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Abstract: This article presents a new firmware update paradigm for optimising the procedure in
microcontrollers. The aim is to allow updating during program execution, without interruptions
or restarts, replacing only specific code segments. The proposed method uses static and absolute
addresses to locate and isolate the code segment to be updated. The work focuses on Microchip’s
PIC18F27K42 microcontroller and includes an example of updating functionality without affecting
ongoing applications. This approach is ideal for band limited channels, reducing the amount of
data transmitted during the update process. It also allows incremental changes to the program
code, preserving network capacity, and reduces the costs associated with data transfer, especially in
firmware update scenarios using cellular networks. This ability to update the normal operation of
the device, avoiding service interruption and minimising downtime, is of remarkable value.

Keywords: firmware update; partial update; runtime; internet of things; microcontrollers

1. Introduction

In electronic devices that incorporate microcontrollers, it is common to implement
firmware update mechanisms to correct errors and make new services available after the
product has been launched. Firmware updates often involve risks related with downtime,
failure of the update itself, and costs associated with communications to support those
updates. The article aims to address these limitations by presenting an innovative firmware
update method that minimises or eliminates downtime and optimises the data to be up-
dated. Despite the importance of this topic, there is little research into efficient firmware
update methods that minimise or eliminate downtime. There are devices for which inter-
ruption of operation is critical, for example, the digital control of the power supply of a
data centre (or other critical system) in a non-redundant configuration. In this scenario,
firmware updates on the power supply unit can lead to temporary service interruptions [1].
Kilpeläinen [2] presents an innovative method for dynamic firmware updates, address-
ing updates without the need to reboot the device and modify the program code during
execution. With regard to the efficient use of the communications channel, the literature
refers to methods for optimising the data transmission to be updated. Bogdan [3] focuses
on optimising data transmission in firmware update processes, detailing the concept of
delta transmission and its combination with data compression. That work is based on
the use of opcodes instead of addresses, offering an innovative perspective to efficiently
transmit the updates. The system inactivity time present in the aforementioned methods,
which assume a reboot after the update, led to the proposal of an innovative firmware
update method based on block updates, with the aim of replacing specific code segments
the program’s memory, which is done during runtime and without the need for a reboot.
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The originality of this study lies in the innovative approach of updating firmware by blocks,
enabling an efficient and secure implementation while minimising negative impacts on
system operations. This new method is expected to significantly reduce downtime and
the use of communication channels. A circuit with a PIC18F27K42 microcontroller [4] was
developed to validate the method. The firmware that comprises the applications and the
update process was initially uploaded to that circuit using a RS232 serial channel and a
serial terminal. The article is organised in sections. Section 2 describes several similar
related studies. Section 3 gives a detailed description of the implemented block oriented
firmware update method and the assumptions that allow the method to be successfully
replicated. The communications protocol used to perform the update file transfer is also
described as well the update process. In Section 4, the results obtained are described.
Section 5 presents the main conclusions derived from the findings of this study.

2. Related Work

Several notable studies were analysed related to the firmware updates management,
optimisation of the update files transmission, and improving the process of writing to
the microcontroller’s program memory. In the field of firmware update management,
Mahfoudhi [5] describes an over-the-air firmware update management model for NB-IoT
networks as the number of end devices increases significantly, seeking improvements in
flexibility, installation time, efficiency, and cost reduction. In a similar context, Frisch [6]
proposes a set of models and rules for the firmware update process based on secure distri-
bution and automatic installation mechanisms. Kachman [7] addresses energy efficiency
and its impact on firmware update processes as well as explores the evolution of this
method based on delta transmission. In the area of optimising the transmission of update
files, several significant studies stand out. Wee [8] presents a methodology for transmitting
update files that is based on the differences between the new and old firmware, with the
aim of optimising the firmware update process. Moreover, a high speed compression and
decompression algorithm to significantly speed up the update time is described. Ji [9]
refers to a study that focuses on the incremental firmware update method by modules. This
method is based on assigning memory zones to each module and introducing the concept of
static allocation of functions and relevant security considerations. This innovative approach
improves the efficiency and security of firmware updates. Regarding the optimising of the
writing process of to the microcontroller’s program memory, several studies have made sig-
nificant contributions. Jisu Kwon [10] presents a method of updating the microcontroller’s
program memory based on updating by functional blocks. This makes possible a partial
update of the program memory instead of completely rewriting it, avoiding downtime
during the update process. Xia [11] presents the concept of function addressing by means
of a module orientated programming model. In this model, the code is organised around
modes and modules for a generic dispatching procedure. Xia also introduces the con-
cept of multimode application management, grouping together applications with similar
behaviour and analysing performance evaluation techniques and metrics. Dhakal [12]
presents an architecture based on delta updates and incremental mode for large scale IoT
systems and refers to the ability to verify firmware integrity, highlighting the advantages of
delta updates and identifying scenarios in which this method may not be efficient. Sun [13]
reveals the limits of conventional firmware update methods and proposes a method that
uses partial updates, optimising the lifetime of program memory. This method is based on
partitioning the program memory into several sections, updating only the relevant section,
and classifying each partition as a component. The study addresses security mechanisms,
such as encryption, signing, and validation before and after the update, as well as solutions
for the static allocation of functions in scenarios where the function addresses are different
between the two firmware versions; in addition, the update method is based on packets
that include the functions or modules to be updated, and the study presents a statistical
analysis of update times as a function of the transmission channel. Kwon [14] proposes
partitioning the firmware into functional blocks, introducing the concept of a function
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map. The method aims to update only the functional blocks with differences, reducing the
use of program memory, energy consumption, and update time. This involves sending a
functional block, where the updating application checks for differences and updates only
what is necessary, then updating the function map to reflect the new state. Baldassari [15]
explores delta firmware updates in scenarios with bandwidth constraints by updating only
small memory files of the firmware. The study details the delta update process, which
requires one application to build the delta file and another to rebuild the new firmware
from the received deltas. Although this approach offers the advantage of updating the
firmware with small memory files, it also has disadvantages, such as greater complexity
compared to traditional methods, a higher probability of failure, and the need to keep a
copy of the original version of the firmware in the microcontroller. In addition, it requires
substantial resources on the microcontroller side, including memory and processing to
handle delta updates and corrections.

3. Method Development

The underlying idea of the proposed new method consists of the Non Volatile
Memory (NVM) controller usage to directly update parts of the existent program code.
The NVM controller is a hardware resource present in the majority of microcontrollers
that is responsible for the management of non-volatile memory—also known as flash
memory—the type of memory that retains data even when the microcontroller is turned off.
The above mentioned NVM controller acts over the available flash memory blocks allowing
one to read, write, and erase the existing data in memory. The use of this NVM controller
allow us to update the existent firmware during runtime in the same way we can read
and write NVM user data without compromising the operation of the applications. Conse-
quently, an update task application is added that aims to receive the data blocks associated
with the code of a particular application and update them in the flash program memory,
as illustrated in Figure 1.

System

Send

update file

like another 

data/command

Is a update file?

Program Memory

Application 1

Application 2

Application n

Update task

Clear row

Update row

Verify row

Yes

No

Figure 1. Runtime firmware updates method.

The non-volatile memory of a microcontroller is usually segmented or organised into
several sectors, most of them devoted to the program memory. The program memory
can be configured with different partitions, sizes, and write protection attributes. These
partitions can be configured to implement the boot area, the application area, and the user
memory data. In this paper, a PIC18F27K42 microcontroller is used as a testbed platform
to validate the proposed techniques. This microcontroller has a non-volatile memory
control mechanism that uses an internal timer and voltage generator to perform writing
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operations. Reading program memory is executed byte by byte. The writing process is,
however, more complex, as it requires the operation to be performed on a row of bytes.
The content of this row must be previously erased or available for writing if it is its first use.
The writing operation also requires that a write unlock sequence be activated [4]. Writing or
erasing program memory will halt the microcontroller central processing unit CPU, making
it impossible to execute instructions from the memory row that is being erased, as the
microcontroller CPU is blocked until the process is completed [4]. For the above mentioned
PIC18F27K42, the measured erasing and writing procedures take 10 ms per row. Table 1
illustrates the size and number of rows [4].

Table 1. Size and number of rows, PIC18F27K42.

Description Value Units

Erase Row Size 64 Word
Length Row 128 Byte
User Rows 1024 Byte

The program memory read operation does not modify data; therefore, it is very simple
to carry out, simply defining the memory area to be accessed. To complete this operation,
we need to previously select the program flash memory and set the address to be read
using the TBLPTR register, then read the contents of that position. Note that the reading
is performed byte to byte, but each program memory position has a size of two bytes;
therefore, it is necessary to increment the pointer of the reading table TBLRD for each byte
read. The result is in the register TABLAT: the first byte corresponds to the less significant
byte and the second to the most significant byte of the specified memory position content [4].
To read the contents of a particular program memory address, the following sequence of
operations must be completed, as illustrated in the flowchart of Figure 2.

0x0152A

0x0152C

0x0152E

0x5D 0xA4

0xB0

0xEF

0xD8

0xA3

Program Memory

Example of reading address 0x0152C from the programme memory.

msb lsb

Select

Program Flash Memory

(NVMCON1.Reg = 2)

Set address of

Program Flash Memory

(TBLPTR = 0x0152C)

TBLPTL = 0x2C

TBLPTH = 0x15

TBLPTU = 0x00

Read operation LSB

asm("TBLRD*+")

Read LSB data

(TABLAT = 0xD8)

Read operation MSB

asm("TBLRD*+")

Read MSB data

(TABLAT = 0xB0)

Read more data

End of process

Yes

No

Figure 2. Reading the contents of program memory PIC18F27K42.

The write operation follows the same principle as the read operation, but operates
over rows instead of bytes. The write operation is performed on an entire row, but it
is implemented byte by byte [4]. As a recommended practice, in a write operation in
which only part of the row is changed, it is suggested that the row be read and stored
in volatile memory RAM before being erased. The copied row is then updated with the
portion of the data that differs from the original version. Finally, the NVM row should be
deleted and rewritten with the updated version. For the writing process to be successful,
we must first make sure that the row is available for writing; in other words, the row is
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formatted. Thereafter, it is necessary to define the NVM area to be used for writing, where
through the TBLPTR register we define the address we want to write; as with reading, the
writing is also done byte by byte, and, in the writing process, the least significant byte is
copied to the register TABLAT followed by the increment of the writing table TBLWR. That
process is repeated for the most significant byte. After copying the row, the next step
involves activating the NVMCON1bits.WREN write permission bit as well as selecting the
NVMCON1bits.FREE write bit command, followed by sending the write unblock sequence
to the NVM. The actual write is initiated by activating the NVMCON1bits.WR bit [4]; see the
flowchart in Figure 3.

0x6E 0x4F

0x32

0x6E

0x7D

0x50

Program Memory

Example of writing 0x327D to address 0x0234A (Row 70) in the programme memory.

msb lsb

0x02348

0x0234A

0x0234C

0x02300

0x0237F

Set unlock sequence

(NVMCON2 = 0x55)

(NVMCON2 = 0xAA)

Write Row

(NVMCON1.WR = 1)

Set address of

Program Flash Memory

(TBLPTR = 0x02300)

TBLPTL = 0x00

TBLPTH = 0x23

TBLPTU = 0x00

Decrement TBLPTR

after the read

asm("TBLRD*-")

Copy ROW into RAM

Update RAM

Erase ROW

Copy LSB to TABLAT

(TABLAT = RAM[2*i]

Write operation LSB

asm("TBLWT+*")

Copy MSB to TABLAT

(TABLAT = RAM[2*i + 1]

Write operation MSB

asm("TBLWT+*")i < 64

Select

Program Flash Memory

(NVMCON1.Reg = 2)

Enable Write

(NVMCON1.WREN = 1)

Set next WR command 

performs a write operation

(NVMCON1.FREE = 0)

Disable Interrupts

Enable Interrupts

Disable Write

(NVMCON1.WREN = 0)

End of process
i = 64

Figure 3. Writing process to program memory PIC18F27K42.

To erase a row of non-volatile memory, a specific NVM controller command is used
devoted for that purpose. The FREE bit of the NVMCON1 register, if enabled, indicates that
on the next enable the WR bit of the same register will erase the row specified by the
address contained in the TBLPTR register. Moreover, it is necessary to previously unlock a
specific range of rows to accommodate the program code and thereafter complete the erase
procedure [4], as depicted in the flowchart in Figure 4.
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Example for eraser row 137, starting at address 0x04480 in the programme memory.

Select

Program Flash Memory

(NVMCON1.Reg = 2)

Set address of

Program Flash Memory

(TBLPTR = 0x04480)

TBLPTL = 0x80

TBLPTH = 0x44

TBLPTU = 0x00 Write Row

(NVMCON1.WR = 1)

Enable Write

(NVMCON1.WREN = 1)

Set next WR command 

performs a eraser operation

(NVMCON1.FREE = 1)

Set unlock sequence

(NVMCON2 = 0x55)

(NVMCON2 = 0xAA)

Disable Interrupts

Enable Interrupts

End of process

0xFF 0xFF

0xFF

0xFF

0xFF

0xFF

Program Memory

msb lsb

0x04480

0x044FF 0xFF 0xFF

0xFF 0xFF

Figure 4. Erasing a row of program memory PIC18F27K42.

The NVM memory locking mechanism prevents unintended self-write programming
or erasing. Thus, to promote memory integrity, any write and erase operation performed
by the NVM controller must be preceded by an unlocking process. This process must be
executed sequentially and without interruptions. If the sequence, for some reason, is
interrupted, the writing or erasing process is cancelled [4]. To implement this method
successfully, two non-mandatory but highly recommended requirements must be met to
facilitate its implementation. The first one concerns the static and absolute allocation of
the functions. Typically, a compiler, in order to optimise the space of the memory of the
program, leans all the code to minimise the used memory space, making it more difficult to
identify the location of the block of code that will need to be updated. By allocating the
function’s code in a static and absolute way, an absolute reference of the location of each
function of program is set, facilitating the identification of the code block in an Intel Hex
file (see Figure 5).

0x00100
0x00138
0x0018F

Program 

Memory

System at 0x1000

Memory Program

(with static and absolute allocation)

Application 1 at 0x0100

Application 2 at 0x0200

System at 0x018F, Length 0xA3

Memory Program

(without static and absolute allocation)

Application 1 at 0x0100, Length 0x38

Application 2 at 0x0138, Length 0x57

Program 

Memory

0x00100

0x00200

0x01000

Figure 5. Example of memory allocation with and without static and absolute allocation.

The usage of static and absolute function allocation also improves the code organisa-
tion. Without static and absolute allocation, even small changes in source code can result
in a hex file completely reformulated by the compiler. The usage of static and absolute
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allocation avoids major changes. Now, small code changes in specific functions will only
affect the associated allocated memory areas, as illustrated in Figure 6.

0x00100
0x00138

0x0018F

Program Memory

(Before)

App 1

App 2

System

0x00100

0x00163

0x001BA

Program Memory

(After)
Changing a line of 

code in application 1

App 1

App 2

System

Program Memory

(Before)

App 1

App 2

System

Program Memory

(After)

0x00100

0x00200

0x01000

App 2

System

0x00100

0x00200

0x01000

App 1

Memory Program

(without static and absolute allocation)

Memory Program

(with static and absolute allocation)

Changing a line of 

code in application 1

Reformulation of the entire 

program memory.

The program memory has 

only been reformatted in the 

area subject to change.

Figure 6. Result of the hexadecimal file with the change of only one line of code.

Static and absolute allocation of functions requires well designed system architecture
and a complete knowledge of the program’s memory map in order to avoid overlaps
between the functions or applications code blocks. In order to prevent an accidental overlap
of two or more functions, the compiler warns us by displaying a message with the functions
that are at stake, promoting the necessary changes in the memory map. The following error
message was generated by the compiler under the above mentioned conditions [16].

error: (596)
segment “_Reset_CNT_TMR_text” (19574-195A3)
overlaps segment “_TMR0_Interrupt_Handling_text” (194F6-1958F)

The second requirement concerns the size allocated to each function, which must be
an integer multiple of row size; in the considered microcontroller, that size is equal to
128 bytes [4]. An example of a program memory map is depicted in Figure 7.
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Flah_Memory_Map.h

#define Row                                                                      128

#define APP_1_Start_Address                                         0x01000

#define APP_1_Init_Address                                            (APP_1_Start_Address + 2*Row)  

#define APP_1_Wait_Address                                          (APP_1_Init_Address + Row)  

#define APP_1_Process_Address                                    (APP_1_Wait_Address + Row)  

#define APP_2_Start_Address                                         0x05000

#define APP_2_Init_Address                                            (APP_2_Start_Address + 2*Row)  

#define APP_2_Wait_Address                                          (APP_2_Init_Address + Row)  

#define APP_2_Process_Address                                    (APP_2_Wait_Address + Row) 

#define APP_3_Start_Address                                         0x09000

#define APP_4_Start_Address                                         0x0D000

#define Update_Process_Start_Address                          0x15000

#define Update_Process_Init_Address                             (Update_Process_Start_Address + 5*Row) 

//Addressing system functions

#define System_Start_Address                                        0x19000

#define Main_Address                                                      (System_Start_Address)

/Hardware_Startup

#define Hardware_StartUp_Address                                (Main_Address + Row)  

#define Oscilator_Initialize_Address                                 (Hardware_StartUp_Address + Row)

Figure 7. Example of program memory map.

The following step, after the program memory map definition, comprises setting the
function’s indexes addresses in the above mentioned range. To allocate a function in a
static and absolute way, one simply needs to add before the function name the method
__at(address); from here, the compiler will place that function in that specific address,
as illustrated in the following function prototype.

void __at(APP_1_Start_Address) App_1(void)

To validate this method, a testbed was developed comprising a circuit board with the
microcontroller, two push buttons, and an ICSP header (depicted in Figure 8).

P
IC

1
8

F
2

7
K

4
2

VDD

10K
1K

100n

VDD

10K
1K

100n

SW1

VDD

10K
1K

100n

SW2

L1 L2

270270

FTDI

TTL ó USB

100n

TX

RX

VDD

ICSP

MCLR

VDD

GND

ICSPDAT

ICSPCLK

FTDI

TTL ó USB

Figure 8. Layout of the circuit implemented to validate the method.

The firmware project comprises three applications: two similar applications associated
to different hardware resources, in this case push buttons, and In Application Programming
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(IAP) that performs an update of the firmware by means of a runtime self programming
process. The first application prints in the serial port the message “Button 1 has been
pressed” when button 1 is pressed. Similarly, the second application prints the message
“Button 2 has been pressed” in the serial port when button 2 is pressed. These messages
are defined and saved in the microcontroller flash memory. Figure 9 illustrates the flowchart
of the implemented program.

Hardware_Startup()

Start

Run()

App_1

App_2

System

Update_Process

Button 1

pressed

In

Out

No

Yes Print

“Button 1 has been pressed”

App_1

Button 2

pressed

In

Out

No

Yes Print

“Button 2 has been pressed”

App_2

Figure 9. Implemented system and applications used to validate the proposed method.

After executing a firmware upgrade operation, it is intended to update the message
printed by the first application from “Button 1 has been pressed” to “This string has
been changed by update at run time”, whenever the hardware button 1 is pressed (see
Figure 10).

Button 1

pressed

In

Out

No

Yes Print

“This string has been changed by 

update at run time”

App_1

Figure 10. Proposed amendment for App_1.

From the analysis of the compiled program code, it can be seen where each function
of the first application is allocated in the program memory (see Figure 11 and example of
program memory map in Figure 7).
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App_1.c

//Include project files

#include "..\main.h"

//Declaration of variables and structures

unsigned char app_1_sm = app_1_init;

const char string_1[] __at( APP_1_Process_Address + Row) = "Button 1 has been pressed\r\n";

void __at(APP_1_Start_Address) App_1(void) 

{

    switch(app_1_sm)

    {

        case app_1_init: App_1_Init(); break;

            

        case app_1_wait: App_1_Wait(); break;

            

        case app_1_process: App_1_Process(); break;    

            

        default: app_1_sm = app_1_init; break;    

    }

    

    unsigned long *ptr;

    ptr = (unsigned long *)App_2;

    if(*ptr != 0xFFFFFFF)

        Run = App_2;

    else

        Run = App_1;

}

void __at(APP_1_Init_Address) App_1_Init(void)

{

    Input_1_SetDigitalInput();

    Input_1_SetDigitalMode();

    Output_1_SetLow();

    Output_1_SetDigitalOutput();

    Output_1_SetDigitalMode();

    app_1_sm = app_1_wait;

}

void __at(APP_1_Wait_Address) App_1_Wait(void)

{

    if(Input_1_GetValue() == LOW)

    {

        Clear_CNT_TMR(TMR_APP_1);

        app_1_sm = app_1_process;

    }

}

void __at(APP_1_Process_Address) App_1_Process(void)

{

    if(Read_CNT_TMR(TMR_APP_1) > 1000)

    {

        Send_String_By_Uart( UART_1, (char *)string_1);

        Clear_CNT_TMR(TMR_APP_1);

        app_1_sm = app_1_wait;

    }

}

#define APP_1_Start_Address       

0x01000

#define APP_1_Init_Address      

(APP_1_Start_Address + 2*Row) 

#define APP_1_Wait_Address          

(APP_1_Init_Address + Row)  

#define APP_1_Process_Address     

(APP_1_Wait_Address + Row)  

Figure 11. Sample code and location of functions in program flash memory.

Additionally, it is also possible to identify and locate application 1 in the hexadecimal
file generated from the compiler (see Figure 12).

From the analysis of the modified program hexadecimal file, it can be concluded that
only a well defined area of the program memory was changed; all the remaining program
memory stays intact. Figure 13 presents the original and upgraded code versions of the
aforementioned application 1, demonstrating the code blocks that have been removed on
the original version and the ones that have been inserted on the modified one.
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PIC.hex

…

:1010000012EF08F080EC08F02BEF08F0C0EC08F0CD

:101010002BEF08F000EC09F02BEF08F0000E476E04

:101020002BEF08F04750186E196A1950000AD8B40F

:101030001CEF08F00EEF08F01850000AD8B402EFC9

:1010400008F0010AD8B406EF08F0030AD8B40AEF92

:1010500008F00EEF08F0000E1C6E500E1D6E6000C2

:1010600073F0D9FF600077F0DAFFDE280DE1DE28AB

:101070000BE1DE2809E10F0EDE18D8B442EF08F0CC

:1010800044EF08F04CEF08F0000E486E500E496E29

:10109000000E4A6E52EF08F0000E486E100E496EB8

:0610A000000E4A6E120072

:10110000C2863A014097BA9EC29E409F010E476E2A

:021110001200CB

:10118000CAB6C5EF08F0C7EF08F0CCEF08F0010EC3

:0A11900040ECCCF0020E476E120096

:10120000010E00ECCCF010500F100BE1E90E0D5C5C

:10121000030E0E58D8A00FEF09F011EF09F01FEFE1

:1012200009F0800E126E120E136E000E146E010E77

:1012300000ECCFF0010E40ECCCF0010E476E120036

:10128000427574746F6E20312068617320626565E9

:0C1290006E20707265737365640D0A00B7

...

void __at(APP_1_Start_Address) App_1(void)

void __at(APP_1_Init_Address) App_1_Init(void)

void __at(APP_1_Wait_Address) App_1_Wait(void)

void __at(APP_1_Process_Address) App_1_Process(void)

const char string_1[] __at( APP_1_Process_Address + Row) = "Button 1 has been pressed\r\n";

Figure 12. Location of functions in program memory in the hexadecimal file.

Figure 13. Changed program memory area viewed from hexadecimal file.

Using the static and absolute function allocation allows one to control and manipulate
the entire program memory, making the updating task easier and keeping the firmware
update circumscribed to a well defined block of program memory between addresses
0x00001280 and 0x000012B0. The update process consists of receiving a hexadecimal file in
the Intel Hex File format [17] over the serial channel. However, as only one block of the
program’s memory is to be updated and the hexadecimal file is not formatted to send a
single block but the entire file, some changes need to be made so that the update process
application can interpret the file correctly. Those changes include the addition of a start file,
followed by the most significant word of the address and the end of file, as illustrated in
Figure 14.
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Update_File.txt

Update

:020000040000FA

:101280005468697320737472696E67206861732093

:101290006265656E206368616E67656420627920AF

:1012A0007570646174652061742072756E20746954

:0512B0006D650D0A0050

:00000001FF

Start file

MSL Address

Code to chage

[Maximum 128 Bytes]

End of file

Figure 14. Update file in Intel Hex File format, adapted to the application.

The Intel Hex File format is one of the formats used to update microcontrollers’
firmware, but there are also other possible formats, such as the binary .bin file. The Intel
Hex File format is characterized by the lines being in hexadecimal format; all the lines
start with the character ‘:’ followed by the data field length, start address, data type,
the associated data (for each specific data type), and, finally, the error control checksum
mechanism [17].

Figure 13 depicts the hexadecimal file obtained from the compiled modified code,
which is sent to the microcontroller according to the aforementioned Intel Hex File format
described in Figure 15 and Table 2. As explained previously, with the inclusion of all the
fields, the file sent to the microcontroller is the one presented in Figure 14. The update
file results from the extraction of a block of program memory of the hexadecimal file with
the updated code; the file is started with a start file named Update, followed by the most
significant word of the address, the data to update, and, finally, the end of file indicator. The
update process application is responsible for the file receiving and processing. The initial
state of the update process app waits for the reception of a start file, “Update” string,
to proceed to the data acquisition state. In this state, the process waits until it receives a
complete record and verifies its integrity using the checksum mechanism. If the line is
valid, the process thereafter extracts the address, the type, and the data contained in the
line. Depending on the type of data, the process reacts accordingly. For Extended Linear
Address type, the MSW of the address is defined; if the type is “Data_Record”, it updates
the LSW of the address and copies the data to a process buffer; finally, if the type is End of
file, the process proceeds to the next stage, updating the program memory block. First,
it copies the area of the program memory block to be updated to volatile memory RAM
for final verification purposes of the update integrity; in the next operation, it erases the
memory block to be updated, followed by updating with the data received by the update
file; finally, a verification is performed between the data in the update file received and the
data stored in the updated memory block. The update process application can be seen in
the flowchart in Figure 16.

: LL AAAA TT DDDDDDD...DDDD CC

Checksum
Data
Type
Address
Length
Start frame

Figure 15. Intel Hex File record format [17].
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Table 2. Line fields structure, Intel Hex File format [17].

Field Designation

Start frame Record start character
Length Two ASCII digits to specify the record data field size
Address Four ASCII digits to define the starting address of this data record.

Type

Data type:
0—Data record;
1—End of file record;
2—Extended segment address record;
4—Extended linear address record.

Data Data bytes.

Checksum Two ASCII digits representing the checksum calculated as 2s complement of all
preceding bytes in data record except the colon.

In

Update_Process_Get_Data();

Update_Process_Check_Data();

Update_Process_Copy_Flash_Row();

Update_Process_Erase_Row();

Update_Process_Update_Row();

Update_Process_Verify_Row();

Out

“Update” 

string reception

No

Yes

Update_Process

Figure 16. Updating process application state diagram.

If the process was completed successfully, it reports “Update success”; otherwise, it
reports “Update failure” through the serial channel. Figure 17 illustrates the update file
transfer protocol implemented between the host and the device microcontroller.

Host Device

“Update”

“OK”

:020000040000FA

“OK”

:10128 …….    2093

“OK”

:00000001FF

“Update success”

“Update failure”

Send update start frame

Send MSL address

Send data row

Send end of file

Receive update start frame

Receive MSL address

Receive data row

Receive end of file

Update and check row

End update process

Figure 17. Implemented update file transfer protocol.
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4. Results

This section presents the results obtained by the proposed novel firmware update
method during runtime. This method was validated using the previously presented
example program and testbed. First, an Intel hex file was sent to the PIC18F27K42 mi-
crocontroller using an RS232 terminal to change program memory, updating the message
that occurs when the push button is activated. The update process application receives
and verifies the integrity of the Intel hex file, producing the desired modification in one
particular block of the flash memory (see Figure 18). The updated applications now operate
accordingly with the performed changes. The application assigned to button, 1 instead
of printing the message “Button 1 has been pressed” on the serial port, starts to print
a different message: “This string has been changed by update at run time”. It is
also possible to verify through the terminal log time that the update completion time took
around 63 ms, which is the expected value for an update with a size of 128 bytes. The
63 ms corresponds to about 52 ms spent in the transmission (about 200 bytes at a rate of
38.4 kbps), 10 ms in the block update [4], and about 1 ms in the update process. One of
the main contributions of this study is the significant reduction in downtime during the
update process as well as the elimination of the need for rebooting the end device after the
update. Moreover, this method aims to overcome some limitations associated with the delta
firmware update method described in [3,12,15], namely, the requirement to reconstruct the
firmware from the deltas, leading to resource savings and process simplification.

Sending the update file

Updated application test

Run application test

Debug of file upload status

Update_File.hex

Update

:020000040000FA

:101280005468697320737472696E67206861732093

:101290006265656E206368616E67656420627920AF

:1012A0007570646174652061742072756E20746954

:0512B0006D650D0A0050

:00000001FF

Figure 18. Microcontroller update during runtime.



Electronics 2024, 13, 1328 15 of 16

5. Conclusions

In this paper, a new firmware update method for microcontrollers is presented, im-
plemented, and validated. This new method differs from existing ones because it allows
for updating only specific code lines, blocks, or functions instead of replacing the entire
program during runtime. This method is suited to band limited channels that take into
account the attained reduction on the amount of data transmitted. The proposed update
procedure offers additional advantages, such as a reduced downtime, less than 10 ms,
and good recoverability in a failure scenario.

The planned method also presents some limitations; the update process was designed
to update only up to eight rows (1024 bytes’ maximum), so it is therefore impossible to
update the entire program memory at once.

This firmware update method is also incompatible with operating systems and/or
intermediate hardware abstraction layers; it requires full control over all functionalities.
Moreover, under a power failure event, the success of the update process is not guaranteed.
Thus, it is advisable to include a supercapacitor-based backup power circuit to maintain
module power and the upgrade process integrity.

This method was successfully and easily replicated on several microcontrollers, such
as the MSP430, STM8, STM32, ATtiny, ATmega, SAMD21, and PIC32. This observation
emphasises the feasibility and applicability of the method on a broad set of microcontrollers,
thus increasing the scope of its potential usefulness. Future advances on the proposed
method must consider the inclusion of radio transmission, using LoRaWAN or available
cellular networks, to send the update file to remote sensor end-devices. An automated
process to manage the partitioning of program memory and assign to each specific function
an area of appropriated size based on its likelihood of being updated will also be investi-
gated in the future. In conclusion, this article leaves an open door to a new generation of
firmware updates for microcontrollers.
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