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Abstract: Power cycling tests (PCTs) assess the reliability of power devices by closely simulating their
operating conditions. A PCT was performed on commercially available 1.2 kV 4H-SiC power metal–
oxide–semiconductor field-effect transistors to observe its impact on the 4H-SiC/SiO2 interface. High-
resolution transmission electron microscopy and electron energy loss spectroscopy measurements
showed variations in the length of the 4H-SiC/SiO2 transition layer, depending on whether the device
was power cycled. Moreover, the total resistance at Vg ≫ Vt in Rtot − (Vg-Vt)−1 graph increased to
16.5%, while it changed more radically to 47.3% at Vg ≈ Vt. The threshold voltage shifted negatively.
These variations cannot be expected solely through the wearout of the package.

Keywords: power cycling test; 4H-SiC; interface

1. Introduction

Silicon carbide (SiC) exhibits superior material properties compared to traditional
silicon, making it highly suitable for power devices. In terms of thermal conductivity, SiC
boasts a high value, enabling efficient heat dissipation and operation at elevated temper-
atures, crucial for power electronics [1,2]. Additionally, SiC’s high critical electric field
allows it to handle high voltages with minimal resistance, enhancing device performance
and reliability [3,4]. When compared to silicon insulated-gate bipolar transistors (IGBTs),
SiC devices offer lower drift region resistance and a higher critical electric field, translating
to improved efficiency and reliability in high-power applications [5]. The robustness of
4H-SiC devices makes them well-suited for harsh environments, expanding their utility in
diverse fields, from electric vehicles to renewable energy systems [6]. In EVs, the high ther-
mal conductivity of SiC ensures efficient power management and cooling, while the high
critical electric field enables the handling of high voltages required for electric propulsion
systems. These characteristics make SiC devices ideal for enhancing the performance and
efficiency of automotive EVs, contributing to the advancement of sustainable transportation
technologies. As the industry seeks solutions for higher power demands and increased
energy efficiency, the merit of 4H-SiC power devices lies in their crucial role in advancing
the capabilities and reliability of power electronics.

On the other hand, the reliability of 4H-SiC power MOSFETs compared to silicon
IGBTs is a topic of ongoing research and development, with several key issues that need to
be addressed to ensure their widespread adoption in power electronics applications. Gate
oxide reliability, a critical aspect of SiC MOSFET performance, is closely intertwined with
high-temperature stress degradation. The gate oxide serves as a crucial interface between
the gate electrode and the semiconductor material, playing a pivotal role in device operation.
Stress conditions such as extreme high temperatures, voltage bias, and current loads can
lead to performance degradation and device failure [7]. Ensuring robust gate oxide capable
of withstanding elevated temperatures while switching is essential for adopting 4H-SiC
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power MOSFETs. Failure modes in gate oxide include threshold voltage shifts and increased
leakage currents [8]. High interface trap density is mentioned as the primary cause of these
phenomena [8–11]. Therefore, there was a variety of research performed to overcome the
reliability issue at the 4H-SiC/SiO2 interface. Siqi Zhao et al. optimized the oxidation
process of silicon carbide (SiC) to minimize defects at the interface, thereby enhancing the
electrical properties of the MOSFETs. Additionally, the paper explores advanced techniques
such as nitrogen implantation and wet oxidation processes to passivate near-interface traps
and improve the overall electrical quality of the 4H-SiC/SiO2 interface [12]. These strategies
aim to mitigate interface-related challenges and enhance the performance and reliability of
4H-SiC power MOSFETs by addressing critical issues at the SiC/SiO2 interface [10]. On the
other hand, degradation owing to the 4H-SiC/SiO2 interface becomes more pronounced
while the device is operating [7,9].

Reliability assessments provide insights into the longevity, robustness, and failure
modes under various operating conditions. As these devices find applications in electric ve-
hicles, solar inverters, and aircraft power systems, understanding their reliability becomes
indispensable. Therefore, JEDEC, AEC-A101, and AQG324 guide several tests to evaluate
the reliability of power semiconductors. Among the various reliability tests, power cycling
tests (PCTs) assess the reliability of power devices by closely simulating their operating
conditions [13]. Failure modes commonly mentioned in PCTs include voids and cracks in
the package [13,14]. The influence of power cycling-induced stress on the 4H-SiC/SiO2
interface is often underestimated.

Figure 1 shows a series of resistances within the drain-to-source current path of high-
voltage vertically double-implanted 4H-SiC n-type metal–oxide–semiconductor field-effect
transistors (VD-MOSFETs). The total internal resistance (Rtot) is the sum of the resistance
components.

Rtot = Rcontact + RN+ + Rchannel + RJFET + RDrift + RSubstrate (1)

The predominant components contributing to the Rtot differ between Si and 4H-SiC.
In 4H-SiC VD-MOSFETs, the resistance components related to the 4H-SiC/SiO2 interface
account for 80% of the Rtot [15]. The issues related to the 4H-SiC/SiO2 interface are the
accumulation of interfacial carbon [16,17], threefold-coordinated O and C interstitials [17],
Si vacancies [18], and dangling Si and C bonds [17]. However, silicon power semiconductors
and their interfaces with SiO2 are yet to be investigated.
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related to the coefficient of thermal expansion (CTE). At each junction, the device under test
(DUT) has different CTE rates [19]. When a heated current generates a junction temperature
swing, the region where the CTE is different receives thermomechanical stress. Finally, the
wire bonds are broken, increasing the solder voids.

Another perspective is that the power loss at each resistor in the current path is
the origin of the ejected heat. Hence, the region exposed to electrical stress or a high
heating current from the PCT is closely related to the resistance. The quality of a 4H-
SiC/SiO2 interface is poor; therefore, the channel resistance (RCH) is a highly resistive
element of the Rtot in 4H-SiC power MOSFETs. Therefore, the impact of the active chip
is questionable. When subjected to stress like elevated temperatures or varying gate bias
conditions, the influence of high interface trap density is magnified. Elevated temperatures
can accelerate trap-assisted tunneling processes, leading to enhanced trap occupation
and subsequent degradation in device characteristics [7]. Similarly, under different gate
bias conditions, the interaction between carriers and interface traps can further exacerbate
threshold voltage shifts and increase on-state resistance, affecting the overall performance of
the MOSFETs [7,9]. Hence, in this paper, we conducted PCTs on 4H-SiC power devices and
examined the changes in the devices before and after the tests. We investigated the failure
modes and defects originating from the package, which are the primary causes of failure
in power cycling tests. Additionally, we explored the internal defects and degradation
within the devices. Through HR-TEM/EELS analysis, we examined differences in the 4H-
SiC/SiO2 transition layer depending on the PCTs. We studied the electrical characteristics
influenced by the state of the 4H-SiC/SiO2 interface. By utilizing transfer characteristic
graphs measured before and after power cycling tests, we observed a negative shift in the
threshold voltage and an increase in the resistance of the channel region. By conducting
power cycling tests, which closely simulate the operating environment of 4H-SiC power
MOSFETs, we examined the resulting changes not only in the package but also in the
4H-SiC/SiO2 interface.

2. Materials and Methods

The commercial 4H-SiC MOSFET with a standard TO-247 package featuring a break-
down voltage of 1.2 kV and on-state resistance (RDS,ON) of 80 mΩ was chosen for the DUT.
A MicReD Industrial Power Tester 1500 A, Siemens imposed power and monitored the
DUT’s test parameters. For precise experiments, the forward voltage drop of the body diode
(Von) serves as a temperature-sensitive electrical parameter (TSEP) [20]. Figure 2a shows
the equivalent circuit, and Figure 2b shows the waveforms of the PCT parameters and the
output junction temperature cycles. Table 1 lists the test conditions. The test equipment
automatically maintains a constant temperature swing (∆Tj) under a fixed on-time (ton)
and off-time (toff) by adjusting the heating current (IH). A sample is considered failed when
Von increases by 120%.
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Table 1. Power cycling test setup.

∆Tj (°C) Tjmax (°C) ton (s) toff (s) VGS,on (V) VGS,off (V) IS (mA) IH (A) Von (%)

110 170 2 4 18 −5 −80 22.3 120%

To determine the failure mode at the 4H-SiC/SiO2 interface, the DUTs were decap-
sulated and observed, especially for the stressed cells in the active region, using GEM-
INI500, an ultrahigh analytical field-emission scanning electron microscope (FE-SEM), and
a focused ion beam (FIB). Titan Cubed G2 60-300KV(FEI), High-resolution transmission
electron microscopy (HR-TEM), and electron energy loss spectroscopy (EELS) were used
to inspect the 4H-SiC/SiO2 interface of the substantially deteriorated cells in detail. The
use of HR-TEM and EELS in observing the 4H-SiC/SiO2 interface brings about several key
advantages in the context of this research. HR-TEM provides the visualization of nanoscale
features with precision. This capability is crucial when studying the intricate details of the
4H-SiC/SiO2 transition layer, as it allows researchers to discern subtle structural changes
induced by PCT. EELS, on the other hand, offers valuable insights into the elemental com-
position of the interface. By mapping the percentages of Si, C, and O along the transition
layer, EELS helps quantify compositional variations that might be indicative of degradation
or damage. Moreover, the combination of HR-TEM and EELS enables a comprehensive
examination of both structural and chemical aspects, providing a holistic understanding of
the 4H-SiC/SiO2 interface’s response to PCT-induced stress. This approach enhances the
reliability and accuracy of the observations, making HR-TEM and EELS indispensable tools
for unraveling the complexities of the SiC/SiO2 interface and its role in the performance of
power devices.

The transfer curves at a fixed, small drain voltage (Vd = 50 mV) were measured using
a Keysight B1506a (Santa Rosa, CA, USA),power device curve tracer, before and after
the PCT. Figure 3 shows the transfer characteristics, Id vs. Vg, of the 4H-SiC n-MOSFETs
(VD-MOSFETs). The linear extrapolation method employed for extracting the threshold
voltage (Vt) involves plotting the device’s transfer characteristics, specifically the drain
current (Id) against gate voltage (Vg) at a fixed, small drain voltage. By identifying the linear
region in which the drain current increases linearly with the gate voltage, a straight line
is extrapolated to intersect with the x-axis, determining the Vt accurately. The maximum
transconductance point is chosen for heightened accuracy. The technique is crucial for
assessing the impact of power cycling tests on the threshold voltage of 4H-SiC power
devices, ensuring a reliable measure of the device’s conduction initiation point. Figure 4a
plots the total resistance of the transfer graph, Rtot, vs. the (Vg-Vt)−1 value. The calculated
resistance values from the transfer graph are plotted on the y-axis, while the corresponding
(Vg-Vt)−1 values are plotted on the x-axis. This results in the Rtot vs. (Vg-Vt)−1 graph,
providing a visual representation of the relationship between total resistance and the inverse
of the gate overdrive voltage. This graph allows for a detailed analysis of how different
resistance components contribute to the overall behavior of the device under varying
gate conditions. At large (Vg-Vt)−1 values, where Vg closes to Vt, the channel resistance
dominates the total drain-source current [21–23]. The intersection with the ordinate y-axis
in Figure 4b yields the residual resistance Rs [21–23].

All series resistances, except RCH, in Equation (1) comprise Rs. There are other resis-
tances. The resistance of the source wire to the source metal contact, RWirebond, and the
resistance of the solder, RSolder, originate from the package to an active chip connection. We
assumed that RWirebond and RSolder were practical reasons for the increase in Rs after PCT
because regions in the n-drift are seldom weakened by ∆Tj. By comparing the changed
parameters in the Rtot vs. (Vg-Vt)−1 graph, we can determine which regions, such as Rs or
Rch, become more resistive.
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3. Results and Discussion

When the on-state voltage drop (Von) reached the predefined test stop condition
mentioned in Table 1, the sample experiments were stopped. Figure 5 shows the value of
Von measured at each cycle, and the thermal resistance (Rth) was checked every 500th cycle.
It was observed that Von underwent dynamic variations after the 2300th cycle.
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3.1. Stress Symptoms of the Surroundings

The primary reason for the increase in Von in the TO-247-3L discrete device is usually
defects in/on the wire bonds [13,24]. Although solder fatigue is another potential problem,
neither a 5% increase nor a decrease in Rth was observed in this experiment. An increase in
thermal resistance in the thermal path is occasionally attributed to solder fatigue [13,25].
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Therefore, it is hard to expect solder-void-related critical degradation. Figure 6 shows
the partially decapsulated DUT images of the intrinsic and power-cycled samples. After
power cycling, cracks were observed in the wire-bond heels, which led to separation. The
resistance of the wire increases when the bond between the wire and the active device is
weak. Overall, Von varied aggressively with wire bond deterioration.
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3.2. Pattern of Degradation at a 4H-SiC/SiO2 Interface

This research investigates the impact of power cycling tests (PCT) on the 4H-SiC/SiO2
interface in commercial 1.2 kV 4H-SiC VD-MOSFETs. Employing advanced microscopy
and spectroscopy techniques, this study reveals changes in the length of the 4H-SiC/SiO2
transition layer, which is critical for device reliability. The analysis of electrical parameters,
including threshold voltage shifts and resistance variations, will be addressed in this
chapter to demonstrate potential damage at the SiC/SiO2 interface post-PCT. The cracks
and delamination on the inter-layer dielectric (ILD) were sporadically detected in the active
region of each sample. Figure 7 shows cells from the DUT where the ILD was slightly
delaminated. The HRTEM image in Figure 8 was obtained from the cross-section along the
red and green dotted line in Figure 7.

To monitor the degradation at the 4H-SiC/SiO2 interface, Figure 8a,b shows the
comparison of the HR-TEM images of the intrinsic and power-cycled DUTs. The DUT
undergoing PCT (or power-cycled DUT) exhibited a different lattice structure, especially
near the 4H-SiC/SiO2 interface, as indicated by the red bidirectional arrows. To quantita-
tively analyze the transition layer, EELS was conducted along the green line, as shown in
Figure 9a, at the 4H-SiC/SiO2 interface in the junction field-effect transistor (JFET) region.
The composition percentages of Si, C, and O were collected at 48 different positions, from
the gate dielectric SiO2 to the semiconductor 4H-SiC. Figure 9b illustrates the percentage
composition changes in the Si L-edge, O K-edge, and C K-edge collected near the 4H-
SiC/SiO2 interface for each sample. The percentage composition of each element reached
saturation at both ends, that is, SiO2 and SiC, except in the transition layer. The slope of
each element in the transition layer also varied during PCT. The 4H-SiC/SiO2 transition
layer of the power-cycled DUT was longer than that of the intrinsic sample. It is essential
for maintaining a sharp and well-defined interface between the SiC and SiO2 layers to
ensure proper device operation. Electrically, the transition layer influences charge carrier
mobility, interface trap density, and overall device performance. A high-quality transition
layer helps in reducing defects, interface traps, and charge carrier scattering, which are
essential for maintaining consistent device operation over time [11,26,27].
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Figure 9. EELS results: (a) SEM image for EELS percent composition mapping line (green); (b) EELS
percent composition vs. depth.

When the length of the 4H-SiC/SiO2 transition layer was short, the surface roughness
between the 4H-SiC semiconductor and SiO2 gate dielectric was low [28,29]. As the surface
roughness increased, the mobility decreased, increasing the channel resistance [30,31]. To
compare the results from the HR-TEM and EELS regarding the channel resistance, an
Rtot vs. (Vg-Vt)−1 graph was plotted in Figure 10. Figure 10 shows the change in the overall
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resistance Rtot calculated using a transfer graph (Vd = 50 mV). In this graph, as the x-axis
increases, Vg approaches Vt, and channel resistance RCH dominates Rtot [21]. It can be
observed that the resistance of the channel increased significantly after PCT. The resistance
extrapolated from the Vg ≈ Vt increased by 47.3%, while Vg ≫ Vt, (Vg-Vt)−1 → 0, increased
by 16.5% after power cycling. In the Vg≈Vt range, a relatively low drain current flows,
and it is less affected by the gate-to-source electrode feedback (G-S feedback) owing to the
wire bond. The change in resistance in the Vg ≈ Vt range was more dramatic than in the
case of Vg ≫ Vt. These results indicate that RCH has increased. This corresponds to the
findings of prior research that the channel resistance is very high when the transition layer
is distinguishable.
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Fiorenza et al. successfully showed that an interface with a low near-interface trap 
and oxide trap density has a shorter length than the 4H-SiC/SiO2 transition layer [32]. 
Zhang et al. conducted theoretical research on the relationship between near-interface ox-
ide traps and Si interstitials in substoichiometric SiOx in the transition layer and found the 
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Fiorenza et al. successfully showed that an interface with a low near-interface trap
and oxide trap density has a shorter length than the 4H-SiC/SiO2 transition layer [32].
Zhang et al. conducted theoretical research on the relationship between near-interface
oxide traps and Si interstitials in substoichiometric SiOx in the transition layer and found
the presence of dangling bonds, including SiCyOx and SiOxNy compounds [33]. Likewise,
complex flaws that induce a negative Vt shift exist within the 4H-SiC/SiO2 transition layer.
Figure 11 shows the Vt values extracted from the measured transfer and transconductance
graphs. The threshold voltage exhibited a negative shift. If the defects in the wire bond had
degraded the G-S feedback, the threshold voltage would have increased. It is reasonable to
assume that as the transition area with various defects expands, the influence of traps that
lead to a negative Vt shift becomes more significant.
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The negative threshold voltage (Vt) shift observed in the 4H-SiC MOSFETs after PCT
poses significant concerns for device performance. A negative Vt shift typically indicates a
degradation in the transistor’s characteristics, impacting its switching behavior and overall
functionality. This shift can lead to increased power losses, reduced efficiency, and compro-
mised reliability [34]. Moreover, negative Vt shifts are often associated with the presence of
defects or traps in the semiconductor material, indicating potential structural and electri-
cal damage. Addressing and mitigating this adverse effect is crucial for maintaining the
long-term stability and functionality of 4H-SiC power devices in practical applications.

4. Conclusions

This study shows the impact of power cycling tests (PCTs) on the 4H-SiC/SiO2 in-
terface in commercial 1.2 kV 4H-SiC VD-MOSFETs, which is crucial for evaluating power
device reliability. Traditionally, PCTs focus on package-related issues, but this research em-
phasizes the underestimated influence of power cycling-induced stress on the 4H-SiC/SiO2
interface. The internal resistance components in 4H-SiC VD-MOSFETs significantly differ
from silicon, with the 4H-SiC/SiO2 interface accounting for a substantial portion of the
total resistance (Rtot).

Power cycling tests involve repeated gate electrode switching with high heating cur-
rents, causing wearout in solder voids and wire bonds. Power loss in each resistor in the
current path is considered the source of ejected heat. Regions exposed to electrical stress
or high heating currents, closely related to resistance, are crucial in 4H-SiC power MOS-
FETs. Experimental results showed dynamic variations in the on-state voltage drop (Von)
attributed to defects in wire bonds. Thorough decapsulation and observation of devices
revealed a correlation between Von variations and wire bond deterioration. Inspection
of the 4H-SiC/SiO2 interface using HR-TEM and EELS demonstrated changes in lattice
structure and composition percentages after power cycling.

A critical aspect involved plotting Rtot vs. (Vg-Vt)−1 graphs, indicating significant
resistance increases after power cycling, particularly in the Vg ≈ Vt range. Findings empha-
size the intricate relationship between power cycling, interface degradation, and changes
in electrical parameters. In conclusion, this research contributes valuable insights into
the effects of power cycling on 4H-SiC power devices, emphasizing the need for a deeper
understanding of interface dynamics for enhanced device reliability and performance.
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34. Rąbkowski, J.; Płatek, T. Comparison of the power losses in 1700V Si IGBT and SiC MOSFET modules including reverse
conduction. In Proceedings of the 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe),
Geneva, Switzerland, 8–10 September 2015; pp. 1–10. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1063/1.3610487
https://doi.org/10.1016/j.apsusc.2021.149752
https://doi.org/10.1016/j.apsusc.2020.145889
https://doi.org/10.1109/EPE.2015.7309444

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Stress Symptoms of the Surroundings 
	Pattern of Degradation at a 4H-SiC/SiO2 Interface 

	Conclusions 
	References

