according to
the selected criteria. The adjusted models are then sent back to each device to serve as a
base for the next round of training. An example architecture is shown in Figure 5.
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Figure 5. Federated learning architecture.

As the devices collecting the data are the same ones processing it, a new problem
arises regarding the availability of the data. In heterogeneous environments, applications
may not be compatible with all the available devices. In [73], Brecko et al. describe
the most popular FL frameworks along with supported operating systems. They have
selected five frameworks, of which only two supported all selected operating systems.
Two of the selected frameworks did not support Microsoft Windows, the most popular
operating system in consumer desktop computers. The support for different instruction
sets, more specifically ARM, was also not found in the two frameworks. This highlights
the issue of heterogeneity of devices found in edge environments. As mentioned at the
beginning of this section, Docker offers a way to build images compatible with both x86
and ARM architectures, which comprise most edge devices. It is also compatible with the
main operating systems—Linux, MacOS, and Windows. As edge computing also deals
with mobile devices and smartphones are a great data source, some federated learning
frameworks have direct support for their OS. iOS, found in Apple devices, cannot run any
containers due to the proprietary nature of Apple’s software. On the other hand, Android
runs a modified version of the Linux kernel and can therefore be modified. While not
officially supported or recommended, it is possible to run Docker containers on an Android
device [74]. The steps required include modifying the device kernel but highlighting the
potential of containerization in mobile edge computing.

One of the advantages of edge computing is the geolocation of the devices—close
to the data source. Due to this, the number of devices available is highly dependent on
external factors. There are numerous factors which should be considered when training on
a larger number of devices:

• Population density—simply put: more people, more devices. The population density
affects the number of available devices in a certain location.

• Country location—people from different countries may behave differently.
• Housing—people living in flats and houses exhibit different behaviors.
• Modes of transportation—stemming from the previously mentioned factors, the modes

of transportation.

To address this issue, Chahoud et al. [75] propose the usage of containers. Their
proposed solution increases the number of devices usable as the compatibility problem can
be circumvented by packaging together all the required software and libraries.

5.2. Robotics

The autonomy of robots is an ever-increasing challenge and an opportunity. The focus
has shifted from separating human and robot workers to promoting their collaboration and
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cooperation. Artificial intelligence methods are employed to address the challenges arising
from this shared environment. The robots now must consider how their actions affect the
environment and people around them. Interoperability between different robotic systems
can also pose a challenge.

Robot Operating System (ROS) is the standard when it comes to the creation of robotic
applications. The abstraction provided by ROS eases the development and integration of
software across different platforms. Lumpp et al. [76] propose the utilization of containers
in the design flow of robotic applications. The proposed methodology uses Docker, Ku-
bernetes, and ROS to achieve reusable, modular, and portable software components for
use in multiple domains. ROS utilizes a graph-based approach to communication where
each node represents a process. The authors classify these notes into different hierarchical
abstraction levels. The nodes are then clustered into containers to optimize system effi-
ciency. Nodes that require constant communication are, therefore, packaged together to be
deployed onto the same device. The authors use ROS-based communication by removing
the isolation between the container and the host network. The containers generated also
take advantage of image inheritance. Shared packages and libraries are bundled into an
image, which is then used as a base for other images. The proposed methodology was then
used to design an application simulating an industrial agile production chain. The mobile
robot moved pieces from the conveyor belt to the cargo bay. The solution was tested in
various configurations: an external server, a main control board, and Nvidia Jetson Nano.
The software controlling the robot arms was always deployed on the main control board,
and the software for image detection was always deployed on the Nvidia Jetson, as it was
the device closest to the camera. The authors then tested and compared the solution on
various deployment combinations, with and without the utilization of containers.

5.3. Healthcare

Healthcare and patient care are two of the areas that can benefit the most from edge
computing. The data generated in these scenarios is very personal and private. It must,
therefore, be kept safe to ensure no malicious actions are possible. The data are also time-
sensitive and latency-sensitive, as the patient’s condition can change quickly. Network
failures and bandwidth congestion can occur at any step on the way to the cloud. These
factors can be minimized by moving the data processing from the cloud to the edge.
Adopting technologies like IoT, smart devices, and AI has improved the quality and
availability of healthcare.

Murphree et al. [77] describe creating a predictive model to calculate the risk of 30-day
hospital readmission in patients released from a hospital. The authors are employed
at a tertiary care clinic in Rochester, Minnesota, and are familiar with the IT structure
present at the facility. The authors highlight the use of many proprietary applications
and the use of platform-specific solutions. Another highlighted issue is the difference
between research and production environments in a medical setting. For a model to
be implemented, it must prove that it can run as well in production as it did during
development. Therefore, the model should be as portable as possible without needing
modifications between development and production. The authors have combined Docker
with REST API applications written in R and Python to address these issues. The model can
be deployed anywhere and accessed from other applications by making a simple API call.

Kleftakis et al. [78] describe a fascinating and creative approach to creating an Elec-
tronic Health Record using containers. The authors created a digital twin of a patient
by dividing parts or organs of the body into containers. The authors applied current
approaches to software development by utilizing microservices, containers, orchestrators,
and MLOps. The solution is currently aimed for use in cloud-based environments but
could be adapted and deployed in edge-based environments, such as hospitals, to enhance
data privacy.
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5.4. Virtual Assistants

Speech recognition saw giant leaps in the last decade. Personal assistants like Siri,
Cortana, and Alexa are already available on mobile devices and vehicles. These assistants
utilize a connection to the cloud for speech recognition, leading to privacy concerns. They
can perform general tasks, e.g., answering simple questions or controlling smart devices
connected to the same network.

Beňo et al. [79] describe an implementation of Microsoft Cognitive Speech Service
on the edge utilizing Microsoft Azure services. The solution is made up of two contain-
ers. Microsoft provides a container for the Cognitive Speech Service, which the authors
deployed on a local device offering sufficient performance. The second container, the
voice recognition module, searches for key phrases and executes selected commands. The
Cognitive Speech Service container can be deployed on the edge or in the cloud if sufficient
performance is not available on the edge. The solution is modifiable and allows for easy set
up voice recognition for human-machine interactions. The authors highlight a few advan-
tages of this approach. When deployed on the edge, the response times of the solution were
approximately 58% better than when deployed in the cloud. The voice recognition module
can be reused in other IoT solutions using services from other providers without much
modification. The privacy issue is solved by running the container on the local network
where none of the data are sent to the cloud.

5.5. Composite AI

Composite AI combines multiple AI techniques to achieve better results than any
single technique by itself. The current approach to AI deals mainly with a single technique,
such as large language models, as is the trend today. Initially, ChatGPT expected text
input from the users and answered with its own text. However, when combined with
other techniques, in this case, speech recognition and speech synthesis [80], the chatbot
can perform normal vocal conversations with the user. This approach is underrepresented
in edge intelligence as we could not find any existing solutions explicitly aimed at edge
computing. Instead, we will provide examples of approaches which could be adapted
to edge.

Tara et al. [81] created an ontology model enabling the interoperability of AI agents.
Their proposed model consists of data format, agent interaction, and environment. We will
focus on the environment as that is where we see containers most beneficial. The authors
divide the environment into five parts, which are described in greater detail in the original
paper. Clients are the entry point for new data and algorithms and communicate only with
the coordinator. The coordinator receives commands from the client, which it then delegates
to the components running under it. It also maintains the health of said components. As
the authors use blockchain state machines to store events from the lower components, the
coordinator is also responsible for this communication. The state is also shared with other
coordinators who validate the transaction and store it in their state machine.

The Blockchain State Machine stores information about the location of deployed
algorithms, their status, and the location of their assets in the decentralized storage. The
Decentralized Storage holds all the files required to start and run the algorithms. Docker
images are stored in registries, which are typically centralized, but some extensions and
solutions provide a way of decentralizing the registry. The authors also highlight the need
for clearly defined input and output definitions, which could be included in the images
themselves. The Execution Environment Manager is responsible for resource allocation,
environment creation, and running the algorithm inside the created environment. The
authors note the usage of VMs or containers when creating these environments, so we
would like to expand on it. Typical VMs take a long time to start. If the machine has to
be created from scratch, it can take several minutes to perform the required tasks. With
containers, it can start in seconds. Docker also natively searches the registry for any images
not found locally, which in this case would be the Decentralized Storage, solving the
problem of getting the algorithms to the agent.
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The Table 3 summarizes the mentioned publications and assigns a level of EI (if appli-
cable) together with a short description. The table contains some additional publications
relevant to the reviewed research area.

Table 3. Levels of edge intelligence and relevant publications.

Reference Year Application Area Description EI Level

[75] 2023 Federated learning Dynamic FL deployment and learning scheme 4
[76] 2021 Robotics Design methodology for ROS-based applications 4
[77] 2021 Healthcare Readmission prediction system for healthcare facilities 3
[78] 2022 Healthcare Electronic health records decomposing the patient’s body into containers -
[79] 2021 Virtual assistant Voice control for human-machine interaction 3
[81] 2022 Composite AI Ontology model for development of multi-agent AI systems -
[82] 2018 Healthcare Human activity recognition 3
[83] 2021 Security Re-identification of people across multiple cameras 2
[84] 2022 Wildfire modelling A federation architecture to enable a composable infrastructure -
[85] 2019 Computer vision Architecture for image processing 3

6. Discussion and Challenges

As stated in Section 2, there are many challenges when it comes to the development and
deployment of edge intelligence solutions [12,86–88]. During our research, we have selected
a few of them which could be solved or at least helped with the use of containerization.

Edge environments are heterogeneous. The devices use different hardware architec-
tures, most commonly ×86, ARM, and RISC-V, in either a 32-bit or 64-bit version. The
differences between these architectures result in an environment where solutions must
be modified to accommodate the used architecture. In 2019, Docker officially partnered
with ARM to allow for easy-to-use cross-platform image creation, which results in a single
image deployable across multiple architectures.

Software compatibility refers to the different operating systems used in edge devices.
While Linux is the most used OS in both cloud and edge environments, the differences
between its distributions pose a challenge. Some AI libraries or applications are only
compatible with a few distributions, and running them on anything else requires a long and
difficult setup. The problem is exacerbated by the incompatibility of hardware and an OS-
specific distribution. These challenges were analyzed and discussed by Huang et al. [89].

The problem of hardware placement and software distribution refers to the need for
remote access to edge environments. Edge devices can be placed in hard-to-reach or unsafe
environments where direct physical access is impossible or dangerous. Therefore, the
solutions should be able to be deployed remotely through the Internet or a local network.

Edge environments often consist of tens or even hundreds of devices. Managing
devices at this scale becomes impossible without the use of dedicated orchestrators and
managers. Container orchestrators like Kubernetes already provide a way of managing
multiple devices and environments.

Devices can suffer from network failures or bandwidth issues, leading to reduced
solution performance. In case of any problems, the container can be quickly deployed
to another device. The same approach can be used in inconsistent data load scenarios.
Containers can be deployed to more devices during high load for better load balancing.
During low load, containers can be removed from devices to save on energy costs.

7. Conclusions

Containers are an integral part of cloud-based solutions as they solve the issues of
portability, consistency, flexibility, and scalability. Some of these issues are more prolific
in edge environments. The nodes are heterogeneous and distributed and can suffer from
power or network failures. The software can encounter compatibility issues with the OS
or the hardware platform itself. Adopting cloud-native approaches may help make the
development and management of edge computing solutions easier [90]. Edge intelligence
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requires special attention as platforms and libraries used to develop artificial intelligence
solutions are complex and difficult to set up correctly. Packaging the correct versions of
required libraries with the application itself can help prevent these issues. Due to the
challenges present in edge intelligence, researchers have tried to implement cloud-native
approaches in various domains.

We focused on the potential of virtualization for deployment and use in practical ap-
plications and the frameworks for containerization. We have discussed the supplementary
technologies and approaches to empower containerization and their benefits to software
development and deployment. We provided existing examples of edge intelligence solu-
tions and platforms utilizing containers. We also discussed the challenges and potential
future of containerization and edge intelligence.

This review is a part of our research and development of a container-based system
for data processing and artificial intelligence at the edge. We plan on creating a modular
system that allows users to create a data processing pipeline by providing a no-code or
low-code approach to development.
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The following abbreviations are used in this manuscript:

API Application programming interface
AI Artificial Intelligence
CI/CD Continuous Integration and Continuous Delivery
EC Edge Computing
EI Edge Intelligence
FL Federated Learning
IaaS Infrastructure as a Service
IoT Internet of Things
K8s Kubernetes
ML Machine Learning
MCU Microcontroller Unit
NN Neural Network
OCI Open Container Initiative
OS Operating System
PaaS Platform as a Service
PC Personal Computer
ROS Robot Operating System
SBC Single Board Computer
SaaS Software as a Service
VM Virtual Machine
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