
Citation: Oyarzún, L.; Castillo, E.;

Parrilla, L.; Meyer-Baese, U.; García,

A. PCA-Based Preprocessing for

Clustering-Based Fetal Heart Rate

Extraction in Non-Invasive Fetal

Electrocardiograms. Electronics 2024,

13, 1264. https://doi.org/10.3390/

electronics13071264

Academic Editors: Constantin

Paleologu and Doru Florin Chiper

Received: 28 February 2024

Revised: 24 March 2024

Accepted: 26 March 2024

Published: 28 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

PCA-Based Preprocessing for Clustering-Based Fetal Heart Rate
Extraction in Non-Invasive Fetal Electrocardiograms
Luis Oyarzún 1,2 , Encarnación Castillo 2 , Luis Parrilla 2 , Uwe Meyer-Baese 3 and Antonio García 2,*

1 Departamento de Sistemas Computacionales, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador;
luis.oyarzun@utm.edu.ec

2 Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, 18071 Granada, Spain;
encas@ugr.es (E.C.); lparrilla@ditec.ugr.es (L.P.)

3 Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering,
Tallahassee, FL 32310-6046, USA; umb@eng.famu.fsu.edu

* Correspondence: grios@ugr.es; Tel.: +34-958240474

Abstract: Non-invasive fetal electrocardiography (NI-ECG) is based on the acquisition of signals
from electrodes on the mother’s abdominal surface. This abdominal ECG (aECG) signal consists of
the maternal ECG (mECG) along with the fetal ECG (fECG) and other noises and artifacts. These
records allow the acquisition of valuable and reliable information that helps ensure fetal well-being
during pregnancy. This paper proposes a procedure based on principal component analysis (PCA)
to obtain a single-channel master abdominal ECG record that can be used as input to fetal heart
rate extraction techniques. The new procedure requires three main processing stages: PCA-based
analysis for fECG-component extraction, polarity test, and curve fitting. To show the advantages of
the proposal, this PCA-based method has been used as the feeding stage to a previously developed
clustering-based method for single-channel aECG fetal heart rate monitoring. The results obtained for
a set of real abdominal ECG recordings from annotated public aECG databases, the Abdominal and
Direct Fetal ECG Database and the Challenge 2013 Training Set A, show improved efficiency in fetal
heart rate extraction and illustrate the benefits derived from the use of such a master abdominal ECG
channel. This allows us to achieve proper fetal heart rate monitoring without the need for manual
inspection and selection of channels to be processed, while also allowing us to analyze records that
would have been discarded otherwise.

Keywords: fECG; PCA; clustering; fetal monitoring; ADFECG database; Challenge 2013 Training
Set A

1. Introduction

An essential part of modern obstetric services is electronic fetal monitoring (EFM),
which allows diagnosis of fetal distress (FD) during pregnancy. Early detection of any
cardiac condition is key to the prevention of after-birth complications or, even, permanent
or fatal damage to the newborn’s heart [1,2]. For example, fetal hypoxia is an FD associated
with severe perinatal morbidity and mortality, and it is due to an alteration in the placental
function that reduces oxygen delivery to the fetus. Thus, the need to prevent heart diseases
such as fetal hypoxia has led to the development of different techniques for heart monitor-
ing. However, while this is a well-defined field for adult subjects, fetal monitoring during
pregnancy remains a challenge.

Auscultation, cardiotocography (CTG), echocardiography, and phonocardiography
(PCG) are the most used methods in clinical practice for continuous fetal heart rate (fHR)
monitoring [3–5], but those methods have some disadvantages such as their high sensitivity
to different types of noise generated by maternal movements and artifacts [6]. However,
even if those techniques, and others based on them, are the most used, they do not suffice
to give a conclusive diagnosis due to their limited accuracy (even leading to unnecessary
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cesarean sections [7]). Even if CTG has been considered for years a standard of care for
intrapartum fetal surveillance, its data interpretation will always depend on the expert’s
judgment and medical diagnosis abilities, since it is based on a visual recognition of the fHR
patterns (bradycardia, accelerations, decelerations, etc.), which limits its medical use [8].
This has caused a growing interest in fetal electrocardiograms (fECG), which have become
a promising EFM method. The main reason for this is that the fECG signal carries valuable
information, such as changes in the morphology of the fECG waveform associated with
dysfunctions induced by FD [7]. A way to acquire a fECG is the use of a scalp electrode
placed on the head of the newborn during labor, but this is a very invasive method. Thus,
non-invasive options for fECG acquisition (NI-fECG) during pregnancy and/or labor have
been developed [1]. They make use of some electrodes placed on the maternal abdomen,
so each one of these electrodes provides a channel to analyze. While EFM techniques
have been shown to help decrease perinatal mortality and morbidity [9] and cesarean
sections [10], NI-fECG can offer superior accuracy and reliability than monitoring based
on ultrasound technology, and is less likely to display the maternal heart rate in place of
the fetal heart rate [11]. Moreover, NI-fECG does not appear to be influenced by increased
body mass index or fetal movement, and its high accuracy of heart-rate indices is promising
for NI-fECG usage in remote settings [12]. As a matter of fact, results in [12] suggest that,
regardless of signal loss, a trace where at least 10 min of fetal R waves are captured that
demonstrate physiological FHR indices by displaying normal key FHR parameters such as
short-term variation (STV), should be sufficient to demonstrate fetal wellbeing according
to the Dawes–Redman criteria [13]. Additionally, NI-fECG devices deliver no energy and
women can potentially wear monitors for longer durations without safety concerns, thus
effectively enabling long-term monitoring. However, due to the noise produced by the
mother’s and fetus’ movements and other artifacts, the resulting abdominal ECG (aECG)
record may be seriously affected, resulting in signals either partially distorted (in some of
the channels or in fragments of them) or even completely unusable. The extraction of fHR
or other characteristics of the fECG signal thus requires sophisticated signal processing in
order to overcome this [14–16]. As an example, in [14], a clustering-based method for single-
channel fetal heart rate monitoring from aECG was presented. However, in that proposal,
not all the channels in aECG recordings could be successfully processed due to artifacts,
excessive noise, saturation, etc. In some cases, even complete recordings were useless for
fHR extraction as none of their channels allowed the identification of ECG characteristics.

The aim of this research is focused on procedures for fHR extraction from NI-fECG
recordings that enhance the performance of, in general, previous methods for fHR extraction
and, more specifically, those based on clustering [14]. This improvement is oriented to avoid
discarding some fragments of channels in aECG recordings, or even complete channels,
due to noise or severe artifact contamination. The final objective is to achieve high accuracy
in fHR extraction from any aECG recording, with no need to inspect and select channels
or fragments. For this purpose, a representative signal of all the channels in an aECG
recording will be composed, in which the noises and artifacts that may affect some channels
are minimized or even removed. Principal component analysis (PCA) can be used for this
task, since PCA is a technique that can reduce the dimensionality of large data sets by
transforming a large set of variables into a smaller one that still contains most of the original
information. Thus, in this paper, we propose the use of a PCA-based algorithm to extract a
single master signal from the aECG recording, which is then fed to the clustering-based
algorithm proposed in [14]. fHR results from annotated public aECG databases show the
benefits associated with this new framework. The rest of the manuscript is organized as
follows: Section 2 describes the background of the different techniques and algorithms.
Section 3 is devoted to the description of the proposed algorithm. Results and discussion
are presented in Section 4, while the final Section 5 summarizes the main conclusions of
this work.
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2. Background

The fetal heart rate undergoes dynamic variations, reflecting both physiological and
pathological influences. fHR changes not related to physiological events may be a sign of
pathologies such as fetal hypoxia, so it is a priority to research how to monitor fHR, fetal
movements, and uterine contractions simultaneously. In the following, some concepts in
this field are summarized, along with the fundamentals of fECG signal processing.

2.1. NI-fECG Fundamentals

The ECG is an important technique whose acquisition on the human skin involves the
reading of very low voltages generated by the heart activity. These signals are contaminated
by different sources of noise, and the difficulty is increased when the acquisition target is
the fECG signal. The fHR can be obtained from fECG signals [14,17–19], and its monitoring
is one of the most important methods to detect and identify diseases in the early stages
of pregnancy [20]. As was commented above, the NI-fECG is a non-invasive method
that consists of the use of a set of surface electrodes placed over the mother’s abdomen
in order to acquire the aECG, which is composed of the fECG along with the maternal
ECG (mECG). Examples of electrode positioning can be found in [1,2]. One of the main
advantages of this non-invasive method is the fact that the fetus is not stressed during the
acquisition of the signal, and it allows long-term monitoring during pregnancy [2]. Another
advantage of NI-fECG is the absence of any radiated energies, which are mostly present
in other methods such as X-rays and ultrasound; although the latter has been shown to
be safe for fetal monitoring, prolonged exposure to ultrasound can heat fetal tissues [21].
Moreover, to obtain fECG signals from aECG signals it is important to consider that they are
affected by different types of electrical interferences, such as other electric biological signals
(mother’s respiration and contractions, fetus’ movement) and external electric artifacts
(power line interferences, etc.). In addition, movements at the electrodes and a strong
maternal component [22] compared to the weak fetal component may complicate fECG
detection. Figure 1 shows an example of a channel of an aECG recording, where these
interferences can be observed.

Figure 1. Example of an aECG channel, composed of mECG, fECG, and different noises.

NI-fECG acquisition is usually performed according to two aECG acquisition proce-
dures [23]: the first one is called abdominal electrode sources (AES), which only makes use
of the leads placed on the maternal abdomen; meanwhile, the second procedure is called
combined source (CS) because, apart from the leads placed on the maternal abdomen, at
least an extra lead is placed on the maternal chest to capture the actual mECG signal. This
last type of system usually includes an adaptative algorithm that, using those extra leads on
the chest, tries to cancel the maternal component, which is the main and most challenging
artifact in the aECG mixture [2] for fHR extraction. The relative weakness of the fetal signal
and the noisy environment due to the different artifacts mentioned above may make the
use of NI-fECG difficult for detecting structural defects of the fetal heart. However, it is
possible to extract the fHR, and it is feasible to evaluate the blood conduction velocity, or
the condition of tissues within the heart as well as various abnormalities [2]. In any case,
the identification of QRS complexes and R-R intervals allows for monitoring heart rate
variability. Thus, NI-fECG is an ideal tool for long-term FHR monitoring [22].
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2.2. Processing of NI-fECG

Different techniques for processing and extracting characteristics from aECG record-
ings are found in the literature [7,24–27]. As it was mentioned above, the fECG is mixed
with other biopotentials and noises, such as the mECG, respiratory artifacts and contrac-
tions [1], and even the movement of the fetus or the mother, and it is very important
to consider them as one of the main problems in the analysis of aECG records. Sudden
movements from the fetus or the mother can even lead to saturation in the recordings.
Additionally, some of these artifacts result in baseline wandering (BW). Wavelet denoising
has been shown to be a useful tool for the removal of these artifacts, even suitable for imple-
mentation on embedded hardware [16,28]. Other methods of adaptive noise cancellation
are least mean square (LMS) and Widrow’s multireference [29–31]. On the other hand,
techniques based on wavelet transforms (WT) [22,32–34], empirical mode decomposition
(EMD) [18,19,35], Kalman filtering [25,36], artificial neural networks [37–39], adaptative fil-
tering [40–42], blind source separation [7,26,30,43], or even clustering-based algorithms [14],
have been shown to be useful in the extraction of components more suitable to obtain
relevant characteristics of the fECG, such as R-peak locations. The techniques to denoise
aECG signals and to extract reliable fetus information used in this work are summarized in
the following.

2.2.1. Wavelet Denoising

The aim of aECG denoising is to recover a clean signal from the original aECG data,
allowing further processing such as separation of the mECG and fECG signals, QRS
complex detection, or parameter estimation (fHR, for example). The wavelet transform is
one of the most used tools in signal processing and is an effective way to digitally remove
noises within specific sub-bands for aECG signals [16]. This wavelet-based approach
is used to remove the low frequency trend of a signal, but it introduces no latency and
less distortion than digital filter-based approaches. In this way, an adequate wavelet
decomposition can be used as a preprocessing method for BW and noise suppression in
aECG signals. Moreover, due to the similar wavelet structure for the application of BW
and noise suppression, it can be carried out with only one-step wavelet [14,16,22], which
enhances efficiency without compromising accuracy, thus saving resources and facilitating
hardware implementations [22].

In the following, the application of the wavelet preprocessing approach consists of
a wavelet decomposition down to L levels, with the approximation coefficients at level L
replaced by an all-zero vector. Additionally, for each level from i = 1 to M (with M < L),
the appropriate threshold limit and rule are applied to the detail coefficients. The wavelet
reconstruction based on the zeroing approximations of level L, the modified details of
levels 1 to M, and the original details of levels M + 1 to L are computed to obtain the
BW-corrected and denoised aECG signal [14,16,22].

2.2.2. Clustering-Based Procedure for FHR Extraction

Cluster analysis is one of the most used statistical methods to separate objects with
the same characteristics in diverse groups (called clusters, defined as groups of similar
objects that differ from objects in other groups), and is mainly used in data mining and
as an unsupervised learning technique for the classification of objects into clusters [14,44].
Thus, clustering can be used to classify distinctive features of denoised aECG signals in
order to separate fetal from maternal QRS complexes. After that, fetal QRS complexes can
be used for fHR monitoring.

The clustering-based method proposed in [14] uses for this classification the so-called
candidate RS-peaks, which are local maxima followed by a local minimum. Concretely,
the clustering algorithm comprises two stages: the first stage carries out the detection
of maternal and fetal QRS combining the use of thresholds and clustering itself, while
the second stage corrects false negatives (FN) and false positives (FP). In the first stage,
the maternal and fetal QRS (mQRS and fQRS, respectively) detection is based on the
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location of candidate RS-peaks. These are local maxima followed by a local minimum in
the preprocessed aECG signal. These RS-peaks correspond to two possible scenarios [14],
depending on whether or not the amplitudes of the fetal RS waves are similar to the
amplitudes of the maternal RS waves, which should be normally larger. When these
amplitudes are comparable, an additional feature is required to differentiate maternal and
fetal candidates, which is the product of the amplitude and time distance of the candidate
peak, rather than the amplitude. Thus, a smoothed version of the normalized distribution
of the amplitudes of all candidate peaks in the classification window is classified into three
possible cases, depending on the number of local maxima in this distribution [14]:

• Case 1: detection of two local maxima from the first local minimum, which represents
candidates that are actually noise. Each of these maxima provides information about
the amplitude zones corresponding to fetal RS-peaks and maternal RS-peaks. If
the distance between these maxima is 35% greater than the maximum candidate
amplitude, maternal candidates are larger than fetal ones and amplitudes are the
selected data to be classified.

• Case 2: detection of two local maxima from the first local minimum, the distance
between which is 35% less than the maximum candidate amplitude. This situation can
be related to similar amplitudes for fetal and maternal RS-peaks and, thus, amplitudes
multiplied by the number of samples of the candidates are the data to be classified.

• Case 3: detection of a single local maximum from the first local minimum. This
situation generally corresponds again to similar amplitudes for fetal and maternal
RS-peaks, and amplitudes multiplied by the number of samples of the candidates are
the selected data to be classified.

Once the case and, thus, the data to be classified are determined, the candidates are
classified using the k-medoids++ clustering algorithm into three groups: maternal R peaks,
fetal R peaks, and noise. After this classification, the second stage of the FHR monitoring
includes a method for the detection of FNs, non-detected fQRS complexes, and FPs, false-
detected FQRS complexes [22]. For this, several RR time distances are defined for each
fQRS candidate to preceding and succeeding candidates, so FPs and FNs are detected
imposing limits to the beat-to-beat variability of the detected heart rate [22].

Compared to threshold-based methods [22,45], clustering allows better detection of
fetal QRS complexes since it is less affected by the amplitude variation of the R peak.
In some cases in [14] all the channels in a given recording can be analyzed, but in most
recordings, one or several channels were discarded due to the quality of the aECG. Thus,
while the algorithm in [14] is able to successfully extract the fHR, it still presents some
disadvantages, especially the need to preselect those channels in the recording that are apt
for analysis, which usually requires a specialist and is not a trivial task to be automatically
carried out. Thus, the objective of this work is to enhance the performance of the cluster
algorithm in [14] for fHR extraction, which will be used to evaluate a single master channel
obtained through a PCA-based algorithm of the complete aECG recording.

2.2.3. Blind Source Separation Fundamentals

Blind source separation (BSP) methods have been widely used in the past, and they
have been successfully used in fECG extraction [7,27,30,43,46,47]. The principle of these
methods is the decomposition of the signal mixture (aECG) into the original source compo-
nents (fECG, mECG, and noise), assuming that these components are statistically indepen-
dent. BSP techniques involve statistical methods such as PCA, independent component
analysis (ICA), and singular value decomposition (SVD) [23,48]. These methods have been
proven to be suitable for fECG extraction from a multichannel aECG but, nevertheless, a
larger number of input signals is associated with greater computational complexity and
lower comfort for the pregnant subject during monitoring [7]. In any case, recordings with
more channels will provide more accurate data. Our proposal is based on PCA, whose
fundamentals are presented in the following.
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2.2.4. Principal Component Analysis (PCA)

PCA is a powerful tool for data analysis, as it finds patterns in data of high dimen-
sionality. It allows us to identify patterns in data and to highlight their similarities and
differences, since in other methods these patterns may be hard to find in data of many
dimensions [40]. The other main advantage of the PCA method is that, once data patterns
are found, data can be compressed, i.e., the number of dimensions can be reduced without
significant loss of information [23]. Considering the application of PCA methods to aECG
signals, they allow us to combine all channels [40] into a reliable single signal. To perform
the PCA analysis, the cross-correlation matrix between input signals is built, eigenvalues
and eigenvectors are computed and, finally, input signals are transformed according to the
eigenvectors and eigenvalues [40]. The covariance matrix, mtcov, can be calculated as:

mtcov[xi, xj] = E(xi − E[xi])(xj − E[xj])
T (1)

where x is the array with the values to be analyzed, E denotes the expected value (mean),
and T is the symbol of the transposed matrix. Let evectork be the k-th eigenvector and
evaluesk the corresponding eigenvalue of mtcov. Then, the k-th principal component is
obtained using the following expression:

yk = evectorT
k x (2)

The spread of the eigenvalues is a good indicator of how many principal components
are of real interest in our input data, so the signals associated with small eigenvalues are
usually dropped. As a result, we will have one or more components that represent the
input signals in a minimum mean square sense. The principal components capture the
power of most of the signal and, at the same time, all components are orthogonal to each
other. That is why PCA sometimes is also called a whitening operation [15,40,49]. Thus,
the PCA method fits perfectly with one of the main objectives of this work, which is the
generation of a single aECG master signal without discarding any of the original channels
from the aECG recording, in order to subsequently apply techniques for the extraction of
fetal information of interest such as the fHR.

3. Proposed Framework

As discussed extensively above, NI-fECG consists of a set of multiple signals ob-
tained with electrodes placed on the maternal abdomen. Usually, most proposals to
extract the fetal characteristics [7,14,15,48] require the search for the channel or channels
from the aECG with less noise contamination, discarding even fragments of some chan-
nels when they are affected by severe artifacts [40], and even discarding complete aECG
recordings. Thus, removing or discarding any channel could remove vital information
about the fetus. The proposed PCA-based algorithm seeks to solve this problem and to
prevent a complete record, signal, or fragment from being discarded. With that aim, a
PCA-based [15,23,27,40] algorithm is proposed, which will extract a single aECG master sig-
nal from the aECG record without discarding any of its channels. This master signal will be
fed to the clustering algorithm in [14] to extract the fetal QRS complexes and, thus, monitor
fHR. The proof of concept has been implemented using GNU Octave 8.4 and Python 3.12,
due to library compatibility, and then trained and tested using aECG recordings in two
PhysioNet databases [50]. These databases are described below, while the new procedure
will be detailed in Section 3.2.

3.1. Fetal ECG Datasets

PhysioNet [51] offers free and public web access to large collections of recorded
physiologic signals (PhysioBank), and the included databases are made available under the
ODC Public Domain Dedication and License v1.0 [52]. Concretely, two of these databases
provided by PhysioNet have been used for this work:
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• Abdominal and Direct Fetal Electrocardiogram Database (ADFECGDB) [50]: this
database contains multichannel fECG recordings obtained from five different women
in labor. Each recording comprises four 5 min differential signals acquired from the
maternal abdomen, and the reference direct fECG registered from the fetus head. The
recordings are sampled at 1 ksps with 16-bit resolution, and the signal bandwidth is
1–150 Hz. Moreover, the database includes a set of reference annotations indicating the
fetal R-wave locations. The ADFECGDB will be used to train the proposed algorithm.

• Challenge 2013 Training Set A (Challenge) [53]: these data consist of one-minute
fECG recordings, sampled at 1 ksps, each one including four noninvasive abdominal
signals as well as the reference annotations marking fetal R-wave locations [14]. The
Challenge database is used to test and validate the proposed algorithm.

3.2. Proposed PCA-Based Framework

As it was commented above, the objective of this work is to generate, through a PCA-
based algorithm, an aECG master signal from the different channels in an aECG recording.
As it is common practice in many digital signal processing algorithms, the signals will
be divided into windows. Thus, the size of these windows must be adjusted to provide
a correct analysis as well as to minimize the delay between acquisition and processing.
It is also important to take into account that window-based processing can produce non-
continuous signals, while it is also possible to have opposing polarities in adjacent windows
as a result of differing signs in the eigenvalues. Considering all these aspects, this work
proposes to track the signal obtained after the PCA analysis in order to perform a polarity
check followed by a curve fitting. A schematic of the proposed PCA-based framework is
shown in Figure 2: PCA-based analysis, polarity check, and curve fitting. These stages
and their steps are described in detail below, keeping first in mind that the aECG signals
to be processed will have been preprocessed using the one-step wavelet-based algorithm
described in [16]. Figure 3 illustrates a fragment of the r01 record from the ADFECGDB
training set before and after this wavelet-based preprocessing. The parameters [16] for the
wavelet preprocessing stage of the databases used in this work were: wavelet function
Daubechies 6, L = 7 (due to the maximum frequency component of the signals), M = 3,
universal threshold, multiple rescaling, and soft thresholding.

3.3. Stage 1: PCA-Based Analysis for Fetal ECG Extraction

Due to the presence of artifacts in aECG signals, many works in the
literature [14,15,23,27,35,40] usually discard a fragment of a channel from aECG recordings,
a complete channel, or even all of them, when extracting fetal characteristics such as fHR.
Therefore, the application of the proposed PCA-based algorithm before extracting any
information allows us to obtain a master aECG signal as the first principal component
using the entire aECG record, including those fragments and channels that might have
been discarded in previous models due to noise or artifacts. The application of PCA to
the input signal avoids the need for an a priori analysis of the aECG records, searching for
fragments in the channels that are not affected by artifacts or other noise. This limits the loss
of information and provides a feasible signal for further analysis, even for studies outside
of a controlled environment. A complete scheme of this stage with the three necessary
steps is shown in Figure 4, while an algorithmic summary is shown in Algorithm 1. This
stage is detailed in the following.
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One-step wavelet-based preprocessing

Stage 1:
PCA-based analysis for fetal ECG extraction

Step 1: Define window size
Step 2: Remove offset
Step 3: Perform PCA

Stage 2:
Polarization Check

Step 1: Search for max-min-max-min points
Step 2: Distance comparison
Step 3: Determine correct QRS polarization

Stage 3:
Curve Fitting

Step 1: Continuity correction

Clustering for fHR monitoring

Figure 2. Proposed processing framework.

(a)

(b)

Figure 3. (a) Fragment of channel #1 in record r01 from ADFECGDB; (b) resulting signal after one-step
wavelet-based preprocessing.
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Stage 1: PCA-based analysis for fetal ECG extraction

Step 1: Define window size
• Window size to be analyzed (ws, in blue)
• Overlap window size (os, in red)
• Total window size: os + ws + os

Step 2: Remove offset
Step 3: Perform PCA
• Find covariance matrix (mtcov) of aECG records
• Find eigenvalues and eigenvectors (evector, evalues)

• Apply PCA
evectorT × aECG√

evalues

Figure 4. Stage 1: PCA-based analysis for fetal ECG extraction.

Algorithm 1 PCA-based analysis for fetal ECG extraction.

1: Step 1: Define window size
2: if signal is shorter than ws then ▷ One-window case
3: left window extension ← 0
4: right window extension← 0
5: else if first window then ▷ First window
6: left window extension ← 0
7: right window extension← os
8: else if last window then ▷ Last window
9: left window extension ← os

10: right window extension← 0
11: else ▷ Any other case
12: left window extension ← os
13: right window extension← os
14: end if
15: aux ← aECG[extended window(ws, os)]
16: Step 2: Remove offset
17: for j = 1 to num_channels do
18: aux[j, :]← aux[j, :]−mean(aux[j, :])
19: end for
20: Step 3: Perform PCA
21: mt_cov←cov(aux′) ▷ Find covariance matrix
22: [evectors, evalues]← eig(mt_cov) ▷ Find eigenvalues and eigenvectors
23: pca← (evalues−0.5)× (evectors′)× (aux) ▷ PCA
24: Master ← pca[first_principal_component, :] ▷ aECG master signal

3.3.1. Step 1: Define Window Size

In order to reduce the complexity of the proposed signal processing, especially if its
future implementation on wearable devices is sought, it is important to select an appropriate
window size (ws) that provides a balance between performance (in terms of data rate,
resources, and execution time) and the quality of the resulting signal. Since the training
database records, PhysioNet’s ADFECGDB [50], have a total of 300,000 samples, window
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sizes of 6000, 10,000, 12,000, 15,000, 20,000, 30,000, 50,000, 60,000, 100,000, 150,000, and
300,000 samples were considered in order to evaluate the influence of this parameter in
the results. An additional parameter to ws is the overlap size (os), which will be needed
in stage 3. This overlap size defines an overlap region involving the number, os, of the
final samples of the previously parsed window and an equal amount of the first samples in
the window after the current one. Thus, these fragments will be added to the beginning
and end of each analyzed window. os should include at least a full heartbeat, so a 1 s,
1000-sample fragment will be considered in this work.

Figure 5a shows an example of how the system, once ws has been defined (in blue,
4000 samples for this example), proceeds to add two new fragments of the signal to both
of its ends. We will call these fragments overlaps (in red in the example) and their size is
os (1000 samples for this example, the sampling frequency is 1 ksps). The fragments thus
added to the current window as overlap corresponds to the final samples of the preceding
window, already analyzed, and to the initial samples in the next window to be analyzed.
These overlap fragments increase the total size of the window to be analyzed to ws + 2os.
It is important to note that the first window to be analyzed, since this is the one initializing
the system, will be only expanded after its final samples with os samples from the second
window. In the same way, the last window to be processed will be only expanded at its
beginning with os samples from the preceding window. These two windows will thus be
the only ones whose size is ws + os, as illustrated in Figure 6.

3.3.2. Step 2: Remove Offset

To eliminate the offset, it is necessary to subtract each of the aECG signals from their
respective non-zero mean to guarantee a centered PCA signal. If x is one of the aECG
channels, including offset, E(x) is its mean value, and xc is the centered aECG channel,
then the i-th samples are related according to:

xci = xi − E(x) (3)

3.3.3. Step 3: Perform PCA

This step completes the PCA-based algorithm, which transforms the aECG record-
ing into its principal components, since the aim of PCA is to decorrelate the observed
aECG signal using variance as a measure by projecting the data onto orthogonal axis [43].
Thus, after performing the PCA analysis, a master aECG component, i.e., the component
corresponding to the larger eigenvalue, will be generated, as illustrated in Figure 5b. It
must be noted that no particular consideration about the obtained eigenvalues has been
considered, as the scree plot for this type of signal always shows a dominant component,
which is the one selected as the master aECG component in this proposal. As will be
shown in Section 4, the evaluation of this proposal will be carried out through the fHR
performance of this PCA-generated master aECG. Figure 5b shows how noise and artifacts
that make parts of channels #1 and #3 unsuitable for fECG extraction are mitigated, and the
resulting master aECG component allows us to clearly observe all maternal and fetal beats.
Concretely, Figure 7 expands the signals in Figure 5 focusing on a distorted fragment. Thus,
it can be seen in Figure 7a how channel #1 of the aECG presents great distortion between
samples 88,000 and 90,500, probably due to noise during acquisition. However, the signal
obtained from the PCA analysis, in Figure 7b, is suitable for further analysis and fHR
extraction, which would not be possible over that particular fragment in channels #1 and
#3. Even as some of the distortion is still carried over in the PCA-composed master aECG
signal, both maternal and fetal QRS complexes are clearly visible and suitable for extraction.
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(a)

(b)

Figure 5. (a) Fragments of the four channels of register r04 from ADFECGDB, corresponding to
the third window to be analyzed. The 4000 samples in ws are shown in blue, with the two overlap
fragments shown in red (os is 1000 samples). (b) Master aECG channel derived from the PCA analysis.

Figure 6. Complete signal fragmented into windows, which are increased in size (in red) with the
overlap fragments.
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(a)

(b)

Figure 7. (a) Fragments from aECG channels in the denoised r04 record; (b) Master aECG channel
derived from the PCA analysis.

3.4. Stage 2: Polarization Check

Once the PCA-based algorithm stage is finished, a single master aECG signal can be
composed through the concatenation of the resulting windows from the first principal
component of all analyzed aECG recordings. However, in very particular cases the polarity
of the fQRS and mQRS complexes can be inverted in some windows, due to noise or artifact
contamination in a fragment of a channel, a complete channel, or in all the channels of the
analyzed window. This must be corrected through the steps shown Figure 8, which will be
described below.
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Stage 2: Polarization Check

Step 1: Search for max-min-max-min points
• Consecutive pairs of maximum followed by minimum
• Based on amplitude distances dPQ, dQR, dRS and dST

• Compute four distance sets, related to four scenarios:
– Non-inverted

1. P-wave consideration: dPQ1, dQR1, dRS1 and dST1
2. R-wave consideration: dPQ2, dQR2, dRS2 and dST2

– Inverted
1. Q-wave consideration: dPQi1, dQRi1, dRSi1 and dSTi1
2. S-wave consideration: dPQi2, dQRi2, dRSi2 and dSTi2

Step 2: Distance comparison
• dPQ < dQR
• dRS > dST
• dQR > 0.5 and dRS > 1.0
Step 3: QRS polarization correction

Figure 8. Stage 2: Polarization check.

3.4.1. Step 1: Search for Max-Min-Max-Min Points

In this step, a search for local maxima and minima is carried out. This search is
intended to determine the correct polarization of the generated master aECG wave. In an
ideal case, local maxima could correspond to either P, R, or T waves, while the local minima
would match Q and S waves. However, the system cannot determine if the first maximum
found is a P, R, or T wave, and it is even possible that the signal has been inverted in the PCA
process, with maxima thus corresponding to Q or S waves. Additionally, these maxima and
minima may not be related to any cardiac phenomena and will usually correspond to noise
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or signal fluctuations. In this way, Figure 9 illustrates how a QRS-complex would match
the local maxima and minima for the two possible polarities, where dPQ is the amplitude
distance between the P and Q peaks, dQR is the amplitude distance between the Q and R
peaks, dRS is the amplitude distance between the R and S peaks, and dST is the amplitude
distance between the S and T peaks. These distances must satisfy several conditions to
match the patterns in Figure 9 and, thus, define a QRS-complex.

(a) (b)

Figure 9. Distances for scenario analysis of a QRS complex: (a) non-inverted QRS-complex,
(b) inverted QRS-complex.

Based on the reasoning above, the analysis requires to consider several maxima and
minima, with two consecutive pairs of a maximum followed by a minimum grouped
together as the core of each iteration. In the following, these will be referred to as max1(j),
min1(j), max2(j) and min2(j) for the j-th iteration. This analysis will result in four possible
scenarios, two for each possible polarity, when these maxima and minima are related to a
PQRST sequence. This will allow us to identify a cardiac component using the dPQ, dQR,
dRS, and dST distances under four different sets of assumptions, each corresponding to
one of the scenarios described below:

• In the first scenario, it is considered that the first maximum found is the P-wave,
located at max1(j), where j is the index of the pair of maximum–minimum being
evaluated, as shown in Figure 10. Thus, the next values to be found are the Q wave,
located at min1(j), the R wave at max2(j), and the S wave, located at min2(j), while
the T wave corresponds to the first maximum of the next group, max1(j + 1). These
allow us to define and analyze the distances dPQ1, dQR1, dRS1, and dST1 as shown
in Figure 10.

Figure 10. First scenario, the first local maximum found is the P-wave (green dots correspond to j-th
iteration, yellow and red dots represent (j− 1)-th and (j + 1)-th groups, respectively).
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• In a second scenario, it is considered that max1(j) corresponds to a R-wave, as shown
in Figure 11. Thus, the set of distances dPQ2, dQR2, dRS2, and dST2 can be computed
as illustrated in Figure 11 using the points max2(j − 1), which should correspond
to the previous P wave, min2(j− 1), corresponding to the Q wave, min1(j), which
should match the S wave, and finally max2(j) as the T wave.

Figure 11. Second scenario, the first local maximum found is the R-wave (green dots correspond to
j-th iteration, yellow and red dots represent (j− 1)-th and (j + 1)-th groups, respectively).

• In the case the polarity is inverted, a third scenario is possible where it is considered
that the first maximum found is the Q wave at max1(j), as shown in Figure 12, where
it is illustrated how the distances dPQi1, dQRi1, dRSi1, and dSTi1 are obtained using
the points min2(j− 1), min1(j), max2(j), and min2(j).

Figure 12. First inverted scenario, the first local maximum found is the Q-wave (green dots correspond
to j-th iteration, yellow and red dots represent (j− 1)-th and (j + 1)-th groups, respectively).

• Finally, when the polarity is inverted, a final scenario is defined in Figure 13, so
max1(j) corresponds to the S wave and the set of distances dPQi2, dQRi2, dRSi2, and
dSTi2 are computed using min1(j− 1), max2(j− 1), min2(j− 1), and min1(j).

Figure 13. Second inverted scenario, the first local maximum found is the S-wave (green dots corre-
spond to j-th iteration, yellow and red dots represent (j− 1)-th and (j + 1)-th groups, respectively).
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It is important to finally note that it is not necessary to include additional scenarios
for a possible T wave, since they will result in redundant evaluations. Thus, these four
scenarios will suffice to determine the type of wave, as discussed below, that the pair of
maxima and minima may match. The pseudocode in Algorithm 2 summarizes this first
step of the second stage of the proposed PCA-based framework.

Algorithm 2 Polarization check, step 1.
1: Step 1: Search for max-min-max-min points
2: Consecutive pairs of maximum followed by minimum
3: procedure MAXMIN(Master)
4: f lag← 1, j← 1
5: for mx ← 2 to length[Master] do
6: if (Master[mx] ≥ Master[mx− 1]) and (Master[mx] > Master[mx + 1]) and

(mx ≤length[Master]) and ( f lag = 1) then ▷ Find the first maximum
7: max1[j]← mx
8: f lag← 2
9: end if

10: if (Master[mx] ≤ Master[mx− 1]) and (Master[mx] < Master[mx + 1]) and
(mx ≤length[Master]) and ( f lag = 2) then ▷ Find the first minimum

11: min1[j]← mx
12: f lag← 3
13: end if
14: if (Master[mx] ≥ Master[mx− 1]) and (Master[mx] > Master[mx + 1]) and

(mx ≤length[Master]) and ( f lag = 3) then ▷ Find the second maximum
15: max2[j]← mx
16: f lag← 4
17: end if
18: if (Master[mx] ≤ Master[mx− 1]) and (Master[mx] < Master[mx + 1]) and

(mx ≤length[Master]) and ( f lag = 4) then ▷ Find the second minimum
19: min2[j]← mx
20: f lag← 1
21: j← j + 1
22: end if
23: end for
24: end procedure
25:
26: Based on amplitude distances dPQ, dQR, dRS and ST,
27: compute four distance sets, related to four scenarios
28: procedure QRS(Master, max1, max2, min1, min2)
29: for j← 2 to length[max1] do
30: ▷ P-wave consideration
31: dPQ1[j− 1]← Master[max1[j]]−Master[min1[j]]
32: dQR1[j− 1]← Master[max2[j]]−Master[min1[j]]
33: dRS1[j− 1]← Master[max2[j]]−Master[min2[j]]
34: dST1[j− 1]← Master[max1[j + 1]]−Master[min2[j]]
35: ▷ R-wave consideration
36: dPQ2[j− 1]← Master[max2[j− 1]]−Master[min2[j− 1]]
37: dQR2[j− 1]← Master[max1[j]]−Master[min2[j− 1]]
38: dRS2[j− 1]← Master[max1[j]]−Master[min1[j]]
39: dST2[j− 1]← Master[max2[j]]−Master[min1[j]]
40: ▷ Q-wave consideration
41: dPQi1[j− 1]← Master[max1[j]]−Master[min2[j− 1]]
42: dQRi1[j− 1]← Master[max1[j]]−Master[min1[j]]
43: dRSi1[j− 1]← Master[max2[j]]−Master[min1[j]]
44: dSTi1[j− 1]← Master[max2[j]]−Master[min2[j]]
45: ▷ S-wave consideration
46: dPQi2[j− 1]← Master[max2[j− 1]]−Master[min1[j− 1]]
47: dQRi2[j− 1]← Master[max2[j− 1]]−Master[min2[j− 1]]
48: dRSi2[j− 1]← Master[max1[j]]−Master[min2[j− 1]]
49: dSTi2[j− 1]← Master[max1[j]]−Master[min1[j]]
50: end for
51: end procedure

3.4.2. Step 2: Distance Comparison

Following the considerations above on the four possible scenarios maxima and min-
ima may match, all four sets of amplitude distances described in the previous section are
evaluated for each pair of maximum–minimum points. Thus, the max1(j), min1(j), max2(j),
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and min2(j) points in the j-th pair of maxima and minima, along with any required points
from the (j− 1)-th and (j + 1)-th set of pairs as illustrated in Figures 10–13, are used to
evaluate the four different sets of amplitude distances for this j-th pair: dPQ1, dQR1, dRS1,
and dST1 (Figure 10), dPQ2, dQR2, dRS2, and dST2 (Figure 11), dPQi1, dQRi1, dRSi1, and
dSTi1 (Figure 12), and dPQi2, dQRi2, dRSi2, and dSTi2 (Figure 13). It must be noted that
when the pair of maxima and minima does not correspond to any cardiac component but is
caused by noise and artifacts, as will usually be the case for most pairs of maxima and min-
ima, none of the amplitude distance sets will match any of the scenarios. For this analysis,
a set of conditions and thresholds are thus imposed to all the sets of amplitude distances
in order to find, if any, the matching scenario. It must be kept in mind that it has been
considered that the largest distances will correspond to the QRS complex, with dQR<dRS.
Additionally, thresholds are imposed to avoid any distortion effects derived from the PCA
processing. With this all, the following conditions must hold for the matching scenario:

dPQ < dQR (4)

dRS > dST (5)

dQR > 0.5 and dRS > 1.0 (6)

where the thresholds in (6) have been manually set after the training phase of the algorithm.
The four sets of distances, for each pair of maxima and minima, are compared to

the conditions in Equations (4)–(6), so if one of the distance sets is found to satisfy those
conditions, the pair of maxima and minima is classified in the corresponding scenario. Thus,
it is possible to compute over two different counters the number of detected QRS complexes
that are correctly and incorrectly polarized, respectively. Algorithm 3 summarizes the
procedure for this distance comparison.

Algorithm 3 Polarization check, step 2.
1: Step 2: Distance comparison
2: procedure DISTANCE(distances)
3: k← 1, l ← 1
4: for j← 2 to length[dQR1] do
5: if (dPQ1 < 0.5) and (dQR1 > 1) and (dRS1 > 1) and (dPQ1 < dQR1)

and (dRS1 > dST1) then
6: q_peakn[k]← min1[j]
7: r_peakn[k]← max2[j]
8: s_peakn[k]← min2[j]
9: k← k + 1

10: else if (dPQ2 < 0.5) and (dQR2 > 1) and (dRS2 > 1) and (dPQ2 < dQR2)
and (dRS2 > dPQ2) then

11: q_peakn[k]← min2[j− 1]
12: r_peakn[k]← max1[j]
13: s_peakn[k]← min1[j]
14: k← k + 1
15: else if (dPQi1 < 0.5) and (dQRi1 > 1) and (dRSi1 > 1) and (dPQi1 < dQRi1)

and (dRSi1 > dSTi1) then
16: q_peaki [l]← max1[j]
17: r_peaki [l]← min1[j]
18: s_peaki [l]← max2[j]
19: l ← l + 1
20: else if (dPQi2 < 0.5) and (dQRi2 > 1) and (dRSi2 > 1) and (dPQi2 < dQRi2)

and (dRSi2 > dSTi2) then
21: q_peaki [l]← max2[j− 1]
22: r_peaki [l]← min2[j− 1]
23: s_peaki [l]← max1[j]
24: l ← l + 1
25: end if
26: end for
27: end procedure
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3.4.3. Step 3: QRS Polarization Correction

It is now possible to adjust the polarity of the signal in case most of the QRS-complexes
are inverted according to the analysis in the previous section, as summarized in Algorithm 4.
In this case, the whole window will be corrected, as illustrated in Figure 14.

Algorithm 4 Polarization check, step 3.

1: Step 3: QRS Polarization Correction
2: procedure QRSCORRECTION(Master, r_peakn, r_peaki)
3: if length[r_peakn] <length[r_peaki] then
4: Invert aECG Master Signal
5: end if
6: end procedure

(a)

(b)

Figure 14. QRS polarization correction: (a) fragment of the PCA-derived aECG master signal from
r01 record with wrong polarity (red triangles mark R-peaks); (b) resulting fragment after polarity
correction (blue triangles mark R-peaks).

3.5. Stage 3: Curve Fitting

Due to the nature of windowed signal processing, continuity between adjacent win-
dows is not guaranteed and there may be small offsets between them. Thus, curve fitting is
the final stage of the proposed algorithm, composing a continuous signal by adjusting each
of the windows that have been processed to the adjacent ones. This will result in the final
record to be analyzed through clustering. A schematic of this stage is shown in Figure 15.
As an example, Figure 16a shows how there is a discontinuity between the resulting signals
from windows 3 (in blue) and 4 (in red) of record r01 of the ADFECGDB database after the
PCA analysis and polarity correction described above. To solve this, the use of the param-
eter os as defined in Stage 1 creates an overlapping region between these two windows,
as can be seen in Figure 16b. This overlapping region between adjacent windows allows
to compute a weighted average (in green in Figure 16c) from the two different signals,
where continuity can be enforced by making the weight of each component at each sample
to be proportional to the sample position within the overlapping region. In this way, at
the beginning of the overlapping region, the signal from the preceding window (Pw) is
considered with unity weight, which decreases to zero at the end of the region; on the other
hand, the weight from the component from the following window (Cw) moves from zero,
at the beginning of the overlapping region, to one at the end of that region.
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Stage 3: Curve fitting.

Step 1: Continuity correction
• Define initial point from previous window Pw : x = n fp − os
• Define final point from current window Cw : y = nip + os
• Overlap range between previous and current windows: [x, y]
• Size of the overlapping region: y− x
• for i in [x, y]

Avgi =
[Pwi × (y− i)− Cwi × (x− i)]

y− x

Figure 15. Stage 3: Curve fitting.

Concretely, and using the notation introduced in Figure 6, the overlapping region is
defined by its initial, x, and final, y, sample positions:

x = n fp − os (7)

y = nic + os (8)

where nic is the initial sample of the current window (Cw) and n fp is the final sample
of the previous window (Pw). With this, the curve fitting procedure is computed as a
weighted average in the [x,y] range. Thus, the i-th sample of this weighted average, Avgi,
is computed as:

Avgi =
[Pwi × (y− i)− Cwi × (x− i)]

y− x
(9)

where Pwi is the value of the component from the preceding window (in blue in Figure 16b)
and Cwi is the value of the component from the current window (in red in Figure 16b). This
all is summarized in Algorithm 5.

Algorithm 5 Curve fitting.

1: Step 1: Continuity correction
2: procedure CURVEFIT(Pw, Cw, os)
3: x ← Pw : n fp subtracting os
4: y← Cw : nip adding os
5: for i← x to y do
6: Master[i]← Pw[i]×(y−i)−Cw[i]×(x−i)

y−x
7: end for
8: end procedure
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(a)

(b)

(c)

Figure 16. (a) Discontinuity between preceding window (Pw, in blue) and current window (Cw, in
red) without overlap; (b) overlapping region between Pw (in blue) and Cw (in red) defined by os; and
(c) curve fitting (in green) between Pw (in blue) and Cw (in red).

4. Validation and Results

As previously described, the objective of the proposed framework is to produce an
aECG master signal from the PCA-based analysis above that will be fed to the clustering al-
gorithm proposed in [14]. It is important to note that in [14] a study to establish the optimal
value of the number of samples in the data window for the clustering classification was
carried out. This study indicated that, in general, there was no noticeable difference in the
effectiveness of the classification results for windows from 10,000 to 60,000 samples. Thus,
50,000- and 60,000-sample windows were selected in [14] for PhysioNet’s ADFECGDB [50]
records and for PhysioNet’s Challenge 2013 Training Set A [53] records, respectively. In
this work, a new study has been carried out in order to determine the optimal value of the
number of samples in the data window for the PCA-based analysis described above and
for the clustering-based fHR extraction, considering different ws values for each method.
For this study, PhysioNet’s ADFECGDB records have been used to train the algorithm
and to derive the optimum parameter values, while the Challenge 2013 Training Set A
has been used as a test and validation database with these parameters determined during
the training phase. This will be described in the following subsections after defining the
metrics used to evaluate the performance of the proposed framework.

4.1. Performance Metrics

In [14] the different records were evaluated through the analysis of individual channels,
discarding those presenting artifacts and/or noisy fragments, since these provided poor
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results. For the evaluation of results [14], values such as sensitivity (Se), positive diagnostic
value (PPV), accuracy (Acc), and F1 [24] were used:

Se =
TD

TD + FN
(10)

PPV =
TD

TD + FP
(11)

F1 = 2× PPV × Se
PPV + Se

(12)

where:
F1 =

2× TD
2× TD + FN + FP

. (13)

In these equations, TD represents true-detected fetal QRS complexes, and FP and FN
are false negatives and false positives, respectively [14]. In the following, F1 will be used as
the control and comparison parameter.

4.2. Training

The algorithm in [14] was trained using PhysioNet’s ADFECGDB records, which
include fetal R-wave markers that allow the calculation of different accuracy and perfor-
mance parameters. For the training of this algorithm [14], the different recordings were
used as a training set to establish the thresholds separating the different min-max scenarios
for the signal, the optimal value of the data window size for the clustering classification,
the number of times to repeat clustering using the new initial cluster medoid positions,
and some other parameters. The results were classified into two groups, where group 1
included the records that a specialist doctor had previously selected and that were visually
suitable for analysis. Group 2 included records with noisy fragments or artifacts, which led
to a less efficient clustering-based identification of fetal heartbeats.

As described above, the presented algorithm has been also trained using the five
ADFECGBD database records, obtaining satisfactory results without the need to select
suitable channels since a single aECG master channel resulting from the PCA analysis was
fed to the clustering-based fHR monitor. In order to evaluate this approach in comparison
to the analysis in [14], three control values have been considered for the F1 results: the
first one is the maximum value of F1 (Max_F1) obtained in any of the channels of the
register evaluated in [14], the second one is the average value of the F1 data obtained
from all channels in group 1 (Mean_Group1), and the third control value is the average
F1 from all channels in both group 1 and group 2 (Mean_F1). All of these values were
calculated using an analysis window of 50,000 samples in [14]. The results provided by
the proposed algorithm and their respective comparison to the results in [14] are presented
in Tables 1–5 and in Figures 17–21 for different clustering windows sizes. Concretely,
Table 1 and Figure 17 show data with 15,000-sample windows for clustering, Table 2 and
Figure 18 correspond to 20,000-sample windows, Table 3 and Figure 19 show data for
30,000-sample windows, Table 4 and Figure 20 correspond to 50,000-sample windows and,
finally, Table 5 and Figure 21 show data for 60,000-sample windows. To differentiate values
and understand them, italics are used in these tables to highlight when the ws values used
in the PCA analysis are multiples of the ws used in the clustering classification, the grey box
is used to highlight when the ws of the PCA and the clustering classification are the same,
and the bold typeface is used to highlight the best F1 values. On the other hand, the last two
rows of these tables show the discarded channels and noisy channels in [14]. Furthermore,
the values of Max_F1, Mean_Group1, and Mean_F1 used in the Figures correspond to the
maximum value of all the Max_F1 results, the average value of all the Mean_Group1 values,
and the minimum value of all the Mean_F1 results that were obtained in [14], respectively.
Finally, the green dots in the Figures indicate when the PCA ws is a multiple of the clustering
window size in the analysis and the red squares mark when they are not multiples.
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Table 1. Results of clustering for fHR monitoring with clustering windows of 15,000 samples (results
in italics indicate when the PCA ws is a multiple of the clustering window size, results in bold
correspond to the best results for each record, grey box highlights coincident window sizes for both
PCA and clustering).

ADFECGDB Record
r01 r04 r07 r08 r10

PCA ws F1 (%) F1 (%) F1 (%) F1 (%) F1 (%)

Training
results
derived
from the
proposed
framework

15,000 93.10 87.4 91.94 89.35 94.98
20,000 97.42 97.77 98.56 91.45 94.29
30,000 98.60 97.06 99.60 84.52 95.29
50,000 96.8 96.72 99.60 92.16 94.98
60,000 98.68 97.13 99.60 82.59 95.14
100,000 99.3 96.15 99.52 89.39 94.83
150,000 99.46 97.05 99.92 82.76 94.98
300,000 99.38 97.61 99.76 90.52 94.98

Result
summary
from [14]

Max_F1 99.38 97.62 98.96 99.08 98.09
Mean_Group1 98.91 97.41 97.99 97.86 98.02
Mean_F1 93.39 95.19 97.99 89.72 95.95
Discarded channels – 1 1 – 3
Noisy channels 2, 3 3 – 2, 3 4

Figure 17. Plot of F1 training results for ADFECGDB with clustering windows of 15,000 samples
(green dots correspond to PCA ws that are multiples of the clustering window size).
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Table 2. Results of clustering for fHR monitoring with clustering windows of 20,000 samples (results
in italics indicate when the PCA ws is a multiple of the clustering window size, results in bold
correspond to the best results for each record, grey box highlights coincident window sizes for both
PCA and clustering).

ADFECGDB Record
r01 r04 r07 r08 r10

PCA ws F1 (%) F1 (%) F1 (%) F1 (%) F1 (%)

Training
results
derived
from the
proposed
framework

15,000 91.21 88.49 99.12 88.45 95.29
20,000 99.15 96.90 97.16 82.39 94.44
30,000 98.91 96.75 98.31 78.14 93.47
50,000 96.76 95.53 98.31 85.16 93.47
60,000 98.76 97.54 98.72 84.99 94.44
100,000 99.46 96.26 99.44 88.68 95.29
150,000 99.53 94.44 99.28 86.15 94.29
300,000 99.46 95.65 99.68 92 95.29

Result
summary
from [14]

Max_F1 99.38 97.62 98.96 99.08 98.09

Mean_Group1 98.91 97.41 97.99 97.86 98.02

Mean_F1 93.39 95.19 97.99 89.72 95.95

Discarded channels – 1 1 – 3

Noisy channels 2, 3 3 – 2, 3 4

Figure 18. Plot of F1 training results for ADFECGDB with clustering window of 20,000 samples
(green dots correspond to PCA ws that are multiples of the clustering window size).
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Table 3. Results of clustering for fHR monitoring with clustering windows of 30,000 samples (results
in italics indicate when the PCA ws is a multiple of the clustering window size, results in bold
correspond to the best results for each record, grey box highlights coincident window sizes for both
PCA and clustering).

ADFECGDB Record
r01 r04 r07 r08 r10

PCA ws F1 (%) F1 (%) F1 (%) F1 (%) F1 (%)

Training
results
derived
from the
proposed
framework

15,000 93.10 87.40 91.94 89.35 94.98
20,000 97.42 97.77 98.56 91.45 94.29
30,000 98.6 97.06 99.60 84.52 95.29
50,000 96.80 96.72 99.6 92.16 94.98
60,000 98.68 97.13 99.6 82.59 95.14
100,000 99.30 96.15 99.52 89.39 94.83
150,000 99.46 97.05 99.92 82.76 94.98
300,000 99.38 97.61 99.76 90.52 94.98

Result
summary
from [14]

Max_F1 99.38 97.62 98.96 99.08 98.09

Mean_Group1 98.91 97.41 97.99 97.86 98.02

Mean_F1 93.39 95.19 97.99 89.72 95.95

Discarded channels – 1 1 – 3

Noisy channels 2, 3 3 – 2, 3 4

Figure 19. Plot of F1 training results for ADFECGDB with clustering window of 30,000 samples
(green dots correspond to PCA ws that are multiples of the clustering window size).
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Table 4. Results of clustering for fHR monitoring with clustering windows of 50,000 samples (results
in italics indicate when the PCA ws is a multiple of the clustering window size, results in bold
correspond to the best results for each record, grey box highlights coincident window sizes for both
PCA and clustering).

ADFECGDB Record
r01 r04 r07 r08 r10

PCA ws F1 (%) F1 (%) F1 (%) F1 (%) F1 (%)

Training
results
derived
from the
proposed
framework

15,000 89.06 88.56 98.49 90.98 94.76
20,000 91.71 91.98 86.90 93.08 95.22
30,000 88.25 97.77 99.28 84.54 95.06
50,000 99.46 97.37 99.68 89.79 95.22
60,000 87.81 96.5 99.68 86.75 94.76
100,000 99.22 97.13 99.84 88.17 95.22
150,000 99.22 97.37 99.84 87.01 95.22
300,000 99.07 96.48 99.84 89.73 95.22

Result
summary
from [14]

Max_F1 99.38 97.62 98.96 99.08 98.09

Mean_Group1 98.91 97.41 97.99 97.86 98.02

Mean_F1 93.39 95.19 97.99 89.72 95.95

Discarded channels – 1 1 – 3

Noisy channels 2, 3 3 – 2, 3 4

Figure 20. Plot of F1 training results for ADFECGDB with clustering window of 50,000 samples
(green dots correspond to PCA ws that are multiples of the clustering window size).
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Table 5. Results of clustering for fHR monitoring with clustering windows of 60,000 samples (results
in italics indicate when the PCA ws is a multiple of the clustering window size, results in bold
correspond to the best results for each record, grey box highlights coincident window sizes for both
PCA and clustering).

ADFECGDB Record
r01 r04 r07 r08 r10

PCA ws F1 (%) F1 (%) F1 (%) F1 (%) F1 (%)

Training
results
derived
from the
proposed
framework

15,000 93.10 87.4 91.94 89.35 94.98
20,000 97.42 97.77 98.56 91.45 94.29
30,000 98.60 97.06 99.60 84.52 95.29
50,000 96.8 96.72 99.60 92.16 94.98
60,000 98.68 97.13 99.60 82.59 95.14
100,000 99.3 96.15 99.52 89.39 94.83
150,000 99.46 97.05 99.92 82.76 94.98
300,000 99.38 97.61 99.76 90.52 94.98

Result
summary
from [14]

Max_F1 99.38 97.62 98.96 99.08 98.09

Mean_Group1 98.91 97.41 97.99 97.86 98.02

Mean_F1 93.39 95.19 97.99 89.72 95.95

Discarded channels – 1 1 – 3

Noisy channels 2, 3 3 – 2, 3 4

Figure 21. Plot of F1 training results for ADFECGDB with clustering window of 60,000 samples
(green dots correspond to PCA ws that are multiples of the clustering window size).

It is evident from the plots in Figures 17–21 how the results of F1 are better when the
PCA ws is a multiple of the clustering window size, and F1 improves with larger values of
the PCA ws. A closer inspection of all the data resulting from the analysis presented above
allows us to draw some interesting conclusions. First, results in [14] for most recordings
required to discard at least one of the channels not suitable for classification, while the
presented framework has proved itself to be able to generate a master aECG signal suitable
for clustering classification. In the case of record r08, which includes channels seriously
affected by noise and artifacts, the presented results are compromised but still produce an
acceptable classification. It is also interesting to note the fact that having a PCA ws that is a
multiple of the window size for clustering leads to improvements in the classification and
detection of fetal QRS, which will be used for testing and validation. Finally, the presented
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framework makes it possible to, in general, obtain optimum results with clustering window
sizes over 30,000 samples, which is a reduction of the optimal clustering window size
presented in [14].

4.3. Testing and Validation

The Challenge 2013 Training Set A was used to test the performance of the proposed
algorithm, which makes it possible to establish a direct comparison to the results obtained
in [14] for this database. As was the case for the training database, no previous medical
analysis was performed to select the best records from this testing database, and a single
aECG master signal was derived from each recording through the presented PCA-based
algorithm. In [14] only 64 channels from 26 different recordings, preselected by a cardiology
specialist, were used to test the clustering classification, while the Challenge 2013 Training
Set A includes 75 records. In this way, the proposed PCA-based framework has been used
to generate a single master aECG record from different recordings in the Challenge 2013
Training Set A, which has been then fed to the clustering classification in [14]. Table 6 shows
the classification results, in terms of F1, provided by the presented algorithm for different
values of the PCA ws parameter and different clustering window sizes, so ws is always
a multiple of the clustering window size as concluded from the training phase. Table 6
thus includes a summary of the results in [14] for the Challenge 2013 Training Set A with
the maximum and minimum F1 values achieved for each record, which are compared to
the F1 values obtained for the different combinations of PCA and clustering window sizes
in the presented proposal. It must be noted that the results in [14] were obtained with a
single 60,000-sample clustering window. The analysis of Table 6 allows us to conclude
that, when the PCA ws is larger than the clustering window, results are usually better.
However, larger windows increase the computational cost and the execution time of the
analysis, which is a drawback for real-time processing or any future embedded hardware
implementation. In any case, these results demonstrate the benefits of the presented
algorithm, since it allows us to avoid an a priori selection of channels in the recordings
and to directly feed the PCA-generated master aECG signal to the clustering classification.
While some individual channels provided optimum results, this PCA-based master aECG
signal provides a similarly optimal classification for most records and allows us to process
records that had been previously discarded for classification, as shown at the bottom section
of Table 6.

Table 6. fHR monitoring results in terms of F1 for Challenge 2013 Training Set A recordings for
different PCA and clustering window sizes (best F1 values with the proposed PCA-based framework
are shown in bold, PCA-based results underperforming beyond a 3% difference when compared
to [14] are shown in italics).

[14] (60,000-Sample Window) PCA
15,000

PCA
30,000

PCA
60,000

Record Used
Channels

Max
F1 (%)

Min
F1 (%)

Cluster
15,000
F1 (%)

Cluster
15,000
F1 (%)

Cluster
30,000
F1 (%)

Cluster
15,000
F1 (%)

Cluster
20,000
F1 (%)

Cluster
30,000
F1 (%)

Cluster
60,000
F1 (%)

a03 1, 2, 4 100.00 96.88 96.47 96.47 96.47 96.47 96.47 96.47 94.94
a04 1, 3, 4 99.22 96.88 96.85 99.23 99.23 99.23 99.23 99.23 99.23
a05 1, 3, 4 100.00 97.04 99.61 100.00 100.00 100.00 100.00 100.00 100.00
a08 3, 4 100.00 99.21 72.17 80.87 99.22 82.55 97.64 96.06 98.43
a12 1, 2 99.64 99.64 99.28 99.28 99.28 99.28 99.28 99.28 99.28
a13 2, 3, 4 100.00 97.56 99.21 100.00 100.00 100.00 100.00 100.00 100.00
a14 1 97.94 97.94 90.98 91.80 96.33 90.98 85.94 96.33 97.14
a20 2, 3 100.00 96.85 100.00 100.00 100.00 100.00 99.62 100.00 100.00
a22 1, 4 100.00 100.00 86.34 96.03 96.41 96.41 96.41 96.41 96.41
a23 2, 3, 4 98.80 97.58 100.00 100.00 100.00 100.00 100.00 100.00 100.00
a24 2, 3, 4 100.00 98.36 99.18 100.00 100.00 100.00 100.00 100.00 100.00
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Table 6. Cont.

[14] (60,000-Sample Window) PCA
15,000

PCA
30,000

PCA
60,000

Record Used
Channels

Max
F1 (%)

Min
F1 (%)

Cluster
15,000
F1 (%)

Cluster
15,000
F1 (%)

Cluster
30,000
F1 (%)

Cluster
15,000
F1 (%)

Cluster
20,000
F1 (%)

Cluster
30,000
F1 (%)

Cluster
60,000
F1 (%)

a25 2 100.00 100.00 98.39 98.79 98.79 98.79 100.00 98.79 98.79
a28 1, 2, 3 98.16 96.95 96.97 96.97 96.97 96.97 96.95 96.05 96.64
a35 1, 2, 3, 4 98.47 97.83 97.23 97.23 97.53 97.23 97.23 97.23 97.53
a36 1, 2, 3, 4 100.00 98.49 98.20 98.20 99.10 98.20 97.89 99.10 99.40
a44 1, 2, 3, 4 100.00 97.52 99.08 99.08 99.39 99.08 99.08 99.39 99.39
a49 1, 2, 3 100.00 98.98 95.50 100.00 100.00 100.00 100.00 100.00 100.00
a55 2, 3 96.43 92.75 40.64 40.64 38.46 40.64 38.25 38.46 38.46
a61 2, 4 97.42 95.34 10.11 11.15 15.69 16.33 14.67 14.48 18.79
a62 2, 3, 4 99.30 97.18 92.96 83.75 83.75 98.26 98.26 98.26 97.20
a65 2, 4 97.87 92.53 94.29 94.29 82.68 94.29 78.23 83.27 83.27
a66 3 94.44 94.44 90.69 91.50 92.31 90.16 92.31 90.08 90.08
a67 4 91.53 91.53 87.41 84.13 87.37 85.09 92.67 87.68 91.29
a69 1 94.44 94.44 80.99 70.92 75.45 58.52 66.42 60.97 62.31
a70 1, 2 98.21 91.37 93.82 96.77 91.11 97.86 85.16 86.92 78.19
a72 1, 2, 3, 4 100.00 97.58 98.80 98.80 99.70 98.80 98.80 99.70 98.80

a15 – – – 66.37 65.70 58.54 73.64 80.69 94.25 93.44
a17 – – – 68.18 54.55 92.61 95.75 96.15 96.15 96.15
a19 – – – 99.21 98.81 99.21 99.21 97.62 99.21 99.21
a33 – – – 93.33 95.41 95.71 94.66 94.66 95.71 94.66
a37 – – – 95.71 96.45 96.06 98.23 97.16 97.86 96.77
a53 – – – 71.28 76.09 94.95 78.62 79.87 91.58 92.93
a58 – – – 84.06 83.10 94.96 84.21 72.92 95.68 96.03

5. Conclusions

A procedure based on PCA analysis to obtain a single-channel master aECG record has
been presented, in order to use this master aECG signal as the input to the clustering-based
classification of fetal heart beats. This new procedure performs a windowed PCA-based
extraction of the master aECG signal as the most prominent PCA component, followed
by a correction of the polarity of each window and a curve fitting process to eliminate
any discontinuities between adjacent windows. The presented PCA-based framework has
been trained with the ABDFECG database, which has allowed us to conclude that the PCA
ws has to be a multiple of the clustering window size for optimum performance. At the
same time, the use of the PCA-based framework makes it possible to reduce the size of the
clustering windows and still maintain the classification performance. The analysis of the
results from the Challenge 2013 Training Set A further confirms the benefits of the presented
algorithm, allowing us to classify an NI-FECG recording with no need for channel selection
and reducing the effects of any noise or artifacts in some of the recording’s channels.
Overall, the F1 resulting from the clustering analysis of the PCA-based master aECG signal
is equal to or better than the results in [14] for more than a third of all analyzed channels
in [14], which required a careful selection of channels to be analyzed. Additionally, the
results provided by the presented method are within a 2% margin from the F1 values in [14]
for approximately another third of all results in [14], with no need for channel inspection or
selection in this new proposal. It must be also noted that the generation of this PCA-based
master aECG signal has allowed us to analyze seven additional records from the Challenge
2013 database that had to be discarded in [14]. Future use of the presented PCA-based
framework is planned within an ongoing clinical study involving the acquisition of fECG
recordings for a new database comprising recordings at different gestational ages and a
variety of singleton pregnancies.
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