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Abstract: The implementation of energy storage system (ESS) technology with an appropriate control
system can enhance the resilience and economic performance of power systems. However, none
of the storage options available today can perform at their best in every situation. As a matter of
fact, an isolated storage solution’s energy and power density, lifespan, cost, and response time are its
primary performance constraints. Batteries are the essential energy storage component used in electric
mobility, industries, and household applications nowadays. In general, the battery energy storage
systems (BESS) currently available on the market are based on a homogeneous type of electrochemical
battery. However, a hybrid energy storage system (HESS) based on a mixture of various types of
electrochemical batteries can potentially provide a better option for high-performance electric cars,
heavy-duty electric vehicles, industries, and residential purposes. A hybrid energy storage system
combines two or more electrochemical energy storage systems to provide a more reliable and efficient
energy storage solution. At the same time, the integration of multiple energy storage systems in an
HESS requires advanced control strategies to ensure optimal performance and longevity of the system.
This review paper aims to provide a comprehensive overview of the control systems used in HESSs
for a wide range of applications. An overview of the various control strategies used in HESSs is
offered, including traditional control methods such as proportional–integral–derivative (PID) control,
and advanced control methods such as model predictive control (MPC), droop control (DC), sliding
mode control (SMC), rule-based control (RBC), fuzzy logic control (FLC), and artificial neural network
(ANN) control are discussed. The paper also highlights the recent developments in HESS control
systems, including the use of machine learning techniques such as deep reinforcement learning
(DRL) and genetic algorithms (GA). The paper provides not only a description and classification of
various control approaches but also a comparison between control strategies from the evaluation
of performance point of view. The review concludes by summarizing the key findings and future
research directions for HESS control systems, which is directly linked to the research on machine
learning and the mix of different control type strategies.

Keywords: batteries; hybrid electrochemical energy storage systems; control strategies; energy
management system

1. Introduction

The reckless use of fossil fuels for industry and transport is among the main factors
contributing to the increase of environmental pollution and extensive emission of carbon
dioxide (CO2). Growing greenhouse gas emissions have become a major issue that needs
international attention, since they fuel global warming [1]. Renewable energy sources
(RES) like wind, wave, geothermal, and solar power have quickly become an important
source of new electricity production in light of the green energy transition towards carbon
neutrality [2]. Renewable energy sources are currently used in various fields including
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electric mobility, water treatment and water production, and chemical industries [3–5].
According to recent information [6], by the end of 2020, the total installed capacity of solar
power had reached 765 GW, while the total installed capacity of wind power had reached
733 GW. The intermittency of RESs power generation, however, poses a danger to the
power grid’s reliability and safety since problems like wind and solar energy production
instability have increasingly emerged as a result of their widespread integration [7]. Energy
storage systems (ESS) are becoming essential for the widespread integration of renewable
energy sources into power generation, maintaining the security of the electrical grid, and
easing the energy system’s transition to a more environmentally friendly state because it is
a significant resource for flexibility and regulation. Within a variety of DC or AC power
sectors, ESSs can offer convenient ways to boost productivity, longevity, and quality [8,9].

Enhancing the reliability and resilience of the electrical grid system, integrating re-
newable energy sources, and managing energy supply and demand all rely on the im-
plementation of ESSs. Energy storage systems are becoming an integral component of
modern electric networks due to their capacity to balance the intermittency of renewable
energy sources and provide stable and flexible energy supply [10]. Recent years have
seen a major increase in interest in ESSs due to the growing need for sustainable energy
alternatives. Energy storage systems play a vital part in tackling the issues related to
managing the power flow also in microgrids (MG) by preserving excess energy produced
during periods of low demand and releasing it during periods of intense demand, thus
boosting the reliability and stability of the grid [11]. In case of microgrids the advantage of
ESSs is the capacity to allow the electrical system of MG to incorporate more renewable
energy sources [12,13]. There are various types of energy storage systems that are using
different operation principles. The various types of ESSs can be classified based on the way
a certain kind of energy is utilized for storing. Among the most widely used technologies
are mechanical ones, that include flywheels, compressed air, hydro pumped, thermal ones,
that include high-temperature storages, latent heat storages [14].

Battery storage systems, or BESSs, are a significant component of ESSs. For example,
in a microgrid, BESSs combined with renewable energy sources can be an affordable
alternative. By 2030, exclusively in Europe, the Statista Research Department projects that
57 GW of BESSs will be built [15]. Lithium-ion batteries have replaced older technologies
in BESSs, particularly for short-term storage. This increased interest in BESSs is being
driven by breakthroughs in technology and the declining cost of lithium-ion cells, which
appear to be the current dominant existing technology used largely for new installations.
Batteries remain the primary expense of BESSs, notwithstanding a decline in cell costs.
The energy time-shift, often referred to as self-consumption capacity, of photovoltaic
systems is increased by the use of household BESSs. Trends indicate that battery energy
storage devices are a common feature of residential solar systems in areas where they are
economically feasible. A portion of an evening’s electrical needs can be met by discharging
a BESS that has been charged with excess photovoltaic energy during the daytime. A
larger range of applications, such as frequency regulation, begins after the blackout, and
voltage support plus an increase in the self-consumption of RES become possible by the
deployment of large-scale BESSs.

In general, battery systems can store energy in the range of 1 to 25 kWh for residen-
tial usage and MWh for commercial applications [16]. Both charging and discharging
operations cause battery degradation, which shortens the battery’s lifespan. The battery
degradation process results in varying battery lifetimes, performance degradation, and
monetary losses under different operating situations. Therefore, in order to assess battery
performance, it is important to assess the health prognostics. There are already many
review papers available covering different applications of BESSs. For instance, in [17] the
focus is on the use of BESSs for electric propulsion engines in the maritime industry. As
more hybrid engine vessels go into service and are ordered, this kind of vessel operation is
becoming more and more common, especially in the short-range vessel market.
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The hybrid electrochemical energy storage system (HEESS), which combines the
advantages of supercapacitors (SC) and diverse chemistry batteries, or only different
chemistry batteries, is one of the most promising energy storage technologies. Batteries
offer higher energy density and longer cycle life, while supercapacitors are recognized for
their high power density and quick charging and discharging times [18,19]. HEESSs, which
combine various electrochemical technologies, provide a special combination of benefits
that make them perfect for a variety of applications. For instance, HEESSs are becoming
quite popular in electric mobility [20]. An HEESS may be able to extend the life of an ESS by
reducing the stress on individual energy storage components. By spreading out the charge
and discharge cycles among various energy storage techniques, an HESS can reduce the
number of cycles that each component experiences and hence lengthen its lifespan. Hybrid
energy storage system technology is a rapidly evolving field. The current development
status of this technology is promising, with ongoing research and development efforts
aimed at improving performance and reliability. These systems are typically developed
to address the limitations of individual storage devices and provide a more balanced and
efficient energy storage solution.

Researchers first started looking at the possibility of fusing batteries and supercapaci-
tors in the early 2000s, which is when hybrid electrochemical energy storage devices first
came into being. Since then, these systems’ development has advanced significantly, and
they are now being used in a number of industries, such as grid stabilization, renewable en-
ergy integration, and transportation [21]. High power and high energy density capabilities
are two of the main benefits of hybrid electrochemical ESSs. This makes them perfect for
uses like grid stability and electric vehicles, which call for quick charging and discharging.
Furthermore, these systems are more efficient than conventional BESSs based only on
a homogeneous type of the batteries, which saves running costs and energy waste [22].
Flexibility is another benefit of HEESSs. Through the integration of several battery and
supercapacitor types, these systems can be customized to fulfill certain application needs.
For instance, a hybrid system with supercapacitors and lithium-ion (Li-ion) batteries can
offer a long cycle life and high power density, which makes it perfect for use in electric car
applications [23].

Despite the potential benefits of HEESSs, there are several main problems that need
to be addressed to fully realize their potential. One of the key challenges is optimizing
the integration of different storage technologies to achieve the desired performance and
efficiency. This involves developing sophisticated control algorithms and management
strategies to ensure seamless operation and coordination among the different components
of the system. Another challenge is the cost of HEESSs, which can be higher than traditional
single-technology storage solutions. Research is ongoing to reduce costs through advances
in materials, manufacturing processes, and system design. Additionally, issues related to
safety, reliability, and environmental impact need to be carefully considered to ensure the
widespread adoption of HEESSs.

Number of review papers considering HEESSs have been published in recent years.
In [24] the authors talked about the significance of employing hybrid energy storage
technologies and their growing relevance to the integration of RES. Concept, design,
classifications, and a thorough comparison of HEESSs are covered, as well as the latest
global trend of HEESSs in RESs and a comparison with key ESS attributes. The same area
of application is the focus of [25]. The authors describe interconnection topologies of power
electronic devices and provide descriptions of some control strategies.

The main difference in the current review paper compared with previously published
ones is not only that RES applications of HESSs are taken into account but also their role in
electrical mobility, grid stabilization, and as a source of backup power. The main focus is
on the various control systems, their thorough classification, explanation of principles of
operation, and also classification of different performance indicators for control systems.
With the use of indicators, which are a technique for numerically quantifying the outcomes
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that the control strategies produce, all these strategies may be assessed, examined, and
even compared to one another.

To guarantee maximum performance and endurance, HEESS need advanced control
methods [26]. The control strategies for HEESSs, together with their benefits and draw-
backs, will be the main topic of this study. Many control strategies—both conventional and
intelligent—have been proposed for HEESSs. We will discuss the main types of hybrid
electrochemical energy storage systems, including those based on lithium-ion batteries,
lead-acid batteries, redox-flow batteries (RFBs) and supercapacitors. We will also explore
the challenges associated with controlling these systems, such as balancing the charge and
discharge rates of the different components, managing the main characteristics of the sys-
tem, and optimizing the control algorithms to ensure efficient operation. By examining the
latest developments in control techniques for HEESSs, we aim to provide insights into the
future of these technologies and their potential to revolutionize the energy storage industry.

The paper begins by description of various electrochemical technologies that are
currently used for HESSs discussing the different types of electrochemical battery types
used in HESSs and their characteristics (Section 2). The objective is to provide an overview
of the current state of recent advancements in battery development, and their classification.
The paper then presents an overview of the various control strategies used in hybrid energy
storage systems, including traditional control methods such as proportional–integral–
derivative (PID) control, as well as advanced control methods such as model predictive
control (MPC), fuzzy logic control (FLC), and artificial neural network (ANN) control
(Section 3). Then, the methods used to evaluate the performance of control strategies for
HEESSs are presented. The importance of accurate performance evaluation in developing
effective control strategies is emphasized (Section 4). Discussion of the obtained results
takes place in the next part (Section 5), and the application of various control strategies is
discussed in the following part (Section 6). In the next part (Section 7), principal information
used for the discussion is presented. Then, conclusions are drawn.

Overall, this review paper provides a valuable resource for researchers and engineers
working on the design and optimization of HESSs and their control strategies, as well as
policymakers interested in promoting the adoption of renewable energy sources.

2. Electrochemical Energy Storages: Secondary Batteries and Supercapacitors

As already mentioned, hybrid electrochemical energy storage systems have gained
significant attention in recent years due to their ability to combine the benefits of different
electrochemical energy storage technologies. This section provides a review of the different
types of electrochemical energy storage, including various types of batteries currently
available on the market, or still under the research, and supercapacitors.

Batteries are an essential component of modern life, powering everything from smart-
phones to electric vehicles. There are three main types of batteries: primary, secondary,
and fuel cells. Each type has its own unique characteristics and applications. Primary
batteries are single-use batteries that cannot be recharged. They are commonly used in
small electronic devices such as remote controls, flashlights, and smoke detectors. Primary
batteries have a long shelf life and can hold their charge for years, making them ideal for
emergency use. However, they are not cost-effective in the long run and contribute to
environmental waste. Secondary batteries, also known as rechargeable batteries, can be
recharged multiple times. They are commonly used in larger electronic devices such as
laptops, electric vehicles, and solar power systems. Secondary batteries have a higher initial
cost than primary batteries but are more cost-effective in the long run. They also produce
less environmental waste since they can be reused multiple times. However, they have a
shorter shelf life and can lose their charge over time if not used regularly. Fuel cells are a
type of battery that uses a chemical reaction to generate electricity. They are commonly
used in large-scale applications such as backup power systems, electric vehicles, and space
exploration. Fuel cells have a high energy density and can operate continuously for long
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periods of time. They also produce zero emissions, making them environmentally friendly.
However, they have a high initial cost and require a continuous supply of fuel to operate.

Stacks of cells that transform chemical energy into electrical energy make up batteries.
Different chemistries based on parallel and series cell connections are used to meet the
desired properties of a BESS. Much study and investment are being made in this area at
the moment [27]. There is a big variety of batteries used for ESSs, but Figure 1 depicts the
primary battery chemistries utilized in BESSs.
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Figure 1. Classification of electrochemical batteries.

2.1. Electrochemistries

Selecting the right chemistry for a given hybrid energy storage application is not an
easy choice to make. Every distinct battery chemistry offers certain drawbacks in some
situations but is more likely to be beneficial in others. This indicates that choosing a cell
involves weighing the benefits and drawbacks of various cell chemistries and shapes.

Although shape and structure can influence ion transportation, the following descrip-
tion only takes into account the chemistry and ignores the additional features provided by
the cell packaging. The chemistries’ generalities will be the main focus of the assessment.
As it was mentioned before primary batteries are typically non rechargeable because of
irreversible electrochemical reactions [28]. Therefore, the main focus is on the secondary
type of batteries.

2.1.1. Lithium

One of the main types of rechargeable batteries that use lithium as the main component
of the anode are lithium batteries [29]. Because these types of batteries recharge more
quickly than other commonly used batteries, they are excellent for commercial applications.
They are frequently found in electrical gadgets including laptops, cellphones, and electric
cars. Because of their high energy density, lithium batteries have the capacity to store large
amounts of energy in compact spaces. They additionally feature a lengthy lifespan and
may be recharged numerous times. Even though Li-ion batteries have a broad functioning
window, to avoid fast degradation it is advised not to attain their charge and discharge
levels to the limits [30]. They can be more susceptible to temperature fluctuations and are
more costly than other types of battery.
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NCA

Nickel and lithium cobalt aluminum oxide is a kind of lithium-ion battery in which
the cathode’s main constituents are lithium, nickel, cobalt, and aluminum. NCA batteries
can provide a lot of power and have a high energy density. They are frequently seen in
power tools and electric cars. They can be susceptible to high temperatures and are pricey,
though. Because aluminum decreases the impact on the crystalline structure, its presence
lessens the volumetric change [31].

Cobalt has favorable structural stability and good electrochemical performance, whereas
nickel boasts long-term reversibility. NCA batteries have a high energy density and power
output but are expensive and sensitive to high temperatures. Thanks to modern battery
management technologies they can guarantee optimal operation when control electronics
with a balancing system is included into the BESS containing NCA batteries.

NMC

Lithium nickel manganese cobalt oxide is another type of lithium-ion battery that uses
nickel, manganese, cobalt, and lithium as the primary materials for the cathode. NMC
batteries have a lower energy density than NCA batteries but are more stable and can
provide a longer lifespan [32]. They are commonly used in electric vehicles, power tools,
and power systems with integrated renewable energy sources. However, they can be more
expensive than other types of lithium batteries.

There are still questions about this chemistry’s cost and safety. It is still required
to use a battery management system when using a balancing system. In general, nickel
manganese cobalt batteries have a longer lifespan and stability.

LFP

LFP is the least expensive cathode material and one of the newest to be used. At
higher temperatures, LiFePO4 is more stable than NCA and NMC. In comparison to
other chemicals, its nominal voltage is lower. It has been found that temperature has a
significant impact on the LFP cells’ performance, which is greatly diminished at lower
temperatures [33]. One disadvantage of EVs is that their volumetric energy density is lower
than that of NMC. Its flat state of charge (SoC) function curve, however, makes it perfect for
motor supply, even though it complicates the state of charge reading during cell relaxation.

Compared to other lithium battery types, LFP batteries are less susceptible to temper-
ature fluctuations and have a lower energy density. They are also more stable. They are
frequently found in solar power systems, backup power systems, and electric cars. They
might, however, weigh more and be bigger than other varieties of lithium batteries.

2.1.2. Nickel Batteries

Metallic nickel and nickel oxide hydroxide are used as electrodes in nickel batteries, a
form of rechargeable battery [34]. Under the same electric current circumstances, Li-ion
batteries are more energy-efficient than nickel batteries. However, they are preferable at
high current rates. Because nickel batteries offer a high energy density, a large amount
of energy can be stored in a small amount of space. Power control electronics are far
less expensive for BESSs containing nickel batteries since nickel batteries do not require
complicated balancing systems because they are typically safer and more resilient against
imbalance than lithium batteries [35].

Metal Hydride

The Nickel–Metal Hydride (Ni–MH) battery is one of the most widely used varieties
of nickel batteries. Because they do not contain hazardous materials like cadmium, Ni–MH
batteries are more environmentally benign and have a better energy density than other
types of nickel battery. They are frequently found in high-power applications such as
hybrid electric cars, cordless power tools, and others. Ni–MH batteries discharge more
slowly than other nickel type batteries [36].
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The high energy density of Ni–MH batteries and their ability to store a lot of energy in
a short amount of space—is one of its primary benefits. In comparison to Ni–Cd batteries,
they also last longer and are less susceptible to the “memory effect”. Ni–MH batteries can
also retain their charge for extended periods of time due to their lower self-discharge rate.

Cadmium

The Nickel–Cadmium (Ni-Cd) battery is an additional variety of nickel battery. Be-
cause of their fast rate of discharge, Ni–Cd batteries are well-suited for high-power equip-
ment like emergency lighting systems and power tools. However, because they include
poisonous cadmium, they are not as environmentally benign as Ni–MH batteries. Further-
more, Ni–Cd batteries are more prone to “memory effect”, which causes the battery to
gradually lose its full capacity, and have a shorter lifespan than Ni–MH batteries.

Ni–Cd batteries are a good substitute for lead batteries since they are employed
in sealed, maintenance-free cells with a long cycle life and stability in harsh operating
conditions [37].

2.1.3. Sodium Batteries

Sodium ions are the charge carrier in sodium batteries, a particular kind of rechargeable
battery. These are cutting-edge innovations with the potential to completely transform
energy storage, especially in the context of hybrid energy storage systems. The lack of
active materials for the battery storage systems is one of its main drawbacks, which is why
sodium electrode batteries are intriguing. Because sodium batteries have a high energy
density and can store a lot of energy in a little amount of space, this is one of their key
advantages [38]. Another advantage is that they do not contain hazardous substances like
cadmium or lead, they are also more ecologically friendly and have a longer lifespan than
many other types of batteries. Sodium-based batteries have demonstrated potential for
several uses. They work very well in HESSs, for example.

In an HESS, high-power output and short-term energy storage can be provided by
flywheels or supercapacitors, while long-term energy storage can be provided by sodium
batteries. This combination makes it possible to use energy more effectively and may lower
the system’s overall cost.

Sodium–Sulfur

Unlike most battery types, sodium–sulfur battery (NaS) technology operates at around
300 ◦C rather than room temperature. The solid electrodes must melt at a high temperature.
Liquid electrodes serve as the basis for the operation; sulfur serves as the anode and sodium
as the cathode.

The electrolyte, on the other hand, is made of beta-alumina and is solid. This substance
has the ability to conduct sodium ions for the reaction of the battery [39]. The cell of NaS is
thermally insulated and hermetically sealed to sustain the high temperature since metallic
sodium is sensitive to water. It is anticipated that these batteries will be utilized for
uninterruptible power supply, load leveling, and emergency supplies.

2.1.4. Metal–Air Batteries

Metal–Air batteries, also known as Flow batteries, generate electricity through a redox
reaction happening in the positive anode between oxygen present in the air and metal.
The cells are open to the air to facilitate the reaction [40,41]. The structure is like a fuel cell
where the fuel is metal. Compared to the other chemistries, the Metal–Air batteries have
more theorical energy density as the oxygen is not stored in the cell.

2.1.5. Chemistry Discussion

After examining the qualitative characteristics of the best-known and most promising
chemistries, it is evident that lithium-ion batteries are the best choices for ESSs for cars and
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general applications. However, solid-state batteries, like sodium anode batteries, should
soon replace this chemistry.

It should be mentioned that a control system is always required because, in the majority
of cases, battery cell work outside of the safe operation zone might result in hazardous
situations that could cause explosions and fires.

Having a control system is crucial when using BESSs, regardless of the chemistry of
the batteries. Among the principal causes are the subsequent:

• Safety: The control system continuously monitors the temperature, voltage, and cur-
rent levels of the battery to prevent overcharging, excessive heat, and other dangerous
situations that could cause a fire or explosion.

• Efficiency: The control system optimizes the battery’s charging and discharging to
ensure that it operates as efficiently as possible. Increased battery life and cheaper
maintenance are two benefits of this.

• Performance: In order to meet the demands of the load, the control system ensures
that the battery produces the required voltage and power output. It also helps prevent
power fluctuations and voltage drops that could damage electronics.

• Monitoring: The control system constantly assesses the health and performance of the
battery. Operators are able to detect and resolve issues quickly as a result, preventing
downtime and reducing repair expenses.

3. Control Strategies

Within the implementation of an HESS, the control algorithms play a crucial role in
ensuring the correct operation of the energy system and the fulfillment of the different
performance objectives, managing and coordinating the operation of the various storage
elements. Among the diverse tasks that the control strategy can perform in an HESS, it is
worth mentioning the following ones [42,43]:

• Optimal energy management: Determine how the energy can be dispatched or dis-
tributed among the different storage technologies. Within this scope, it is necessary to
consider various features of an HESS, such as the energy and power demand, storage
capabilities, characteristics of each ESS technology, and interconnection of all system
devices, among others.

• Estimation of key states and indicators: Determine the most important indicators that
cannot be directly measured, such as the state of charge (SOC), the state of health
(SOH), or the remaining useful life (RUL).

• Safe energy management: Monitor and manage the different variables and indica-
tors of each storage element, ensuring they operate within safe and efficient opera-
tional ranges.

• System variables regulation: Ensure the proper control of a signal by means of a
defined reference. Most ESS technologies, such as batteries, are sensitive to temper-
ature and voltage variables. Regulating these variables can ensure operation within
specified ranges, extending their lifespan and maintaining performance.

• Fault detection and diagnostics: Identify issues within the HESS components or
the overall system, allowing for timely maintenance or corrective actions to prevent
system failures.

• Grid integration and power quality: Optimize energy flow between the grid and the
storage system, contributing to grid stability and supporting power quality.

• Communication and coordination: Ensure effective communication and coordination
between different ESS technologies in order to maximize the synergies among various
storage elements.

To develop these tasks, there is a wide list of control strategies that can be found in the
literature [26]. These strategies differ in properties and performance characteristics such as
the model considered, the system linearity, the computational cost, or the robustness, among
others. These differences highlight the diversity in control strategies, each with its strengths
and weaknesses, making them suitable for different applications and system requirements.
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Therefore, the choice of a control strategy depends on the specific characteristics of the
system, control objectives, and operational constraints.

There are different control strategies that have been implemented in HESSs. The aim
of this section is to discuss them, presenting their characteristics, advantages, limitations,
and other important features. The primary objective is to assist the reader in comparing
the various strategies and selecting the most suitable one for a particular application or
case study.

3.1. Classification of Control Strategies

Generally, classifying the control strategies is not straightforward, being in most
cases arbitrary because some controllers may exhibit characteristics of multiple groups, as
they often incorporate a combination of techniques to achieve specific control objectives.
However, the different control strategies can be classified into four broad groups based on
their characteristics and underlying principles [44]:

• Classical controllers: Traditional and widely used algorithms that have been employed
in a huge number of applications. These controllers are often characterized by their
simplicity, ease of implementation, and effectiveness. Among the existing ones, the
proportional–integral–derivative (PID), the root locus control, and the droop control
(DC) can be highlighted.

• Model-based controllers: Control systems that utilize mathematical models of the
processes or systems they are designed to regulate. These controllers rely on an
understanding of the dynamics and behavior of the system to make decisions about
how to adjust the control inputs. The sliding mode control (SMC) and the model
predictive control (MPC) are example of these control strategies.

• Knowledge-based controllers: Control systems that leverage explicit knowledge, rules,
or expertise about a system to make decisions and take control of the actions. These
controllers are usually designed based on human knowledge and experience in a
particular domain. The rule-based control (RBC) and fuzzy logic control (FLC) are
examples of knowledge-based controllers employed in HESSs.

• Learning-based controllers: A class of control systems that utilize machine learning
techniques to adapt and improve their performance over time, learning from data,
experience, or feedback obtained during operation. The artificial neural network
(ANN), deep reinforcement learning (DRL), or genetic algorithms (GA) are examples
of recent machine learning techniques developed in HESS control systems.

Each of the strategies described and presented in Figure 2 has its own benefits and
drawbacks, and can be used for multiple applications depending on the purpose. Classical
controllers can be found in multiple applications across various industries such as process
control, motion control, and automotive and power systems, among others. Model-based
controllers are utilized in manufacturing, process control, and aerospace industries where
a precise understanding of the system dynamics is crucial for effective control. Knowledge-
based controllers find applications in areas where human expertise is crucial, such as
medical diagnosis or financial analysis. Finally, learning-based controllers find applications
where previous control methods may struggle to cope with complex environments, such as
robotics or autonomous vehicles. Regarding the benefits and drawbacks of each control
strategy topology, Table 1 presents the main advantages and disadvantages of each one
of them.
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Table 1. Advantages and disadvantages of the different control strategies [45–47].

Control Strategies Advantages Disadvantages

Classical

■ Simplicity in their design and implementation
■ Robustness to changes in system behavior
■ Proven performance
■ Established methods for parameter tuning

■ Limited adaptability to complex
and nonlinear systems

■ Performance trade-offs
■ Manual tuning required with

difficulty in handling constraints

Model-based

■ Precision incorporating detailed understanding of
system dynamics

■ Adaptability to changes in system behavior
■ Possible optimization of control actions over future

time horizon

■ Model uncertainty can affect the
controller’s performance

■ Complexity on develop accurate
mathematical models

Knowledge-based

■ Transparency on the rules and knowledge
■ Flexibility to be adapted in different scenarios
■ Intuitiveness

■ Dependence on humans
■ Difficulty in knowledge acquisition
■ No systematic approach to

a solution

Learning-based

■ Adaptability to changes in the system
■ Generalization of learned knowledge to

new situations
■ Autonomy
■ Usually, gets to best solutions
■ Robustness

■ Data dependence
■ Training complexity
■ Computational resources for

complex systems and large datasets

3.2. Description of Control Strategies Employed in HESSs

To provide more information about the different control strategies used in HESSs, a
brief description of each technique is presented, detailing its operating principle, require-
ments, and other important features.

• Proportional Integral Derivative (PID)

PID is the most widely used classical controller in engineering and industrial appli-
cations, designed to regulate the system’s behavior. Thus, it mainly consists of regulating
an output measurement, y(t), to track a desired setpoint SP(t). To achieve this operation,
the proportional (kp), integral (ki), and derivative (kd) gains are tuned to minimize the
error (e(t)) between the actual and desired setpoint as can be seen in Figure 3, guaranteeing
system stability, and meeting other performance criteria. These criteria include settling
time, overshoot, oscillation period, and robustness, among others. Consequently, the tuning
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process of the PID gains typically involves defining a trade-off problem among these criteria
to optimize the controller’s performance.
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For simple linear problems, there are many studies and theories that explain and
demonstrate how to compute the PID gains to achieve the performance criteria of a specific
system [48]. However, for complex systems, the process of adjusting the PID gains is not
always straightforward, being necessary to use other tools such as optimization algorithms
or recursive methods [49,50].

Concerning their implementation in HESSs, PID controllers offer simplicity, robust-
ness, and adaptability, being possible to be implemented in real time adjusting the gains
according to system behavior and changes in operating conditions [51]. However, they
may not always provide the optimal control solution for complex HESS configurations
with diverse energy storage technologies [52].

• Droop Control (DC)

DC is a method used to coordinate the charging and discharging profiles of multiple
energy storage devices. In terms of HESSs, these devices are usually batteries and superca-
pacitors. The main goal of this technique is to maintain the system stability and balancing
the power flow. This technique is usually employed in scenarios where multiple energy
sources are connected in parallel, such as microgrids or distributed energy systems. Over
the different applications in HESSs, the DC can help maintain system balance, reliability,
and resilience in dynamic operating conditions while optimizing the utilization of available
energy resources.

The main benefit of DC is the possibility to decentralize control of multiple ESS devices
in parallel, allowing for distributed coordination without the need for centralized control.
Other advantages of its use include the simple implementation, robustness, and real-time
response. On the other hand, it must be noted that DC suffers from limited precision,
potential over-compensation, and difficulty in tuning the droop coefficients [53].

DC is usually implemented by means of a proportional control law, relating the power
output of the ESS device with deviations in system frequency and/or voltage. Thus, for the
case of a frequency DC, it is possible to mathematically express the power output P of an
energy storage device i, in response to a frequency deviation ∆ f :

Pi = Pnom,i + k f ·∆ f (1)

where Pnom is the nominal power output and k f is the frequency droop coefficient, repre-
senting the rate of change of power output with respect to frequency deviation.

On the other hand, for the case of a voltage DC, the equation takes the following form:

Pi = Pnom,i + kv·∆v (2)

where kv is the voltage droop coefficient used to compensate a change of power output
with respect to the voltage deviation ∆v.
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Concerning their implementation in HESSs, a novel nonlinear dynamic droop con-
troller is used to share power between a supercapacitor and a battery in [54].

• Sliding Mode Control (SMC)

SMC is a model based nonlinear control technique used to drive the system states onto
a defined sliding surface, where they must be maintained. This sliding surface is defined in
the state space and typically consists of a hyperplane or manifold, as can be observed in
Figure 4. In HESSs, the SMC can serve to regulate the operation of the different ESS devices,
to ensure the stability, efficiency, and optimal utilization of these resources. Some of these
desired operation conditions consist of the state of charge (SOC), power flow distribution
and system frequency or voltage [55].
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SMC has different advantages, the most important being its robustness against un-
certainties or disturbances due to its ability to drive the system states on the predefined
sliding surface. Moreover, it can provide a fast response with rapid convergence to the
sliding surface. However, SMC suffers from chattering, which is a common phenomenon
of this type of technique, consisting of a rapid switching between control modes near the
sliding surface [56].

SMC involves the definition of the sliding surface and the design of an appropriate
control law that is able to drive the states to this desired surface and maintain them there.
On one hand, the sliding surface s is typically defined as a function of the system states x,
being possible to defined it as:

s(x) = 0 (3)

On the other hand, the control law u is typically defined as:

u = −F(x)·sgn(s(x))− k·s(x) , (4)
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where F(x) is a function to shape the convergence behavior, k is the gain used to regulate
the sliding motion and achieve the desired performance, and sgn(s(x)) is the signum
function, which can be compute as follows:

sgn(s(x)) =


1 s(x) > 0
0 i f s(x) = 0
−1 s(x) < 0

(5)

Regarding the use of SMC in HESSs, it can be found in applications of hybrid electric
vehicles [57] or DC microgrids [58].

• Model Predictive Control (MPC)

MPC is an advanced model-based control strategy that is based on using a dynamic
model to predict the future behavior of the system. Thus, the main goal consists of
optimizing the control actions over a finite time horizon to satisfy the system requirements.
Usually, MPC is defined as an optimization problem where in each sample time, the solver
tries to determine the optimal control inputs that satisfy these requirements (minimizing
a cost function) taking into account the possible constraints [59]. An example of an MPC
diagram can be shown in Figure 5.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 36 
 

 

𝑄 = ∑𝐿(𝑥𝑘, 𝑢𝑘) + 𝑀(𝑥𝑁)

𝑁−1

𝑘=1

 ,  (8) 

with 𝑄 being the total cost function, 𝑁 the prediction horizon, 𝐿 the stage cost penaliz-

ing deviations from desired setpoints, and 𝑀 the terminal cost penalizing the final state 

of the prediction horizon. 

Considering Equations (7) and (8) it is possible to state the optimization problem tak-

ing into account the possible system constraints: 

min
𝑈
𝑄  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1)  
𝑢𝑚𝑖𝑛 < 𝑢𝑘 < 𝑢𝑚𝑎𝑥
𝑥𝑚𝑖𝑛 < 𝑥𝑘 < 𝑥𝑚𝑎𝑥

 (9) 

where 𝑈 is the set of control inputs over the prediction horizon. 

By employing MPC in an HESS, operators can achieve optimal energy management, 

maximize energy efficiency, enhance system stability, and meet operational requirements 

while considering dynamic changes in energy generation, consumption, and grid condi-

tions [60]. MPC offers a flexible and robust control framework for an HESS, enabling ef-

fective integration of renewable energy sources, energy storage devices, and grid interac-

tions. Thus, it is possible to find the MPC in different HESS applications such as light rail 

vehicles [61] or renewable microgrids and seasonal storage [62]. 

 

Figure 5. Diagram of the interconnections among the model, optimizer, and system of an MPC con-

troller technique. 

• Rule-Based Control (RBC) 

RBC is a control strategy that is based on the use of predefined rules to compute the 

system control actions to be developed. Thus, it is a heuristic technique that uses rules as 

knowledge representation [63]. RBC algorithms use upper and lower set points to control 

systems within given boundaries of the operating conditions. Usually, the control actions 

consist of simple switch on/off operations that are imposed by the human knowledge and 

thresholds that define how to manipulate the information [64]. 

Among the main advantages of RBC are its transparency, flexibility, and low compu-

tational complexity, making it possible for it to operate without the need to solve optimi-

zation or complex mathematical problems. On the other hand, it suffers from limited per-

formance and lack of adaptability. Moreover, it directly depends on human knowledge, 

finding it difficult to deal with complex systems that may arise from conflicting rules that 

can lead to control ambiguity. 

In order to design RBC algorithms, the rules usually come in the form of if/then state-

ments that evaluate the system status. Depending on the answers to these sentences, the 

different control actions take place. An example of an RB algorithm diagram can be ob-

served in Figure 6. 

Figure 5. Diagram of the interconnections among the model, optimizer, and system of an MPC
controller technique.

Among the main benefits of MPC are its predictive capability, adaptability, and pos-
sibility to be used in multivariable control tasks where multiple inputs and outputs are
interconnected. However, it requires accurate models capable of properly defining the
different phenomena associated to the system, which can be challenging to develop and
identify, particularly for nonlinear or time-varying systems. Moreover, it suffers from
tuning and computational complexity, which makes it difficult to implement this type of
technique in real-time platforms.

As has been mentioned, MPC needs a dynamic model that is usually represented by a
set of differential equations:

.
x = f (x, u) , (6)

where x represents the system states, u is the control inputs, and f is the system dynamic
function, which describes how the state evolves based on the current state and control input.

Considering (6), the prediction model can be computed as:

xk = f (xk−1, uk−1) , (7)

where xk is the predicted state at time step k, and xk−1 and uk−1 are the previous states and
control inputs.

Once the model has been defined, it is only necessary to design the optimization prob-
lem. For this purpose, it is necessary to define the cost function. In this type of strategy, the
cost function quantifies the performance goals and operational objectives. Therefore, it typ-
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ically includes terms related to minimizing deviations from desired setpoints, minimizing
control effort, and satisfying system constraints:

Q =
N−1

∑
k=1

L(xk, uk) + M(xN) , (8)

with Q being the total cost function, N the prediction horizon, L the stage cost penalizing
deviations from desired setpoints, and M the terminal cost penalizing the final state of the
prediction horizon.

Considering Equations (7) and (8) it is possible to state the optimization problem
taking into account the possible system constraints:

min
U

Q

subject to xk = f (xk−1, uk−1)
umin < uk < umax
xmin < xk < xmax

(9)

where U is the set of control inputs over the prediction horizon.
By employing MPC in an HESS, operators can achieve optimal energy management,

maximize energy efficiency, enhance system stability, and meet operational requirements
while considering dynamic changes in energy generation, consumption, and grid con-
ditions [60]. MPC offers a flexible and robust control framework for an HESS, enabling
effective integration of renewable energy sources, energy storage devices, and grid interac-
tions. Thus, it is possible to find the MPC in different HESS applications such as light rail
vehicles [61] or renewable microgrids and seasonal storage [62].

• Rule-Based Control (RBC)

RBC is a control strategy that is based on the use of predefined rules to compute the
system control actions to be developed. Thus, it is a heuristic technique that uses rules as
knowledge representation [63]. RBC algorithms use upper and lower set points to control
systems within given boundaries of the operating conditions. Usually, the control actions
consist of simple switch on/off operations that are imposed by the human knowledge and
thresholds that define how to manipulate the information [64].

Among the main advantages of RBC are its transparency, flexibility, and low computa-
tional complexity, making it possible for it to operate without the need to solve optimization
or complex mathematical problems. On the other hand, it suffers from limited performance
and lack of adaptability. Moreover, it directly depends on human knowledge, finding it
difficult to deal with complex systems that may arise from conflicting rules that can lead to
control ambiguity.

In order to design RBC algorithms, the rules usually come in the form of if/then
statements that evaluate the system status. Depending on the answers to these sentences,
the different control actions take place. An example of an RB algorithm diagram can be
observed in Figure 6.

This technique has been employed in different studies related to HESSs. In [65], it is
used to design an energy management system for an experimental battery and superca-
pacitor HESS used in electric vehicles. A rule-based dual planning strategy of an HESS is
developed and analyzed in [66].

• Fuzzy Logic Control (FLC)

FLC is based on the use of fuzzy logic employing linguistic variables, fuzzy sets, and
fuzzy rules to develop the system control actions. Different from the RBC, fuzzy logic is
understood as a mathematical language where the variables can take values compressed
between 0 (false) and 1 (true) [67]. The term fuzzy involves concepts that cannot be
expressed as totally true/false, but rather as partially true/false [68]. Therefore, FLC does
not operate with discrete values in contrast to classical digital controllers.
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The design of an FLC implies the definition of variables and fuzzy sets to represent
the system states and control actions. Based on these definitions, different fuzzy rules are
formulated that relate the system inputs with the outputs. To determine the fuzzy output
sets, the logic operators and, or, not are usually considered.

The main advantages of this technique are its robustness to uncertainty, its adaptability,
and its intuitive design that facilitates understanding, being widely used for commercial
and practical applications. As disadvantages must be note its complexity when dealing
with large number of fuzzy sets and rules, a design that involves expertise and trial-and-
error tuning, and its performance limitation when dealing with complex systems such as
nonlinear or time-varying.

FLC has been used in multiple applications concerning HESSs, such as for the manage-
ment of a grid connected to a PV system [69], for the control of hybrid renewable energy
system using real power and wind data [70] or the regulation of the voltage in hybrid
electric vehicles [71].

• Artificial Neural Networks (ANN)

ANN are a branch of machine learning techniques based on the use of neuronal organi-
zation principles. They mainly consist of the connection of units or nodes (artificial neurons)
by means of edges that define the relationships among all nodes. Typically, each node
and edge has a weight that is adjusted as learning proceeds and the different outputs are
computed by mathematical functions. Usually, the neurons are aggregated into layers, each
one of them performing different transformations (functions) of the input signals. These
signals pass through the different layers (input, output, and hidden) adjusting the weights
through learning algorithms such as backpropagation or reinforcement learning [72]. The
typical structure of an ANN is presented in Figure 7.
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The main benefits of ANN include the development of complex models capable of
adjusting data of nonlinear systems with uncertain relationships, and the adaptability
and generalization of neural networks to unseen data. However, they are often black-
box models without the possibility of understanding the architectures and extrapolating
conclusions or relationships among the different signals. Moreover, they can require com-
plex computational procedures when large amounts of data are used and are susceptible
to overfitting.

Among the different applications where ANN are found are the industry fields of
robotics, process control, and autonomous devices. Within the scope of HESSs, it is possible
to find different studies that present this control strategy. A SOC estimator is developed
using an ANN in [73], while a power estimation is developed in [74] for hybrid wind-solar
energy systems. In terms of modeling, an ANN is employed in [75] to develop a model of a
hybrid electric vehicle.

• Genetic Algorithms (GA)

Genetic algorithms are metaheuristic optimization techniques inspired by the pro-
cess of natural selection and genetics. These techniques are typically used to search and
find high-quality solutions to optimization and search problems using operators such as
mutation, crossover, or selection [76].

To design a GA it is necessary to define the candidate control strategies as individuals
of a predefined population. Each one of these candidate solutions has a set of properties
that can mutate or alter. To perform these changes, the solution candidates are usually
represented in binary strings where each bit (or parameter) can represent a control variable
or decision. During the optimization procedure, the GA evolves iteratively using a fitness
evaluation that quantifies the control objectives (similarly to the cost functions seen in
MPC problems). In this algorithm, individuals with higher fitness values are selected for
reproduction, while the others are gradually replaced by better solutions over successive
generations until the end of the process.

The main advantages of GA are their robustness and adaptability in adjusting the
genetic operators, population, and candidates, making it possible to solve non-convex
and nonlinear problems. As for the drawbacks, as with other learning-based techniques
such as the ANN mentioned, they have a high computational cost, and the structure of the
algorithms yields to black-box structures where it is not possible to interpret the results of
the resulting control actions.

In terms of applications, GA control finds various domains including robotics, financial
engineering, and control system design. Concerning HESSs, GA have been used to develop
optimal sizing for a solar photovoltaic and wind turbine generator [77] and to model and
design an HESS consisting of photovoltaic panels, a microturbine, and a battery [78].
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• Deep Reinforcement Learning (DRL)

DRL is a learning-based control technique that combines reinforcement learning
and deep learning, allowing agents to make decisions from unstructured input data [79].
These algorithms operate by training artificial agents to learn optimal control policies.
Usually, the agents explore the environment and update the parameters of an ANN through
optimization algorithms. The learning process considers two different concepts: the search
for new actions (exploration) and leveraging known actions (exploitation). Thus, these
strategies can deal with very large input datasets to decide what actions must be performed
in order to perform the optimization problem.

The main benefits of the use of DRL controllers are its flexibility and scalability. How-
ever, as with previously mentioned techniques, they can lead to overfitting, computational
complexity, and lack of interpretability of the results obtained.

DRL has been used for a wide number of applications including robotics, video games,
computer vision, education, financial engineering, and healthcare [80]. In the field of
HESSs, DRL is used in [81] for balancing lead and hydrogen storage and in [82] for electric
vehicles purposes.

4. Performance Evaluation

All the control strategies previously seen usually present high-grade control of the
energy, but to gain a better understanding of the reality of their work they need to be
studied correctly. All these strategies can be evaluated, reviewed, and even compared using
indicators—a tool to quantify in a numeric way the results given by the strategies. The
indicators focus on competence to get the best results on the objectives described in all the
studies, putting the spotlight on the performance of the system reviewed, making them
what is known as performance indicators.

The state of the art for the control of HESSs provides the performance indicators that
are most used to analyze the results gained from all the strategies. Some of these indicators
can be very specific as a consequence of their objectives but all of them provide information
about the results.

4.1. Description of Performance Indicators in HESSs

For a better understanding of all these indicators, this section gives a brief description,
an explanation of the objective or object that focuses on evaluation, and a simple explanation
of the more common ways to calculate it.

• Energy loss

The energy loss is the energy that is wasted. This loss happens in all the elements that
comprise the system (battery, Ultracapacitor, DC-DC).

It is considered an interesting performance indicator as there is a direct relation
between lower energy loss and a better performance of the system.

This indicator is calculated for every element considering the models used to explain
or simplify them. For the battery and the ultracapacitor this loss is calculated from the
resistances in the model while for the DC–DC, it is calculated from the efficiency [82–88].

• RMS current

The RMS current is the root mean square current used to represent the effective value
of an AC current. It is usually calculated for batteries.

It is considered an interesting indicator as it is a fair representation of the aging of a
battery as its reduction causes a direct increase of the battery’s lifetime.

This indicator is calculated with the root square waveform of the battery current, as
seen in Equation (10) [82,83,85,87,89–91].

IRMS =
√ 1

T

∫ T

0
i2 dt (10)
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• Cost

The cost is the price or amount of money needed to have the system or power elements
working. The type of cost that is usually considered as an indicator is the general cost,
which is the addition of all of the costs. However, it can also be considered as only the
initial cost, the price necessary to start the use of the engine, or the energy cost. The cost can
also be considered in relation to other variables like the annual average cost, which takes
into account the time, or the distance-based cost, which takes into account the distance.

It is considered an interesting indicator as a lower cost is usually an objective in control
strategies [92–97].

The way it is calculated is by adding all the prices.

• Charge/discharge peak current

The charge/discharge peak current is the maximum flux of energy the battery ex-
periences in its use while being charged or discharged. The variation of current, i.e., the
difference between the minimum and the maximum during the battery’s use, can also be
considered as an indicator, but the peak current is more frequently used.

It is considered an interesting indicator as a lower peak or variation is directly related
to a longer battery life.

This indicator is usually calculated by considering the voltage and resistances from
the battery model, or is directly measured [83,84,87,98,99].

• State of charge (SOC)

The state of charge, also known as SOC, is the percentage of power that remains in the
battery or ultracapacitor. Its opposite, the depth of discharge, which is the percentage of
power that has been used in the battery or ultracapacitor, can also be an indicator. Aside
from the state of charge in a specific time of the element usage, it is also considered the final
SOC, the SOC left when the element finishes an activity, and especially the variation of
SOC, the difference between the initial and the final SOC after an activity. As an indicator it
is calculated more for the battery.

It is considered an interesting indicator as a lower variation and a greater final SOC
are related to a higher lifespan of the battery.

This indicator is calculated with the ampere–hour integration, as seen in Equation (11)
or an extended Kalman filter [93,98–103].

SOC =
Cr

Cmax
=

Cr − η
∫ t

0 I dt
Cmax

(11)

• Lifespan

The lifespan is the time the battery or ultracapacitor can be used before it stops
operating. The end of life is a very similar concept but highlights the moment in time when
it stops operating. As an indicator it is calculated more for the battery.

It is considered an interesting indicator as having a longer time of use of the battery is
one of the principal objectives in the control strategies.

The way it is calculated is by measuring the time with the simulations [92,96,97,99,104].

• Ah throughput battery

The Ah throughput battery is the energy delivered or stored by the battery.
It is considered an interesting indicator as it is a fair representation of the extension of

the battery life as its reduction is connected to a longer battery life.
This indicator is calculated with the derivation in time of the battery current, as seen

in Equation (12) [83,101,103,105].

Ah =
1

3600

∫ tend

t0

|I|dt (12)
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• Efficiency

The efficiency is the ratio between the energy used and that which is needed for
the system. Aside from the general efficiency from the system, other types can also
be considered, like the feedback efficiency, which reflects the use of the system during
traction conditions, and the storage efficiency, which reflects the use of the system during
traction conditions.

It is considered an interesting indicator as a better efficiency indicates better function-
ing of the system.

This indicator is calculated by dividing the output energy or the energy used and the
input energy or the total energy, as seen in Equation (13) [82,98,100,106].

η =
Eout

Ein
(13)

• Temperature

The temperature is the amount of heat that is measured from the battery. It is consid-
ered an interesting indicator as a lower temperature, especially if the temperature never
exceeds the limit indicated by the battery, is directly related to a larger lifespan.

The way it is calculated is by considering the thermal model for the battery to simplify
calculations [84,99,105].

• Capacity loss

The capacity loss or fade is the level of charge or energy that is lost and can no longer
be used or delivered in a battery.

It is considered an interesting indicator as a larger capacity loss implies a shorter
lifespan.

The way it is calculated is usually based on a semi-empirical life model considering
the activation energy, the absolute temperature, the Ah throughput, and the battery current
rate, as seen in Equation (14) [101,105,107,108].

Qloss = B × e(
−Eα
RT ) × Aρ

h (14)

• Cycle life

The cycle life, which can also be estimated, is the total number of cycles, which is
defined as a charge and a discharge of an element, during its operational lifetime.

It is considered an interesting indicator as a larger cycle life indicates a longer opera-
tional lifetime of the element.

The way it is calculated is by measuring it through simulations [89,105,109].

• Energy consumption

Energy consumption is the energy used by the power electric elements.
It is considered an interesting indicator as one of the objectives of the control of the

system is the greater use of renewable energies, and bigger energy consumption can replace
some of a non-renewable energy.

The way it is calculated is by measuring it from the simulations [94,110].

• Remaining life

The remaining life is the percentage of the life the battery has in comparison with its
cycle life or lifespan. Life loss is the complementarity of the remaining life, i.e., how much
the battery has already lost.

It is considered an interesting indicator as a longer remaining life implies a longer lifespan.
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This indicator is calculated by considering the cycle life and the depth of discharge, as
seen in Equation (15) [100,111].

Remaining li f e = 1 −
Σ

Npls(DOD100%)

Npls(DOD(t))

Npls(DOD100%)
(15)

• Total number of charges and discharges

The total number of charges and discharges is the number of times the element is filled
and emptied with energy.

It is considered an interesting indicator as the more times the battery is charged, a part
of its capacity is lost from the current for the charging, impliying a shorter lifespan.

This indicator is calculated by measuring the number during the simulation [100].

• Battery voltage fluctuation

The battery voltage fluctuation is the difference between the initial and the final voltage
during a specific time.

It is considered an interesting indicator as its reduction is directly proportional to the
extension of the battery life.

The way it is calculated is by subtracting the difference between the initial voltage and
the final one, as seen in Equation (16) [99,112].

∆V = |Vout − Vin| (16)

• Mileage

The mileage is the distance that the vehicle is capable of achieving with its power elements.
It is considered an interesting indicator as a longer mileage implies a better functioning

of the system.
The way it is calculated is by measuring it during the simulations [89].

• Autonomy

Autonomy refers to the time the system is capable of functioning for before it runs out
of energy.

It is considered an interesting indicator as a longer autonomy will be considered to be
linked to a better performance of the system.

The way it is calculated is by measuring during the simulations [113].

• Fuel consumption

Fuel consumption refers to the fuel used for the system to work properly.
It is considered an interesting indicator as one of the objectives of the control of the

system is the greater use of renewable energies.
The way it is calculated is by associating the level of consumption it will need with

the energy needed from this method of measuring it through simulations [94].

• Computational time per second

The computational time per second refers to the time needed for the optimization
method to achieve its solution.

It is considered an interesting indicator as a lower time of response indicates an easier
online implementation.

The way it is calculated is by measuring the time [94].

• Output energy

The output energy is the energy that leaves the element to be used in the system.
It is considered an interesting indicator as longer output energy indicates a greater use

of the element that erodes it.
The way it is calculated is with the integrator of the power required of the element [95].
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• Peak power impact

The peak power impact is the influence of the maximum power in the element.
It is considered an interesting indicator as a bigger impact will directly affect the

performance and life of the element.
The way it is calculated is with the integrator of the power required of the element [95].

• Replacement

The replacement is the times that the battery is changed after stopping being useful. It
is considered an interesting indicator as a low battery lifetime will need a bigger number
of replacements.

The way it is calculated is by measuring the replacements during simulations [97].

• Energy recovery

Energy recovery is the energy gained to the system from the regenerative braking.
It is considered an interesting indicator as a more efficient capture and usage of this

energy indicates a better performance of the system.
The way it is calculated is by measuring the energy [97,114].

4.2. Classification of Performance Indicators

All the previous indicators seem to range across different types of information about
the batteries or ultracapacitors. These different objects or objectives, which can be consid-
ered areas of information, can become a possible general classification for the performance
indicators, offering a clearer picture of the results gained from the control strategies.

For a better understanding of this classifications, below is a brief description of the areas.

• Energy/Capacity: This area includes all the performance indicators that focus on
studying the energy of the system or its elements or the capacity of the battery or
ultracapacitor, especially the part that is wasted. The energy and capacity indicators
are strongly related to the idea of increasing the lifetime of the battery and can also be
related to the efficiency.

• Current/Voltage: This area includes all the performance indicators that focus on
studying the current and the voltage from the system. Some of the indicators for
current and voltage can be related to the information of the lifespan.

• Lifespan: This area includes all the performance indicators that focus on studying
what the operational lifetime the battery, or ultracapacitor, can offer while still being
completely functional. These types of indicators reveal important information, as it is
a direct method to identify the time that the battery is or will be useful.

• State of charge: This area includes all the performance indicators that focus on studying
what is known as the state of charge (SOC), which is the energy usable from the battery
or ultracapacitor. With the state of charge indicators, some of the information about
the level of performance of the system can be obtained. There is also a relation between
some of these indicators and the lifetime of the battery.

• Cost: This area includes all the performance indicators that focus on studying the cost
of the system, especially the overall cost, but it can also focus on a more specific type
of cost depending on the objective.

• Others: This area includes all the performance indicators that are not related to the
previous areas and at the same time seem to be focus on more specific information
related to very specific objectives.

Considering these categories, all the indicators previously explained have been classi-
fied into them, as seen in the Figure 8.
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5. State of the Art of HESSs

The principal information used for the discussion comes from different studies that
have proved the way to work with different control strategies with HESSs. To gain a better
picture of everything seen, as some of the information has needed to be simplified, below
is a summary that scrutinizes every control strategy with the characteristics used for the
study, to understand all the possibilities that can manage an EMS. This summary is seen
in the Table 2 which considers the control strategy used, the topology considered for the
study, some characteristics of the study description on the control strategy, the results, the
performance indicators used for the results, and the application.

Table 2. Summary of the different control strategies found in the HESS literature.

Cite Typology Control Strategies Description Results Performance Indicators Application

[82]

Semi-active

• Battery
• Ultracapacitor

Knowledge-based
with optimization
Rule based +
dynamic
programming

EMS rule based, providing
an initial set of rules which
are afterwards optimized
with a DP offline
actualizing it with the
addition of new
rules/conditions.

Better results than
rule-based without
optimization.

■ Battery current
C-rate RMS

■ Energy loss
(total, battery,
ultracapacitor and
DC-DC)

■ Efficiency

■ Plug-in
hybrid
electric
vehicles

[83]

Semi-active

• Battery
• Supercapacitor

Optimization-based

• Adaptive
model
predictive
control
(AMPC)

EMS Adaptative model
predictive control offering
better control with the
nonlinear part of the HESS.
A quadratic programming
(QP) optimization is used
to solve de optimization
problem in the
rolling-horizon.

Better results in
general than PI and
Model predictive
control (MPC).

■ Energy loss (total,
battery,
ultracapacitor and
DC-DC)

■ RMS current
■ Ah throughput

of battery
■ Charge/Discharge

Peak current

■ Electric
vehicles

[100]

Active

• Battery (LTO)
• Supercapacitor

Knowledge-based
with optimization

• Fuzzy logic +
genetic
algorithm

EMS fuzzy logic, based in 2
different layers splitting the
process into 2 stages to
simply considering 4
different types of working
conditions. A
multi-objective genetic
algorithm is used to
optimize the membership
functions.

Better results in
general than fuzzy
logic alone and fixed
threshold control
strategy.

■ Feedback efficiency
■ Storage efficiency
■ Global average

DOD
■ Global average

SOC
■ Total number of

charges and
discharges

■ ESM remaining life
■ ESM life loss
■ Interval life loss

■ High speed
rail
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Table 2. Cont.

Cite Typology Control Strategies Description Results Performance Indicators Application

[98]

Parallel active

• Battery (LFP)
• Ultracapacitor

Knowledge-based

• Adaptative
fuzzy logic

EMS fuzzy logic based,
providing robust
performance with heuristic
information. The fuzzy
logic is optimized with an
off-line optimal parameter
tuning and driving pattern
recognition.

Slightly better
results than other
conventional control
methods.

■ System efficiency
■ Battery current

variation
■ UC SOC difference

■ Hybrid
electric
vehicles

[101]

Semi-active

• Battery
• Supercapacitor

Optimization-based

• Pontryagin’s
Minimum
Principle
(PMP)

EMS Pontryagin’s
Minimum Principle based,
providing an optimal
solution calculating
Hamiltonians presenting a
lower computational time
than other
optimization-based
methods.

Better results than a
rule-based strategy
or a single battery
system.

■ Final battery SOC
■ 10-year capacity

loss

■ Electric
vehicles

[115]

Semi-active

• Battery
• Supercapacitor

Knowledge-based
and
optimization-based

• Filtration
• λ-control

Comparison between EMS
filtration based, with a low
frequency (battery) and a
high frequency (UC), and
an EMS λ-control based
with the minimization of a
performance criterion
considering some
constraints.

Optimization based
gives better results
than filtration.

■ Battery current
EMS

■ Electric
vehicle

[92]

Semi-active

• Battery (LFP)
• Battery (LTO)

Knowledge-based
with optimization

• Fuzzy logic +
differential
evolution
algorithm
(DEA)

EMS fuzzy logic based,
considering 6 operating
modes with its
optimization with a
heuristic algorithm, a
differential evolution
algorithm.

Better results than a
single battery.

■ Lifespan
■ Annual average

cost
■ Distance-based cost

■ Electric
vehicle

[84]

Semi-active

• Battery (NCA)
• Battery (LTO)

Learning-based

• Deep
Q-Learning

EMS Deep Q Learning
based, with a machine
learning reinforcement type
of method optimizing its
reward considering the
environment, agents, and
actions.

Better results than a
single battery and
Q-Learning.

■ Current battery
■ Temperature
■ Energy loss

■ Electric
vehicle

[93]
• Battery (LFP)
• Battery (LTO)

Knowledge-based

• Rule based
EMS rule based,
considering 6 different
operating modes.

Better results than a
battery alone.

■ Daily SOC
trajectories

■ Cost

■ Electric
vehicles

■ Electric Bus

[99]

Semi-active

• Battery
• Supercapacitor

Knowledge-based

• Wavelet +
fuzzy logic

EMS wavelet based, with
decomposition and
reconstruction separating
the base and the transient
power. A fuzzy logic
control is constructed
considering the wavelet
results.

Better results than
battery alone.

■ Battery
temperature

■ Battery service life
■ Battery maximum

discharge current
■ Battery voltage

fluctuation
■ Variation SOC

■ Electric
vehicle

[85]

Semi-active

• Battery
(Nanophos-
phate
Lithium-ion)

• Ultracapacitor

Knowledge-based
with optimization

• Load
adaptative
rule based +
dynamic pro-
gramming)

EMS Dynamic
programming based,
determining the optimal
control simplifying and
breaking down into smaller
equations. To get an online
optimization, the DP results
are used to set a rule based,
which is later optimized
with a genetic algorithm.

Better results than
RB alone.

■ Energy loss (total,
battery,
ultracapacitor and
DC-DC)

■ Max battery current
■ RMS battery

current
■ Battery Ah

throughput

■ Electric
vehicles

[89]

Semi-active

• Battery (LTO)
• Battery (NCM)

Knowledge-based
with optimization

• Fuzzy logic +
NSGA-II

EMS fuzzy logic based,
with 2 different FLC
controllers which is
optimized with an NSGA-II
algorithm optimizing the
membership functions
proposed by experts.

Better results than
fuzzy logic based
alone.

■ Mileage
■ Unit distance

capacity face rate
■ Cycle life

■ Plug-in
hybrid
vehicle



Electronics 2024, 13, 1258 24 of 34

Table 2. Cont.

Cite Typology Control Strategies Description Results Performance Indicators Application

[107]

Semi-active

• Battery (LTO)
• Battery (NCM)

Knowledge-based

• Fuzzy logic

EMS fuzzy logic based,
with all the rules and
membership functions
composed by experts.

Better results than
conventional fuzzy
logic.

■ NCM capacity
fade

■ LTO capacity fade

■ Plug-in
hybrid
vehicles

[104]

Semi-active

• Battery
• Ultracapacitor

Optimization-based
and learning-based

• Convex
optimization

• Neuronal
network

Comparison between a
EMS convex optimization
based, an offline method,
and a neural network, and
a reinforcement learning
machine learning method,
which is trained with the
convex optimization
results.

Convex gives better
results than
Neuronal network.

■ Battery end of life ■ Electric
vehicle

[110]

Semi active

• Battery (LFP)
• Ultracapacitor

Knowledge-based
with optimization

• Filter based +
dynamic
programming

An EMS filter based is used
to divide the low and high
frequency, provided by
battery and Ultracapacitor
respectively which is
optimized by providing the
cutoff frequency with
dynamic programming.

Better results than
filter based alone.

■ Energy
consumption

■ Electric
vehicle

[105]

Active

• Battery (LFP)
• Ultracapacitor

Optimization-based

• Stochastic
dynamic
programming

EMS stochastic dynamic
programming based,
created for online
optimization based on an
integrated dual-loop
optimization with an inner
loop based on dynamic
programming and an outer
loop based on simulated
annealing.

Better results than a
battery only system.

■ Capacity loss
■ Battery

temperature
■ Estimated battery

cycle life

■ Plug-in
electric
vehicle

[86]

Semi-active

• Battery (NCR)
• Battery (LTO)

Optimization-based

• Deterministic
dynamic
programming
(DDP)

• Stochastic
dynamic
programming
(SDP)

Comparison between a
deterministic dynamic
programming, the offline
method, and stochastic
dynamic programming, the
online method.

SDP presents better
results than other
optimizations based
in real time systems.

■ Battery system
energy losses

■ Electric
vehicle

[113]

Parallel active

• Battery
• Supercapacitor

Knowledge-based
with optimization

• Fuzzy logic +
particle
swarm
optimization
(PSO)

An EMS fuzzy logic with
the membership functions
being optimized by particle
swarm optimization, a
metaheuristic algorithm.

Better results than
battery alone
system.

■ Autonomy ■ Electric
vehicles

[94]
• Battery
• Gas engine

Optimization-based

• Stochastic
model
predictive
control (MPC)
+ Pontryagin’s
Minimum
Principle
(PMP)

EMS Pontryagin’s
Minimum Principle based,
providing an optimal
solution using
Hamiltonians that is
transformed into an online
method with a stochastic
model predictive control.

Better results than
other
optimization-based
strategies.

■ Energy
consumption

■ Fuel consumption
■ Total cost
■ Computational

time per second

■ Plug-in
hybrid
electric bus

[95]

Semi-active

• Battery
(NaNiCl2)

• Supercapacitor

Knowledge-based
with optimization

• Fuzzy logic +
genetic
algorithm
(GA)

EMS fuzzy logic is
designed by experts and
has its membership
functions optimized by a
genetic algorithm.
Dynamic programming is
also considered to compare
results.

Better results than a
fuzzy logic-based
system alone but
worse than DP.

■ Output energy
from battery

■ Peak power
impact on the
battery

■ Total energy cost

■ Electric
vehicle

[90]

Semi-active

• Battery (LFP)
• Ultracapacitor

Optimization-based

• Pontryagin’s
minimum
principle
(PMP)

EMS Pontryagin’s
Minimum Principle based,
providing an optimal
solution using
Hamiltonians.

Better results than
rule-based and some
optimization-based
systems.

■ Battery RMS
current

■ Electric
vehicles
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Table 2. Cont.

Cite Typology Control Strategies Description Results Performance Indicators Application

[96]

Semi-active

• Battery (LTO)
• Battery (LFP)

Knowledge-based

• Filtration-
based

An EMS rule-filter based,
considering 6 different
modes to determine the
power split between
batteries.

Better results than
battery only system.

■ Lifespan
■ Annual average

cost
■ Cycle-related cost

■ Electric
vehicle

[87]

Semi-active

• Battery
(Lithium-ion)

• Ultracapacitor

Optimization-based
with learning-based

• Dynamic
programming
+ Random
forests

EMS dynamic
programming based,
connected with a
multi-objective Grey Wolf
optimizer to acquire the
optimal solution to the
sizing and objective
function while using
Random Forests, machine
learning trained with the
results, to get an online
method.

Better results than
other random forest
systems and similar
to dynamic
programming
system.

■ Energy loss of the
battery, the
DC/DC and the
ultracapacitor and
total

■ Root-mean-
square current of
the battery (RMS)

■ Peak discharge
and charge
current

■ Ah-throughout of
the battery

■ Electric
vehicles

[97]

Semi-active

• Battery (LFP)
• Ultracapacitor

Knowledge-based

• Wavelet-
based

EMS wavelet based, with
decomposition and
reconstruction separating
the high-frequency,
ultracapacitor, and the low
frequency, battery.

Better results than a
battery alone and a
SOP-based system.

■ Battery lifetime
■ Replacement
■ Initial cost
■ Total cost
■ Energy recovery

■ Electric
vehicles

■ Electric
motorcycles

6. Discussion of Results

The different descriptions and classifications between the control strategies and the
indicators provide a breakdown of all the results the different EMS strategies can offer to
the HESS. All these strategies seem to present a robust result that is always better than the
non-usage of an EMS. The most frequently found control strategies for HESS are knowledge-
based and the learning-based. In this section, the focus will be on the comparison between
the control strategies whenever possible and the future and challenges that can be faced
with the different strategies.

6.1. Comparison between Control Strategies from the Evaluation of Performance

After all the analysis and observations, the existence of an obvious difficulty can be
recognized, namely that there is no equality between the studies to make fair comparisons
between control strategies. The studies presented may have some similarities between
them, but in general they focus on different objectives, and use very different indicators
for the results or the characteristics of the study, which differ enough to complicate any
kind of comparison. For example, the difference between the use of an electric vehicle or
a plug-in hybrid electric vehicle as the object of study can come from the objective, the
characteristics, the models or even the simulations. The PHEV will be more likely to try to
reduce the usage of fuel or use other models that can present important deviations to be
considered. Even when the same performance indicators are used in the studies, which is
not common, the results still cannot offer a clear comparison.

After this observation, it was decided that the main comparison that could be made
was about the performance indicators used in the different control strategies, as a relation
between the two can be made as a way to understand the areas or objectives that the studies
using the different types of strategies decide to focus on. Finding a possible correlation
between the type of control strategy and the area or objective seen more often in each
control or in general, can be a way to understand which performance indicators seem
to give better information or if some of the control strategies seem to be used more for
some objectives.

The different control strategies seen in the literature are classified into rule-based
(rule-based, filtration, fuzzy logic, wavelet), fuzzy logic and optimization (fuzzy logic
with genetic algorithms or dynamic programming), optimization-based (MPC, PMP, SDP),
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optimization and machine learning (DP with random forest, Convex with ANN); and
machine learning (DQL) to simplify the results.

After finishing the classification, the number of performance indicators from each type
of indicator for each control strategy were counted, which was also done with the total
for every category of the indicators. They were counted as each indicator encountered in
each reference from the state of the art, considering the category where the control strategy
used in that reference had been considered. The indicators that were repeated in different
strategies from the same category were both counted. With that information gathered in a
table, a graphic for the total and every one of the control strategies was created, as seen in
Figure 9.
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After the observation of the graphics, the results that can be gathered are that the
performance indicators related to the energy of the system or the capacity of the elements
of the HESS are the ones that are used more to quantify the results of the different strategies.
These type of performance indicator could be considered as more precise to study the
results given by the control strategies. In the comparison between the different control
strategies, the energy/capacity indicators are the most frequently used of all except the rule-
based strategies where the most used are the ones related to the cost, and the rule-based
with optimization strategies, where the most used are the lifespan ones.

However, it must be noted which objectives are considered by the studies, as most of
them seem to focus on protecting the battery as much as possible, or on decreasing energy
losses. Other types of indicator that seem to be considered remarkable are the ones related
to current and voltage, and the ones about lifespan, which are also slightly directly related
to the same objectives as the energy indicators. One of the impressions given after the
analysis is that in some of the cases, the studies use different indicators, and even different
type, to quantify similar concepts.

Even if it has been established first that the clear and general comparison between
the results from the performance of the control strategies cannot be made, in some of the
studies there are similarities and even comparisons between different control strategies
which can give a general idea, establishing some general patterns. The first pattern is that
the dynamic programming strategy is usually used as a benchmark, as it is a strategy that
usually has the best results, but the way it is calculated makes it impossible to use in real
time without the support of other types of strategy. The second pattern is that, in general,
the strategies known as learning-based or optimization-based seem to have better results
than those that are knowledge-based or rule-based. In some of the studies, some of these
strategies are compared more directly and show that the indicators get better numbers
with learning-based strategies. The third pattern is that, in general, the learning-based
strategies need more requirements and time to reach a solution, especially compared with
the knowledge-based strategies.

Combining the two later ideas, the general agreement found is that the knowledge-
based are usually simpler strategies, which is translated as their being easy to implement.
However, at the same time they do not present the best results, and are understood as not
giving the best numerical result for the indicators, while the learning-based usually gives
better results but can be more complicated to implement. With this statement, it seems to
be that the different control strategies can be used for different circumstances or that the
characteristics of the HESS can be more determinant to select the EMS.

6.2. Possible Future, Challenges, and Issues in Control Strategies

After an exhaustive review of all the studies, there is a clear drop in the most
conventional-based strategies, as they can only offer a very basic control that is contrary
to what the HESS usually needs. The search for the best type of EMS has led to the cur-
rent trend, which is a mix of different strategies, usually between the rule-based and the
optimization-based types, as a way to overcome some of the disadvantages by taking
advantage of the best parts from the different types, and the study of the machine learning
methods, which can also be used a support for the optimization-based type. The possible
future of the EMS probably comes from a continuation of this trend, with a major explo-
ration and investigation on the machine learning-type method, investigating the way to
achieve better results and the way to implement it more effectively with other methods; and
on the combination of different types of methods, exploring the possibility of an increase in
the advantages that can be used from all the methods, the achievement of better results or a
better merger between the methods, and even an attempt to combine other types of control.

The issues the control strategies can face on their implementation in an HESS depend
on the type of control strategy that is been used. As expressed in the previous section,
the way they work can display different issues in the way they function, such as the
difficulty of online implementation for the optimization-based methods or the possibility



Electronics 2024, 13, 1258 28 of 34

of a weak solution for the rule-based methods. However, even if it is characteristic of the
type implemented, one of these issues will be faced independently of the method chosen.
In a more general way, one of the issues that can exist is that the more information that can
be gathered about the system, the better the solution that can be reached, which can be
considered a difficulty for some of the applications. Another very frequent issue is that the
computational cost for some of the control strategies can be significantly high, complicating
the implementation and its usage when a quick result is needed.

One of the general challenges is the way the measurements necessary for the calcu-
lations are achieved, as the sensors for some of the information need to be high quality.
Related to some of the issues, one of the challenges the EMS can face is the usage of some
of them in situations where there is the need to present a reliable solution while dealing
with a scarcity of information available about the system.

7. Applications

From the various studies, it is clear that the HESS can offer a better mode to transmit the
necessary energy for the system to perform correctly. The different analyses usually agree
on the fact that an EMS is the key piece in the upgrade experienced with the change from
a single ESS to an HESS. Overall, the combination of an HESS and an EMS, independent
of which technique is used, gives a better performance and, specifically, offers a more
adaptable storage system for the necessary loads.

This flexibility can only be an improvement to any application that uses a storage
system, but specially to the more irregular loads, as it can offer a different or more personal-
ized use of the two different elements that compose the HESS, independently of the type. In
that case, the most frequently used application in the different studies is in storage systems
for vehicles, both hybrids and pure electrical, as their load profile is usually very irregular
while presenting a high use of energy. These kinds of vehicle, to be socially accepted, need
to provide a very similar execution to gasoil ones, which is translated to a need for the
energy necessary to achieve similar speeds and a high autonomy joined to the irregularity
the load always presents, which makes the combination of a HESS and EMS the perfect
tool. Although it is more frequently seen in electrical cars and buses, there are also cases
for motorcycles and even high-speed trains [97,100].

There are different ways to take advantage of this system with electric vehicles, but
the way it is usually done is to program or design the EMS considering some objectives
previously identified for the best performance. The principal objective for this is used in
electrical cars is to obtain a longer life for the battery or the more energetic battery, usually
programming the EMS to not use the battery during the load peaks, protecting it from a
high current. With hybrid vehicles, especially plug-in ones, one of the principal objectives
is to decrease to the maximum the use of non-renewable energy, in this case fuel, forcing the
system to work with more electric energy. Another objective for which the EMS is used is to
decrease the possible cost, as the HESS can help to acquire the optimal sizing for the energy
needed and the increase of the lifespan can save a lot of money from replacements [87,97].

8. Conclusions

This study of control methods for hybrid electrochemical energy storage technologies
outlines the status of research and development, as well as the application of both traditional
and cutting-edge approaches. This review paper also contains information about the
main components of an HEESS, including a description of various battery chemistries,
to aid academics, developers, and application engineers in better understanding specific
characteristics, functional principles, and a selection process for different types of control
methods for HEESSs.

Various aspects of the operation and key characteristics of control methods for hybrid
electrochemical energy storage systems were the subject of review of more than 100 research
papers and journal publications that were published between 1995 and 2024. The basic
operating principles, classification, applications, and future technologies of control systems
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for HEESSs are explained. An increasing number of people are using HEESSs to power
electric vehicles and provide energy storage at home or on the grid. Additionally, they are
essential components of a system that aids in stabilizing the output of renewable energy
sources, paving the way for the integration of renewable energy sources in the home
and industry.

It is shown that indicators related to the energy of the system and the capacity of
HEESS elements are the most used to quantify results. These indicators are considered
precise for studying the outcomes of control strategies. Furthermore, the observation points
out that the objectives of the studies play a crucial role in determining which performance
indicators are prioritized. Many studies focus on protecting the battery and reducing energy
losses, leading to the frequent use of indicators related to not only the energy and capacity
but also to current, voltage, and lifespan. The interrelation between these indicators and
the primary objectives underscores their significance in assessing strategy effectiveness.
Additionally, the observation suggests that there is variability in the choice of performance
indicators among studies, with some using different indicators to measure similar concepts.
This diversity in indicator selection could impact the comparability and generalizability
of results across different research efforts. This problem also comes from the differences
between the characteristics of the studies conducted.

From what is seen from the EMS, there are two types of control that are more fre-
quently used—optimization-based and rule-based—which present their own challenges
and issues. One of the perspectives for the present and future is a mix of these types
of strategy to maximize the advantages, and research into new strategies from machine
learning. The general issues and challenges that exist for the control strategies are the
possible high demand of computational time and the high need of information for a better
optimal solution.

It is also shown that the integration of an HEESS and an EMS, regardless of the specific
control technique employed, results in improved performance and offers a more adaptable
storage solution for varying energy demands. This enhanced flexibility is particularly
beneficial for applications with irregular energy loads, allowing for personalized utilization
of the different components within the HEESS. The most common application highlighted in
the studies is the use of HEESS as a storage system for vehicles, including hybrid and electric
cars, due to their irregular load profiles and high energy consumption. These vehicles need
to match the performance of traditional gasoline-powered vehicles, necessitating sufficient
energy for similar speeds and extended autonomy, making the combination of an HEESS
and EMS essential.
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Abbreviations

AMPC Adaptive Model Predictive Control
ANN Artificial Neural Network
BESS Battery Energy Storage System
CO2 Carbon Dioxide
DC Droop Control
DOD Depth of Discharge



Electronics 2024, 13, 1258 30 of 34

DQL Deep Q-Learning
DRL Deep Reinforcement Learning
EMS Energy Management System
ESM Extended Security Maintenance
ESS Energy Storage System
FLC Fuzzy Logic Control
GA Genetic Algorithms
HESS Hybrid Energy Storage System
HEESS Hybrid Electrochemical Energy Storage System
MG Micro grid
MPC Model Predictive Control
PID Proportional–Integral–Derivative
PMP Pontryagin’s Maximum Principle
RBC Rule Based Control
RES Renewable Energy Sources
RMS Root Mean Square
RUL Remaining Useful Life
SC Super capacitors
SDP Stochastic dynamic programming
SMC Sliding Mode Control
SOC State of Charge
SOH State of Health
SOP State of Power
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