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Abstract: The rise of Massive Open Online Courses (MOOCs) has increased the large audience
for higher education. Different learners face different learning difficulties in the process of online
learning. In order to ensure the quality of teaching, online learning resource recommendation
services should be more personalised and have more choices. In this paper, we propose a joint
recommendation algorithm for knowledge concepts and learning partners based on improved
MMoE (Multi-gate Mixture-of-Experts). Firstly, the heterogeneous information network (HIN) is
constructed based on the MOOC platform and appropriate meta-paths are selected in order to
extract the human–computer interaction information and student–student interaction information
generated during the learners’ online learning processes more completely. Secondly, the temporal
behavioural characteristics of students are obtained based on their learning paths as well as their
knowledge of conceptual characteristics, and LSTM (Long Short-Term Memory) is used to mine
students’ current learning interests. Finally, the gating network in MMoE is changed into an attention
mechanism network, and for different tasks, multiple attention mechanism networks are used to fuse
the learner’s human–computer interaction information, student–student interaction information, and
interest characteristics to generate learner representations that are more in line with the respective
task and to complete the tasks of knowledge conception and learning partner recommendation.
Experiments on publicly available MOOC datasets show that the method proposed in this paper
provides more accurate and varied personalization services to online learners compared to the latest
proposed methods.

Keywords: multi-objective recommendation; online learning; learner modelling; heterogeneous
information networks; LSTM

1. Introduction

The spread of higher education has led to a gradual imbalance between the quantity
and quality of education, and the rise of online education platforms has increased the large
educational audience and brought to the forefront the problem of information overload
within them [1]. In order to effectively improve the problems of knowledge disorientation
and information overload during users’ online learning, a large number of researchers
have focused their attention on the recommendation of online learning resources [2]. Tian
et al. [3] integrated the extension of Multi-dimensional Item Response Theory (MIRT) as a
competency tracking model into the work of course recommendation for MOOCs to im-
prove the validity and interpretability of MOOCs. Harshal et al. [4] have proposed a video
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recommendation model based on natural language processing to recommend videos based
on the similarity of video text and query semantics. Chuang et al. [5] developed a rein-
forcement learning-based exercise recommendation system that recommends personalised
exercises suitable for learners concerning their difficulty and knowledge concepts based on
the data recorded by the system. In order to capture students’ more fine-grained learning
states, knowledge concept recommendation has become the mainstream of current online
learning resource recommendation. Wang et al. [6] considered the diverse relationships
between learners and knowledge concepts to propose a multifaceted heterogeneous infor-
mation network and used the Gumbel-Softmax method to dynamically assign aspectual
contexts to each node to improve the accuracy of knowledge concept recommendations.
Gong et al. [7] proposed an end-to-end graph neural network-based knowledge concept
recommendation model that uses an attention mechanism to adaptively fuse the repre-
sentations of entities learnt from graph convolutional networks (GCN) under different
meta-paths in order to produce better results for knowledge concept recommendation.

The recommendation of knowledge concepts can effectively alleviate problems such
as knowledge disorientation of online learners facing massive learning resources; however,
the loneliness and helplessness of users due to the separation of time and space in the
process of online learning also need to be emphasized by researchers. Miao et al. [8]
showed that online interactions will help to increase users’ sense of social presence and
further influence learning engagement. Shao et al. [9] proposed a friend recommendation
method based on fine-grained interest feature labels, which can leverage the labelling
system of a learning community for learning partner recommendation. Hu et al. [10]
considered the dynamic interaction between students and learning content to propose a
learning partner recommendation framework based on a convolutional neural network
and dynamic interaction tripartite graphs.

All of the above studies can effectively improve the learning effect of students in the
process of online learning, but they still have some limitations: Firstly, most existing recom-
mendation models only consider recommendations for individual learning resources, such
as course recommendations, knowledge concept recommendations, and student partner
recommendations, etc. However, learners face different dilemmas in the online learning
process. In order to provide more diverse and personalised services to learners while
saving computational costs, it is important to study the joint recommendation methods
for multiple learning content. Secondly, existing learning resource recommendation mod-
els tend to be limited to the nature of the task in terms of learner modelling, e.g., the
knowledge concept recommendation model tends to model the learner from the learner’s
human–computer interaction data, and the learning partner recommendation model tends
to look for similar learning partners based on the student’s student–student interaction
information and some of the interest characteristics. This learner modelling approach
cannot realistically portray online learners and is prone to overfitting.

In summary, this paper proposes a joint recommendation algorithm for knowledge
concepts and learning partners based on improved MMoE (KLJRec). Firstly, the HIN based
on the MOOC platform is constructed and the learner’s human–computer interaction
information and student–student interaction information are extracted in suitable meta-
paths using GCN; secondly, the hidden trend of interest evolution in the learner’s temporal
behavioural features is mined using LSTM to obtain the current interest features; lastly,
in the multi-task scenarios of knowledge concept recommendation and learning partner
recommendation, the learner representations that meet the task requirements are generated
using multiple attention networks based on the learner’s multi-dimensional information
features, respectively. The main contributions of this study are as follows:

1. Based on the MMoE framework, this paper effectively integrates the knowledge
concept and the learning partner recommendation task. The gating network in the
MMoE framework is replaced by an attention network with a stronger ability to
capture important information, and by adding a lightweight attention network to
generate learner representations that meet the requirements of different tasks, we
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generate a list of knowledge concepts and learning partner recommendations that
meet the learner’s preferences while saving computing costs.

2. In this paper, the algorithm mixes GCN and LSTM networks in the shared hidden
layer MoE at the bottom of the model, which can better extract the human–computer
interaction information, student–student interaction information, and learning timing
information generated during the user learning process, and portray a more accurate
and perfect learner portrait from multiple dimensions, thus reducing the risk of
overfitting for the task.

3. A large number of experiments have been conducted on the MOOCCubeX dataset,
and the experimental results demonstrate that KLJRec proposed in this paper is better
to consider the coupling between the two recommendation tasks than the state-of-the-
art single knowledge concept or learning partner recommendation algorithms, which
further improves the recommendation accuracy.

The rest of the paper is organized as follows: Section 2 provides a brief overview of
the related work in this paper. Section 3 explains the definitions related to this paper’s
algorithms. Section 4 gives a detailed description of the proposed method. Section 5 shows
the experimental results and analyses the reliability of the algorithm of this paper. Section 6
concludes the work with an outlook.

2. Related Work

Existing knowledge concept recommendation models can be mainly classified into
three categories: knowledge concept recommendation models based on graph structure,
knowledge concept recommendation models based on tensor decomposition, and knowl-
edge concept recommendation models based on reinforcement learning. Ju et al. [11]
proposed a model for recommending knowledge concepts based on local subgraph em-
bedding, which uses attention graph convolution to fuse contextual information from
different subgraphs to capture complex semantic relationships between entities. In order to
increase the interpretability of graph neural networks in the field of knowledge concept
recommendation, Alatrash et al. [12] proposed an end-to-end framework combining graph
convolutional networks and a pre-trained language model encoder (SBERT) to provide
users with personalised lists of recommendations for knowledge concepts with enhanced
interpretability. The model based on graph structure can effectively consider the association
between heterogeneous information and mine the potential semantic associations from
different nodes; however, it is unable to effectively extract the temporal features in the
user’s behaviour and is difficult to extend in the time dimension. Liu et al. [13] proposed a
personalised recommendation algorithm based on an incremental tensor, which performs
multi-dimensional correlation analysis of educational data through incremental tensor
decomposition to achieve accurate recommendations of learning resources in different envi-
ronments. The knowledge concept recommendation model based on tensor decomposition
can better ensure the integrity of the data and help to discover the hidden structure and
value from the massive data, but the tensor construction requires high device memory and
computing power. Reinforcement learning-based knowledge concept recommendation
models are gradually emerging. Wu et al. [14] designed a reinforcement learning network
for knowledge concept recommendation which uses a hierarchical propagation path con-
struction method to help explore further paths and capture students’ deep knowledge
preferences. Gong et al. [15] formulated knowledge concept recommendation as a reinforce-
ment learning problem to help better model the dynamic interactions between students
and knowledge concepts, in addition to introducing a heterogeneous information network
between students, courses, videos, and concepts to alleviate the data sparsity problem
in the recommendation task. Reinforcement learning-based recommendation methods
can improve the modelling of learners from the dynamic interaction between students
and knowledge concepts, and can make up for the problem of insufficient extraction of
temporal information in graphical structure and tensor decomposition models, but the data
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sparsity problem faced by these methods is more serious and the design of their reward
mechanism is also a major difficulty.

Learning partner recommendations can effectively enhance student interaction as a
way to mitigate the problem of high dropout rates in online courses due to the lack of
social connections [16]. Kang et al. [17] proposed an Evaluation Latent Delicacy Allocation
(Evaluation-LDA) algorithm to cluster learners with similar learning interests based on
constructing learner document datasets, calculating learner similarity, and modelling friend
topics as a way to help students in online education recommend suitable learning partners.
Shao et al. [18] proposed a learning partner recommendation algorithm that is based on
the evolution of learning interests and recommends suitable learning partners for students
through interest similarity. The above study calculates the similarity between students
through partial interaction information and interest information to recommend appropriate
learning partners without considering the integrity of heterogeneous data and ignoring the
importance of student–student interaction information. Liu et al. [13] proposed an adaptive
clustering and community recommendation algorithm based on incremental tensors, which
uses tensor modelling to preserve the integrity of the data, and in this way recommends
appropriate learning partners to students in various contexts. In order to alleviate learners’
loneliness during online learning, Shou et al. [19] proposed a learning partner recommenda-
tion model based on a weighted heterogeneous information network, which extracts more
complete interaction information by automatically generating all meaningful meta-paths
to reveal students’ unique preferences. The above studies have compensated for the lack
of information completeness in the learning partner recommendation model to a certain
extent; however, the importance of accurately modelling learners from multiple dimen-
sions of human–computer interaction information, student–student interaction information,
and students’ interest characteristics cannot be ignored. Based on the above studies, the
summary of related research models is shown in Table 1.

Table 1. Summary of relevant research models.

Model Paper Numbers Advantages Limitations

Recommendation model for
knowledge concepts based on

graph structures
[6,7,11,12]

Ability to effectively model
heterogeneous data and mine

potential correlations in
heterogeneous data

Difficulty in extracting time series
information on user behaviour

Tensor decomposition-based
recommendation model for

knowledge concepts
[13] Strong extraction of potential

features in high-dimensional data

High memory requirements for
the device and difficulty in

capturing sequential information

Reinforcement learning-based
recommendation model for

knowledge concepts
[14,15]

Great for capturing long-term
user interest by simulating

dynamic user interactions with
a project

Reward function design is hard
and data sparsity is a

serious problem

Learning partner
recommendation model based on
learners’ interest characteristics

[9,17,18]

Suggests similar learners by
tagging user interests to
make recommendations

more interpretable

Vulnerable to loss of
information integrity

Learning partner
recommendation model based on

high-dimensional web
space modelling

[13,19]
More complete data information

can be stored to reveal
user preferences

Insufficient consideration of users’
temporal information and
difficult to extend in the

time dimension

In summary, existing recommendation models only consider recommendations for in-
dividual learning content. The knowledge concept recommendation model uses
human–computer interaction information and behavioural timing information to model
the learner and recommend appropriate knowledge concepts; the learning partner recom-
mendation model relies on partial student behavioural data to compute student similarity
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and thus match learning partners with similar interests. None of the above studies provide
a complete and accurate characterisation of online learners due to task characteristics,
and the risk of overfitting due to feature loss in a single recommendation task cannot be
ignored. Therefore, based on the MMoE framework, this paper mixes GCN and LSTM
in the shared hidden layer at the bottom of the model to model the learner completely
and accurately based on the human–computer interaction information, student–student
interaction information, and behavioural time sequence information and uses the attention
mechanism for different training tasks to obtain the representation of the learner for the
task so as to recommend the appropriate knowledge concepts and learning partners.

3. Relevant Definitions

This section explains the relevant definitions and computational methods of the
proposed algorithm in order to explain the method proposed in this paper more clearly.

3.1. Heterogeneous Information Network
3.1.1. Building Heterogeneous Information Networks

A heterogeneous information network [20] is defined as a directed graph G = (V, E)
with object type mappings φ : V → A and relation type mappings ψ : E → R, where the
sum of the total number of object types |A| and the total number of relationship types |R| is
greater than 2. Figure 1 illustrates a heterogeneous information network constructed for a
particular course based on an MOOC platform, consisting of three object types: students (S),
videos (V), and knowledge concepts (K), and 10 relationships between them, where Ri
denotes the correspondence between different types of objects (R−1

i denotes the inverse

of Ri), R1

(
R−1

1

)
, R2

(
R−1

2

)
, R3

(
R−1

3

)
, R4

(
R−1

4

)
, and R5

(
R−1

5

)
denote learn (learnt by),

include (included in), watch (watched by), reply (replied by), and comment (commented
by), respectively.
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3.1.2. Meta-Path

Meta-paths are defined in heterogeneous information networks where combining the
types of relationships in the network through meta-paths leads to richer and more effective

semantics [21]. Meta-paths are of the form A1
R1−→ A2 . . .

Rl−→ Al+1. Table 2 demonstrates the
six meta-paths [MP] selected for students and knowledge concepts in this study. In the ta-
ble, {SrS, ScVcS} indicates that the student replied to another student’s statement and that
the student commented on the same video, respectively, from which student–student inter-
action information can be extracted; {SwVwS, SlKlS} represents that the student watched
the same video and that the student learnt the same knowledge concept, respectively, as a
way of obtaining information about the student’s human–computer interaction. In addition,
{KiViK, KlSlK} is the knowledge concept meta-path, representing knowledge concepts
being included in the same video and both knowledge concepts being learnt by the same
user, respectively. It is used to learn the exact knowledge concept representation.
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Table 2. Meta-paths of Student−Student and Knowledge Concept−Knowledge Concept.

Type Meta-Path

Student

SrS : Student
reply−−−→ Student

ScVcS : Student comment−−−−−→ Video
commentedby−−−−−−−−→ Student

SwVwS : Student watch−−−→ Video
watchedby−−−−−−→ Student

SlKlS : Student learn−−−→ Knowledge Concept
learnedby−−−−−→ Student

Knowledge Concept
KiViK : Knowledge Concept includedin−−−−−−→ Video include−−−−→ Knowledge Concept

KlSlK : Knowledge Concept
learnedby−−−−−→ Student learn−−−→ Knowledge Concept

3.2. Graph Convolutional Networks (GCN)

Graph convolutional networks learn node representations by aggregating information
from neighbouring nodes, but their superior performance usually relies on the homogeneity
of the network [22]. Therefore, restricting the head and tail node types to select appropriate
meta-paths can be used to mine potential associations between nodes of the same type in
heterogeneous information networks so as to learn the semantic representations of nodes
under that meta-path with the help of GCN.

3.2.1. Adjacency Matrix

According to the constructed heterogeneous information network G = (V, E), an
adjacency matrix AMP ∈ RN×N with Boolean elements is available under each meta-path
MP, where N denotes the number of nodes, and if AMP

ij = 1, then the node i can be linked
to the node j through a meta-path MP.

With the large number of applications of GCNs, the construction of adjacency matrices
has become more and more sophisticated. In order to include information about itself in the
process of updating the node representation, a unit matrix I is often added to the adjacency
matrix A. Also, the adjacency matrix is multiplied by D−1 for normalisation and D is the
degree matrix of matrix A + I. In this paper, the adjacency matrix is constructed as shown
in Equation (1):

P̃MP = D−1
(

AMP + I
)

(1)

3.2.2. Node Representation Learning

Given a heterogeneous information network G = (V, E), in this paper we use layer-
by-layer propagation rules to learn the representation of a node under a meta-path MP, as
shown in Equation (2):

h(l+1) = Re lu
(

P̃MPhlWl
)

(2)

where l denotes the number of layers, Wl denotes the trainable weight matrix shared by
all nodes in layer l, and each layer is activated using the Relu function. In this study,
the initial features h0 of students and knowledge concepts are randomly initialised and
continuously trained by single-layer GCN, and the node is represented as eMP = h1

MP after
single-layer GCN. Based on Equation (2), for many iterations of training, the initial features
h0 of students and knowledge concepts can be passed to any node.

In the heterogeneous information network G, S = {s1, s2, · · · , si, · · ·} represents the
set of students, and the number of students is |S|. An example of GCN-based student
representation learning is shown in Figure 2.
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Figure 2. Example of student representation learning.

3.3. Attention Mechanism

In deep learning, the introduction of an attention mechanism enables neural networks
to automatically learn and select important information in the input, improving the per-
formance and generalisation of the model [23]. The node representations learnt under
different meta-paths represent the feature of the node in different contexts, which has
different importance in multi-task scenarios as the task changes. In this paper, we use
an attentional mechanism to fuse the multi-dimensional feature information in order to
generate a final node representation that is more adapted to the task.

Taking the fusion of knowledge concept representations of two knowledge concept
meta-paths as an example, the sequence

{
eKlSlK

k , eKiViK
k

}
of knowledge concept representa-

tions output from the GCN is taken as input, and the formula for calculating the attentional
weight of each meta-path is

α
MPi
k =

exp
(

VT
k σ

(
WkeMPi

k + bk

))
∑

j∈[MP]
exp

(
VT

k σ
(

Wke
MPj
k + bk

)) (3)

where VT
k , Wk, and bk are trainable matrices, σ(•) is the tanh activation function, and the

output α
MPi
k denotes the weights of the knowledge concept representation eMPi

k under the
meta-path MPi. Based on the obtained weights, the knowledge concept representations
under multiple meta-paths are fused:

ek = ∑
j∈[MP]

α
MPj
k e

MPj
k (4)

where ek is the final knowledge concept representation. The visualisation of the fusion
of knowledge concept representations by the attention mechanism is shown in Figure 3,
where |K| is the number of knowledge concepts.
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4. Joint Recommendation Model for Knowledge Concepts and Learning Partners Based
on Improved MMoE

The KLJRec model architecture is shown in Figure 4, which is divided into three main
parts: a GCN-based module for learning student and knowledge concept representations;
an LSTM-based module for predicting students’ learning interests; and an improved MMoE-
based module for joint recommendation of knowledge concepts and learning partners.
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Figure 4. KLJRec model framework diagram.

Based on the MOOC platform, the representation learning module constructs HINs
containing three kinds of objects and their correspondences, namely, students, videos, and
knowledge concepts, and selects student and knowledge concept meta-paths [MP] to gen-
erate the corresponding adjacency matrices

[
P̃MP

]
, and learns the student representations[

eMP
U

]
and knowledge concept representations

[
eMP

K
]

under different meta-paths through
the GCN model, so as to be prepared for the subsequent fusion of student and knowledge
concept representations by using the attention mechanism. The knowledge concept rep-
resentation

[
eMP

K
]

is used as input to the attention network to obtain the final knowledge
concept feature zK. The Learning Interest Prediction Module obtains the student’s tem-
poral behavioural features zK based on the student’s temporal learning behaviours and
knowledge conceptual features, and captures the dependencies in the student’s temporal
behavioural data through LSTM to predict the student’s current learning interest eLSTM

U .
Based on the MMoE framework, multiple attention networks are used in the joint recom-
mendation module to fuse the students’ representations under different meta-paths as
well as the students’ interest features in order to learn the students’ representations xrk

U
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and xru
U that satisfy the two tasks of knowledge concept recommendation and learning

partner recommendation, respectively, and to generate a list of the students’ personalised
knowledge concepts and learning partner recommendations.

4.1. Students and Knowledge Concepts Representation Learning Based on GCNs

As shown in the first part of Figure 4, the representation learning of students and
knowledge concepts under the meta-path can be synchronised. The steps are as follows:
Firstly, in the constructed heterogeneous information network G, according to the se-
lected set of meta-paths [MP], the set of adjacency matrices under the meta-paths

[
P̃
]

can be calculated by Formula (1). In the figure, the upper four are the student adja-
cency matrices P̃U ∈ R|U|×|U|, and the lower two are the knowledge concepts adjacency
matrices P̃K ∈ R|K|×|K|. Secondly, the features h0 of the initialised student and knowl-
edge concepts are combined with the adjacency matrix P̃MP obtained from the different
meta-paths MP and are input into a single-layer GCN, and the representations eMP of the
student and knowledge concepts under MP are learnt according to Equation (2). Finally,
the learnt knowledge concept representation

{
eKiViK

K , eKlUlK
K

}
and student representation{

eUrU
U , eUcVcU

U , eUwVwU
U , eUlKlU

U

}
under different meta-paths are saved in the form of se-

quences, and the weights of different knowledge concept meta-paths are learnt by using
the attention mechanism and weighted and merged to obtain the final knowledge concept
representation Z. Meanwhile, the list of student representations is retained in order to
prepare for the subsequent generation of the final student representations.

4.2. LSTM-Based Prediction of Student Interest Features

Recurrent Neural Networks (RNN) are mainly used to model sequential data and can
effectively mine the temporal and semantic information in the data [24]. LSTM is a variant
of RNN that better captures long time sequence dependencies. In this paper, LSTM is used
to capture the long dependencies in the first T temporal behaviours

{
k1

u, k2
u, · · · , kt

u, · · · , kT
u
}

of the student, where kt
u denotes the knowledge concept k that student u learns at moment

t. The structure of LSTM is shown in Figure 5 below.
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Based on the knowledge concept representation zK and the student’s temporal be-
haviour sequence

{
k1

u, k2
u, · · · , kt

u, · · · , kT
u
}

, one can obtain the student’s temporal behaviour
feature as

{
z1

u, z2
u, · · · , zt

u, · · · , zT
u
}

, where zt
u is the feature of the knowledge concept kt

u
learnt by the student at moment t. LSTM implements the functions of selectively forgetting
the information of the previous moment, selectively remembering the information of the
current moment, and selecting the information as the output of the current moment through
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three gating units, namely, the forgetting gate f t
u, the input gate it

u, and the output gate ot
u,

respectively. The formula is as follows:

it
u = sigmoid

(
Wi ·

[
zt

u
∣∣∣∣st−1

u
]
+ bi

)
,

f t
u = sigmoid

(
W f ·

[
zt

u
∣∣∣∣st−1

u
]
+ b f

)
,

ot
u = sigmoid

(
Wo ·

[
zt

u
∣∣∣∣st−1

u
]
+ bo

)
,

(5)

where Wi, W f , Wo and bi, b f , bo are trainable parameters and || denotes the serial operation.
After passing through the three gates, the memory cell vector H and the state vector I are
computed as shown in Equation (6):

c̃t
u = tanh

(
Wc ·

[
zt

u
∣∣∣∣st−1

u
]
+ bc

)
,

ct
u = f t

u · ct−1
u + it

u · c̃t
u,

st
u = ot

u · tanh
(
ct

u
) (6)

The student temporal behavioural features are subjected to LSTM to obtain the state
sequence

{
s1

u, s2
u, · · · , st

u, · · · , sT
u
}

, where the state feature sT
u at the last moment is repre-

sented as the current interest feature eLSTM
u of student u, and it is added to the list of student

representations to obtain
{

eUrU
U , eUcVcU

U , eUwVwU
U , eUlKlU

U , eLSTM
U

}
.

4.3. Joint Recommendation Based on Improved MMoE

There are often multiple learning tasks in an application scenario, and modelling each
task individually will incur significant computation and maintenance costs. To reduce the
costs due to the increase in the number of models and to take into account the correlation
between multiple tasks, multi-task learning is widely used.

MMoE is a multi-task learning framework consisting of a bottom-shared hybrid expert
network and multiple gated networks [25]. The input is x ∈ Rbitchsize∗d, where d is the
feature dimension, and the output of the expert network is fi(x), i = 1, 2, · · · , n, where
n denotes the number of expert networks. A gated network gj is assigned to each task j.
Combining multiple expert network outputs using the gated network yields the desired
features f j(x) for that task:

f j(x) =
n
∑

i=0
gj(x)i fi(x)

where gj(x) = so f tmax
(

Wgkx
) (7)

where Wgk ∈ Rn∗d is the trainable matrix and gj(x)i denotes the weight of the expert
network i in task j.

Based on the MMoE framework, this paper considers the list of student represen-
tations

{
eUrU

U , eUcVcU
U , eUwVwU

U , eUlKlU
U , eLSTM

U

}
as the output of multiple expert networks

and replaces the gated network with an attentional mechanism that is more capable of
capturing important information. Using two attention networks, the weights of different
student representations are calculated separately according to Equation (3), and the student
representations are weighted and fused using Equation (4) to generate the final student
representation xrk

U for knowledge concept recommendation and student representation xru
U

for learning partner recommendation.
Based on the student representations xrk

U , xru
U and the knowledge concept represen-

tation zK, the final student’s preference yUK for the knowledge concept and student’s
preference yUU for the student are generated with the following formulas:

yUK = xrk
U M1zU + bK

yUU = xru
U

TM2xru
U + bU

(8)
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where M1, M2 is the trainable matrix so that xrk
U , zU and xru

U can be in the same space, and
bK, bU are two bias terms to make the prediction more accurate.

In this paper, the loss function is constructed based on Bayesian personalised rank-
ing [26], and the basic idea is to make the ratings of the nodes that students have interacted
with higher than those of the nodes that have not interacted with them. The specific loss
function is shown in Equation (9):

L = ∑
(u,a,b)∈U,(i,j)∈K

−ln(sigmoid(yua − yub))− ln
(
sigmoid

(
yui − yuj

))
+ λ∥Θ∥2 (9)

where a, i is the students and knowledge concepts that Student u has interacted with, and b, j
is the students and knowledge concepts that Student u has not interacted with, respectively.
yua − yub and yui − yuj are used to calculate the preference difference between the two
nodes and increase it by training the loss function. In addition, the L2 regularisation term
is added, where λ is the regularisation parameter and Θ denotes all trainable parameters.

Algorithm 1 illustrates the basic steps of KLJRec.

Algorithm 1 KLJRec Algorithm

Input: G = (V, E): network schema of heterogeneous information networks in MOOC platforms;
S: set of students; K: set of knowledge concepts;

{
k1

U , k2
U , · · · , kt

U , · · · , kT
U
}

: the first T sequential
actions of the students
Output: yUK : students–knowledge concepts preference matrix; yUU : students–students
preference matrix

1: According to G = (V, E), select the appropriate meta-path set [MP] of the students and
knowledge concepts;

2: for each MP ∈ [MP] perform
3: Calculate P̃ using Formula (1);
4: Initialise the initial features of the students or knowledge concept h0;
5: Calculate eMP

K or eMP
U according to the definition 3.2.2;

6: end
7: According to [eK ], combined with definition 3.3, the node representation of knowledge

concepts zK is generated.
8: for each u ∈ U perform
9: According to

{
k1

u, k2
u, · · · , kt

u, · · · , kT
u
}

and zK , the characteristics of student
temporal behaviour

{
z1

u, z2
u, · · · , zt

u, · · · , zT
u
}

are obtained;
10: The state sequence

{
s1

u, s2
u, · · · , st

u, · · · , sT
u
}

is obtained by LSTM, and use the latest
state sT

u as the interest features of student eLSTM
u ;

11: end
12: Adding student interest features eLSTM

U to the list of student representations yields [eU ];
13: Based on the MMoE framework, according to the list of student representations [eU ]

and definition 3.3, the student representations xrk
U , xru

U used for knowledge concept
recommendation and learning partner recommendation are generated;

14: According to xrk
U , xru

U , zK , the final students–knowledge concepts preference matrix yUK
and the student-to-student preference matrix yUU are calculated using Equation (9).

5. Experimental Section
5.1. Datasets

The KLJRec algorithm proposed in this paper was validated using the MOOCCubeX
dataset (available online at https://github.com/THU-KEG/MOOCCubeX, accessed on
18 March 2024). MOOCCubeX is an open data warehouse for large-scale online education
that collects knowledge-centric data on the XuetangX platform, consisting of 4216 MOOC
courses, 230,263 videos, 358,265 exercises, 637,572 fine-grained concepts, and more than
2,960,000 behavioural data from 330,294 students [27]. In order to facilitate the tracking
of students’ learning processes, students and their learning behaviour data in the course
ID ‘C_697791’ were selected as the preprocessing dataset, and students who watched
fewer videos and did not generate student–student interaction data were deleted, so that

https://github.com/THU-KEG/MOOCCubeX
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206 students and their related learning behaviour data were finally filtered out. In order to
verify the effectiveness of the knowledge concept and learning partner recommendations,
the interaction data of the last video of each student were used as the test set and the
rest of the interaction data were used as the training set according to the students’ video
viewing orders.

5.2. Baseline Models and Assessment Indicators

In order to evaluate the model knowledge concept recommendation performance, in
this paper, each student interaction concept in the validation set was combined with 99 non-
interaction concepts as a group, and HR@k, NDCG@k, and MRR metrics were computed
based on the student preference yuk, where k was set to 5 and 10. In the MOOCCubeX
dataset, KLJRec is compared with four benchmark knowledge concept recommendation
models, and the benchmark models are introduced in Table 3.

Table 3. Knowledge concepts recommended baseline model.

Baseline Model Model Introduction

MFBPR [26]
The method assumes that users have higher preferences for interacted items than for items they have not

interacted with, and uses implicit feedback data to solve the problem of ranking among
recommended items

metapath2vec [28] The method uses random wandering in a heterogeneous network to construct a neighbourhood of nodes,
which is then trained using a skip-gram model to increase the similarity of nodes between domains

ACKRec [7]
A graph convolutional neural network model with an attention mechanism to learn node embeddings

under different meta-paths in a heterogeneous network species and obtains final node representations by
fusion with an attention mechanism

MOOCIR [29]
A knowledge concept recommendation model based on heterogeneous information networks that uses

graph convolution and attention mechanisms to adaptively learn a network representation of entities and
train the model using BPR

To validate the learning partner recommendation effect, the learning partner recom-
mendation performance is measured using the precision and recall rates. In the MOOC-
CubeX dataset, KLJRec is compared with three benchmark learning recommendation
partner models, which are described in Table 4.

Table 4. Baseline learning partner recommendation model.

Baseline Model Model Introduction

MF [30] The method maps user–item interactions into a low-dimensional potential space and uses the inner
product of the user and the item in space to model user interactions

metapath2vec [28] A representation learning model based on random walks and skip-grams to generate paths in
heterogeneous networks using random walks and learns node representations using skip-grams

LPRWHIN [19]
The model proposes a method for automatically extracting and identifying meaningful meta-paths and

uses the BPR optimisation framework to learn the importance of different meta-paths of students in order
to recommend learning partners

5.3. Experimental Environment and Hyperparameter Settings

The experimental environment of this paper is shown in Table 5.
The learning rate of the KLJRec model proposed in this paper was set to 0.01; the

regularisation parameter was set to λ = 1× 10−8; the embedding dimensions of the student
and knowledge concepts in both the representation learning module and the interest feature
prediction module were 100; the hidden layer dimension of the attention mechanism was
set to 32; the length of the sequence of the student behaviours input to the LSTM was 10; the
batch size for training the model was 1024; and the Adam optimiser was used for gradient
descent optimisation.
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Table 5. Experimental environment.

Experimental Environment Environment Configuration

Operating systems Windows 11
CPU AMD Ryzen 5 5600 H with Radeon Graphics

Video Cards GeForce RTX 3050
RAM 16 GB
ROM 512 GB

Programming Languages Python 3.6
Framework Tensorflow

5.4. Evaluation of Model Recommendation Performance and Analysis of Results in
Multitasking Scenarios

Tables 6 and 7 show the performance metrics of the KLJRec model with the baseline
model on the MOOCCubeX dataset for the knowledge concept recommendation task and
the learning partner recommendation task, as analysed below:

Table 6. Results of the comparison of the KLJRec model with the baseline knowledge conceptual
model on the MOOCCubeX dataset. The best performing scores are shown in bold.

Model HR@5 HR@10 NDCG@5 NDCG@10 MRR

MFBPR 0.2922 0.4566 0.1914 0.2442 0.2019
metapath2vec 0.3414 0.4779 0.2389 0.2830 0.2421

ACKRec 0.3213 0.4686 0.2127 0.2604 0.2164
MOOCIR 0.3830 0.5529 0.2448 0.3001 0.2403
KLJRec 0.3910 0.5361 0.2523 0.2995 0.2438

Table 7. Results of the comparison of the KLJRec model with the benchmark learning partner
recommendation model on the MOOCCubeX dataset. The best performing scores are shown in bold.

Model
Precision

P@1 P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@9 P@10

MF 0.022 0.022 0.015 0.028 0.031 0.033 0.035 0.036 0.032 0.029
metapath2vec 0.156 0.100 0.067 0.050 0.040 0.033 0.032 0.028 0.030 0.031

LPRWHIN 0.178 0.100 0.067 0.050 0.040 0.037 0.035 0.031 0.027 0.024
KLJRec 0.156 0.100 0.067 0.050 0.040 0.033 0.032 0.028 0.030 0.031

Model
Recall

R@1 R@2 R@3 R@4 R@5 R@6 R@7 R@8 R@9 R@10

MF 0.013 0.026 0.026 0.065 0.091 0.117 0.143 0.169 0.169 0.169
metapath2vec 0.091 0.117 0.117 0.117 0.117 0.117 0.130 0.130 0.156 0.182

LPRWHIN 0.104 0.117 0.117 0.117 0.117 0.130 0.143 0.143 0.143 0.143
KLJRec 0.091 0.117 0.117 0.117 0.117 0.117 0.130 0.130 0.156 0.182

1. KLJRec works better in the knowledge concept recommendation task compared to
MFBPR based on matrix decomposition. This demonstrates the importance of mining
potential associations between nodes and learning entity representations based on
heterogeneous information networks.

2. The metapath2vec model is based on random wandering and skip-gram mining
nodes’ node representations under multiple meta-paths, and KLJRec generates node
representations by fusing nodes’ multi-dimensional semantic information through
the attention mechanism, which is better overall than metapath2vec in the two rec-
ommending tasks, proving that the attention mechanism is better able to balance the
influence of different meta-paths on nodes.

3. Both KLJRec and ACKRec models use graph convolution and attention mechanisms
to learn node representations. KLJRec works better because before using the attention
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mechanism, this paper also learns the student’s current interest features, which proves
the role of the student’s interest features in modelling the learner.

4. The method proposed in this paper outperforms the MOOCIR model in HR@5 and
NDCG@5, but declines relative to the MOOCIR model in the HR@10 and NDCG@10
metrics, which indicates that the model in this paper is capable of strong upfront
prediction, which is a result of the model taking into account the user’s current
interest characteristics.

5. Compared to the MF model, the model in this paper uses student chronological
behavioural data to take into account the student’s current interest characteristics in
the learning partner recommendation task, and thus focuses more on the pre-partner
recommendation task, resulting in a decrease in the model’s performance in the
top7–top9 learning partner recommendation.

6. The performance of KLJRec in the learning partner recommendation task is lower than
that of the LPRWHIN model, which is mainly because the LPRWHIN model learns
for a single task and can better optimise the representation of learners in the learning
partner recommendation task. Meanwhile, the student–student interaction data are
more sparse compared to the human–computer interaction data, and modelling the
learner in this paper with multi-dimensional information in mind leads to a reduction
in the weight of the student–student interaction data, which interferes with the
final results.

7. Most current recommendation models make recommendations for a single learning
resource and are difficult to scale in multi-tasking scenarios. The method proposed in
this paper outperforms the baseline model overall in both tasks, which demonstrates
that the model in this paper can be effectively applied in multi-tasking scenarios
and proves the importance of accurate multi-dimensional modelling of learners for
multi-tasking optimisation.

5.5. Ablation Experiment
5.5.1. Effects of Human–Computer Interaction, Student–Student Interaction, and Interest
Characteristics on Learner Modelling

The model proposed in this paper models learners from three dimensions: human–
computer interaction, student–student interaction, and student interest features. In order to
validate the effectiveness of modelling learners from the three dimensions, an ablation study
was conducted on the MOOCCubeX dataset. The experimental results are shown in Table 8,
in which the three models, KLJRec-dc, KLJRec-ds, and KLJRec-di, ignored the student
human–computer interaction information, the student–student interaction information,
and the learning interest characteristics, respectively, in the learner modelling stage, and
their comparison with KLJRec can effectively validate the influence of multi-dimensional
information on the final recommendation results.

Table 8. Results of KLJRec’s knowledge concept recommendation on the MOOCCubeX dataset with
and without HCI information, student–student interaction information, and learning interest features.
The best performing scores are shown in bold.

Model HR@5 HR@10 NDCG@5 NDCG@10 MRR

KLJRec-dc 0.3446 0.5121 0.2187 0.2730 0.2185
KLJRec-ds 0.3840 0.5229 0.2446 0.2898 0.2358
KLJRec-di 0.3578 0.5234 0.2272 0.2809 0.2253

KLJRec 0.3910 0.5361 0.2523 0.2995 0.2438

Table 8 shows that KLJRec-dc is less effective than KLJRec-ds and KLJRec-di in the
knowledge concept recommendation task, which suggests that the human–computer
interaction information is more important than the student–student interaction information
as well as the student interest information for the knowledge concept recommendation task.
In addition, Table 9 shows that the KLJRec-ds model, which does not take into account
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student–student interactions, performs much lower than the other three models in the
learning partner recommendation task, which suggests that the student–student interaction
information plays a decisive role in the learning partner recommendation task.

Table 9. Results of KLJRec’s learning partner recommendation on the MOOCCubeX dataset with and
without HCI information, student–student interaction information, and learning interest features.
The best performing scores are shown in bold.

Model
Precision

P@1 P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@9 P@10

KLJRec-dc 0.156 0.100 0.074 0.056 0.044 0.037 0.035 0.031 0.032 0.033
KLJRec-ds 0.000 0.011 0.007 0.006 0.004 0.004 0.003 0.003 0.007 0.007
KLJRec-di 0.156 0.100 0.067 0.056 0.044 0.037 0.035 0.031 0.030 0.031

KLJRec 0.156 0.100 0.067 0.050 0.040 0.033 0.032 0.028 0.030 0.031

Model
Recall

R@1 R@2 R@3 R@4 R@5 R@6 R@7 R@8 R@9 R@10

KLJRec-dc 0.091 0.117 0.130 0.130 0.130 0.130 0.143 0.143 0.169 0.195
KLJRec-ds 0.000 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.039 0.039
KLJRec-di 0.091 0.117 0.117 0.130 0.130 0.130 0.143 0.143 0.156 0.182

KLJRec 0.091 0.117 0.117 0.117 0.117 0.117 0.130 0.130 0.156 0.182

Comprehensively, Tables 8 and 9 show that in the learning partner recommendation
task, due to the inclusion of human–computer interaction information and student interest
features, the weight of student–student interaction data is reduced to a certain extent,
which leads to a slight decrease in the recommendation effect of the KLJRec model, but the
indicators of the KLJRec model are all better than those of the KLJRec-dc, the KLJRec-ds,
and the KLJRec-di models in the knowledge concept recommendation task. Thus, the
overall performance of KLJRec in the multitasking scenario was higher than that of the
KLJRec-dc, KLJRec-ds, and KLJRec-di models, which demonstrates the effectiveness of
modelling learners from multiple dimensions.

5.5.2. Comparison of Gate Functions and Attention Mechanisms

The model in this paper is improved based on the multitasking framework MMoE,
for example, replacing the gated network in MMoE with an attention network, which is
better at capturing important information compared to the gated network. In order to
verify the effect of the attention network, the attention mechanism in the model of this
paper is replaced by the gated network to obtain the variant model KLJRec-g, and it is
compared with the KLJRec model. The experimental results are shown in Tables 10 and 11.
The student features in KLJRec-g1 are used as inputs to the gated network and are set as
randomly initialised trainable matrices, and the student features in the KLJRec-g2 model
are the user’s interaction behaviour matrices.

Table 10. Results of KLJRec’s Knowledge Concept Recommendation using Gated Networks or using
Attention Mechanisms on the MOOCCubeX Dataset. The best performing scores are shown in bold.

Model HR@5 HR@10 NDCG@5 NDCG@10 MRR

KLJRec-g1 0.2675 0.4018 0.1892 0.2323 0.2008
KLJRec-g2 0.2852 0.4211 0.1932 0.2371 0.2011

KLJRec 0.3910 0.5361 0.2523 0.2995 0.2438
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Table 11. Results of KLJRec’s Learning Partner Recommendations using Gated Networks or using
Attention Mechanisms on the MOOCCubeX Dataset. The best performing scores are shown in bold.

Model
Precision

P@1 P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@9 P@10

KLJRec-g1 0.044 0.033 0.022 0.017 0.013 0.011 0.010 0.008 0.007 0.007
KLJRec-g2 0.000 0.000 0.015 0.017 0.013 0.011 0.010 0.008 0.007 0.007

KLJRec 0.156 0.100 0.067 0.050 0.040 0.033 0.032 0.028 0.030 0.031

Model
Recall

R@1 R@2 R@3 R@4 R@5 R@6 R@7 R@8 R@9 R@10

KLJRec-g1 0.026 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.039
KLJRec-g2 0.000 0.000 0.026 0.039 0.039 0.039 0.039 0.039 0.039 0.039

KLJRec 0.091 0.117 0.117 0.117 0.117 0.117 0.130 0.130 0.156 0.182

From Tables 10 and 11, it can be found that KLJRec outperforms KLJRec-g in both
tasks, which fully demonstrates the ability of the attention network to capture important
information. In a multi-task model, treating user features with different weights for each
task can effectively improve the accuracy of user modelling for that task, thus achieving
parallel, high-quality completion of multiple tasks.

5.5.3. Comparison of Single-Tasking and Multi-Tasking

In order to verify the advantages of multi-task optimisation over single-task optimi-
sation, this paper compares the KLJRec model with the KRec and LRec models, where
the KRec and LRec models denote the variants of the model under a single knowledge
concept recommender task and a single learning partner recommender task, respectively.
The experimental results are shown in Tables 12 and 13.

Table 12. Comparison results between the KLJRec model and the KRec model on the MOOCCubeX
dataset for the knowledge concept recommendation task. The best performing scores are shown
in bold.

Model HR@5 HR@10 NDCG@5 NDCG@10 MRR

KRec 0.3473 0.5092 0.2250 0.2772 0.2246
KLJRec 0.3910 0.5361 0.2523 0.2995 0.2438

Table 13. Comparison results between the KLJRec model and the LRec model on the MOOCCubeX
dataset for the learning partner recommendation task. The best performing scores are shown in bold.

Model
Precision

P@1 P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@9 P@10

LRec 0.067 0.056 0.044 0.039 0.031 0.030 0.029 0.025 0.025 0.024
KLJRec 0.156 0.100 0.067 0.050 0.040 0.033 0.032 0.028 0.030 0.031

Model
Recall

R@1 R@2 R@3 R@4 R@5 R@6 R@7 R@8 R@9 R@10

LRec 0.039 0.065 0.078 0.091 0.091 0.104 0.117 0.117 0.130 0.143
KLJRec 0.091 0.117 0.117 0.117 0.117 0.117 0.130 0.130 0.156 0.182

As can be seen in Tables 12 and 13, the performance of the multi-task optimisation
model is improved in both the knowledge concept recommendation task and the learning
partner recommendation task compared to single-task optimisation. This suggests that a
multi-task optimisation model can reduce the risk of overfitting in a single task based on the
association between multiple tasks, enabling more accurate learner modelling. In addition,
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the training duration of single-task optimisation and multi-task optimisation was compared
in the same experimental environment, which fully demonstrates the computational cost
advantage of the multi-task optimisation model over the single-task optimisation model. A
comparison of the training durations for single-task and multi-task is shown in Figure 6.
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6. Conclusions

The algorithm proposed in this paper has been extensively experimented on the
MOOCCubeX dataset, and the experimental results comparing the state-of-the-art knowl-
edge concept recommendation algorithms and learning partner recommendation algo-
rithms show that KLJRec has the best overall performance in the knowledge concept
recommendation task, and only performs lower than LPRWHIN in the learning partner
recommendation task. This demonstrates the effectiveness of this paper’s algorithm in mod-
elling learners using the three dimensions of human–computer interaction, student–student
interaction, and interest characteristics, and shows the reliability of generating learner
representations that meet the needs of different tasks with the help of multi-attention mech-
anisms. In addition, the model was subjected to a large number of ablation studies, which
not only verified the effects of human–computer interaction information, student–student
interaction information, and students’ interest characteristics on the model performance,
but also verified the advantages of multi-task optimization over single-task optimization
in terms of recommendation performance and computational cost. The algorithm in this
paper can be well applied in multi-tasking scenarios to give learners richer personalised
recommendation services while saving computational costs; however, since this algorithm
models learners using multiple dimensions, the algorithm requires high data integrity,
and the data imbalance problem will have an impact on the recommendation effect of the
algorithm in this paper.

This study focuses on the problem of personalised learning resource recommendation
for MOOC platforms. KLJRec depicts a more accurate user profile in terms of students’
human–computer interactions, student–student interactions, and interest profiles, which
can improve recommendation accuracy and reduce the risk of task overfitting. Meanwhile,
based on the shared expert network, the attention network is used to train the learning of
different tasks individually, which reduces the overhead arithmetic while achieving the joint
recommendation of knowledge concepts and learning partners for students. Knowledge
concept recommendation can effectively alleviate the problem of knowledge disorientation
faced by students in the process of online learning, meanwhile, taking into account the
loneliness that students are prone to in the process of online learning, the recommendation
of learning partners can compensate for the social deficits in the process of students’ online
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learning. In future research, the concept of knowledge and joint recommendation of
learning partners can be considered for application in hybrid smart classroom platforms to
model students in more complex environments and provide more personalised learning
resource recommendation services, thus assisting teachers to improve course design and
enhance teaching effectiveness.
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