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Abstract: This study introduced an innovative approach for detecting structural anomalies in road
manhole covers using structured light cameras. Efforts have been dedicated to enhancing data
quality by commencing with the acquisition and preprocessing of point cloud data from real-world
manhole cover scenes. The RANSAC algorithm is subsequently employed to extract the road plane
and determine the height of the point cloud structure. In the presence of non-planar point cloud
exhibiting abnormal heights, the DBSCAN algorithm is harnessed for cluster segmentation, aiding
in the identification of individual objects. The method culminates with the introduction of a sector
fitting detection model, adept at effectively discerning manhole cover features within the point
cloud and delivering comprehensive height and structural information. Experimental findings
underscore the method’s efficacy in accurately gauging the degree of subsidence in manhole cover
structures, with data errors consistently maintained within an acceptable range of 8 percent. Notably,
the measurement speed surpasses that of traditional methods, presenting a notably efficient and
dependable technical solution for road maintenance.

Keywords: road engineering; point cloud segmentation; manhole cover; height detection; structured
light

1. Introduction

With the development of autonomous driving technology, automatic detection of
various anomalies on road surfaces to ensure driving safety and comfort has become an
important topic. The accurate detection the structural health of manhole covers plays a key
role in preventing traffic accidents [1,2]. Manual inspection of manhole covers is inefficient
and does not meet rapidly growing demand. Moreover, existing image recognition-based
methods have obvious flaws, which are easily affected by occlusion, lighting changes and
other factors. To realize intelligent and efficient manhole cover status detection, depth
camera point cloud technology shows broad application prospects. Point cloud data
provides rich 3D structural information, which helps describe key information such as
manhole cover geometric shape and position accurately. Therefore, this study proposes a
method to obtain point clouds of manhole covers using structured light cameras, and judge
the status of manhole covers through algorithms like filtering and fitting. This method can
break through the limitations of existing technologies to achieve automated and intelligent
manhole cover detection, greatly improving detection efficiency and quality, making road
maintenance more intelligent.

In addition, the rapid development of robotics and autonomous driving technologies
has led to the widespread application of intelligent mobile platforms such as mobile
robots in areas such as road management and maintenance. This also means that high-
precision environmental perception technologies are required to ensure work efficiency [3].
It is difficult to achieve efficient and accurate manhole cover detection, which limits the
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application of relevant technologies in complex road environments. Therefore, developing
intelligent technical means to achieve real-time and accurate detection of road anomalies is
beneficial not only for traditional road management, but also provides important support
for emerging intelligent mobile systems [4,5].

This study focuses on the subsidence problem of manhole cover structures and makes
the following main contributions.

(1) An accurate and efficient point cloud processing method based on structured light
camera point cloud information that provides preprocessing ideas for noise issues caused
by the environmental factors of structured light cameras.

(2) Construct a detection model based on sector fitting to verify manhole cover point
cloud cluster features and finally analyze whether the manhole cover structure affects
driving comfort and safety.

Compared to high-precision LiDARs or other expensive detection scanners commonly
used in engineering, this significantly reduces the maintenance costs. Owing to the compact
structure of structured light cameras, they can be more flexibly integrated into existing de-
tection products or mobile devices, providing a reference for further improving automated
and intelligent road manhole maintenance engineering.

2. Related Work

Currently, most research adopts machine learning methods for image classification
or object detection, with a small amount exploring IoT monitoring, but overall still needs
to improve adaptability to complex environments and refine classification capabilities, as
well as feasibility for practical applications. To achieve more detection tasks, multi-source
heterogeneous information fusion and cross-domain method combination will be future
research directions.

2.1. 3D Point Cloud Research

This work [6] proposed analyzing the spatial distribution characteristics and intensity
reflection properties of manhole covers in point cloud data. They designed a combination
algorithm of cloth simulation filtering (CSF) and gradient filtering to extract ground points
and generate an intensity image. Then they binarized the intensity image through adaptive
thresholding. On this basis, they used a Hough transform circle detection method with
constrained parameters to locate manhole covers and achieved precise extraction of road
manhole covers. Finally, by calculating the mean height difference between manhole cover
centers and neighboring point clouds, they realized detection of subsidence defects of
manhole covers. Authors proposed a method [7] of rasterizing mobile laser scanning point
cloud data of road surfaces into georeferenced intensity images and feeding them back to a
classifier for manhole cover detection, but did not evaluate the structural state of the covers.
In the work [8] proposed using image features to improve the performance of point cloud
data detectors and employing low-level image features to replace LiDAR reflectivity data,
which is very important for autonomous vehicles, since reliance on a single sensor can lead
to incomplete information and operational limitations. Mobile laser scanning (MLS) with
geometric and radiometric constraints was applied for manhole cover identification and
extraction [9]. This effectively utilizes multi-source point cloud information, but its use has
been limited primarily to tagging and localization due to accuracy restrictions.

2.2. Machine Learning Methods

There are also many machine learning approaches for manhole cover detection. Au-
thors [10,11] adopted the detection scheme proposed by Yamaguchi and Mizutani [12]
that combines Support Vector Machine (SVM) and the Hough transform. This method
compensates for the poor robustness of machine learning at high resolutions by integrating
geometric filtering stability. Liu et al. [13] redesigned the feature extractor using a Visual
Geometry Group (VGG) network to enlarge the receptive field. This enabled smaller and
denser manhole objects to produce stronger responses, and performed excellently at man-
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hole recognition in remote sensing images. In the currently hot field of deep learning, there
are also uses of improved object detection algorithms [14–16] to identify and locate manhole
covers. In [17], the authors propose an enhanced YOLOX model for the automated detec-
tion of pavement manholes, leveraging a channel attention mechanism and a microscale
detection layer. They achieved superior performance compared to state-of-the-art models.
A study used the hierarchical classification of datasets [18] to achieve a relatively accurate
identification of manhole subsidence levels, but relying solely on image information makes
it difficult to discern subsidence with too few dimensions. In addition, machine learning
techniques generally do not handle high-resolution images well and require large sample
sizes, often leading to very different results in different application scenarios. Pavement
manhole cover damage detection is critical yet underexplored, and a proposed pipeline
introduced AMDM and BCSM models, achieving high precision and efficiency, and the
results demonstrated potential for broader civil engineering structural evaluations [19].

2.3. IoT-Based Analysis & Others

In the realm of Internet of Things (IoT), various approaches have been explored for
manhole cover monitoring. For instance, one method [20] employed tilt and vibration
sensors equipped with unique identification tags on each manhole cover, enabling nar-
rowband IoT communication and status monitoring. However, this approach necessitates
the installation of a large number of sensors and entails complex maintenance procedures.
Another proposal [21] suggested the use of LoRa-communicating accelerometers for long-
range cover monitoring, albeit limited to vibration detection. Additionally, acoustic signal
processing techniques have been investigated for damage assessment [22], offering a low-
cost solution but susceptible to interference. Addressing urban management challenges,
researchers have proposed NB-IoT-based underground well monitoring systems, encom-
passing measurement, assessment, and data processing functionalities for effective well
management, thereby presenting a promising solution for smart city development [23].

As smart cities expand rapidly, the proliferation of underground pipelines, including
gas, rainwater, and electricity, necessitates robust management systems to mitigate safety
hazards associated with the increasing number of manhole covers [24]. Moreover, the
imperative for effective manhole monitoring in smart cities cannot be overstated, given the
critical role of water management in urban hygiene. In India, where underground drainage
systems are prevalent, maintaining them is essential to ensure clean and safe environments.
This paper [25] introduces an IoT-based manhole monitoring system, facilitating real-time
monitoring of water level, blockages, and gas levels. Similarly, another research team [26]
presents an IoT-based approach for manhole management, utilizing a variety of sensors
such as tilt, ultrasonic, temperature, gas, and water flow sensors to address accidents and
health hazards associated with uncovered manholes. The collected data is transmitted in
real-time via Wi-Fi for continuous monitoring. Furthermore, this paper [27] presents a
method for autonomous exploration of multiple compartments within a Ballast Water Tank
using Micro Aerial Vehicles, incorporating strategies for manhole detection and navigation
based on 3D LiDAR data.

3. Point Cloud Acquisition and Processing
3.1. Data Acquisition

The field data collection of manhole covers was performed in the vicinity of the Fujian
Province Key Laboratory of Precision Drive and Transmission at a university in Fujian
Province, China. Manhole covers on the road surface were randomly selected and scanned
using a vehicle-mounted mobile detection device to obtain point cloud data. Due to factors
such as vehicle speed and lighting conditions, the acquired point cloud data of the manhole
cover surface may still contain anomalous points, offset points and other noise. Only after
denoising and other preprocessing can valid data be formed.
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3.2. Data Preprocessing
3.2.1. Voxel Centroid Downsampling

Voxel centroid downsampling is an important data preprocessing step in this study,
aimed at effectively reducing the density of the point cloud data for more efficient subse-
quent analysis.

To balance data density and information loss, we chose appropriate parameters for
voxel downsampling. The voxel resolution was set to 0.5 cm, a value determined by
experiments to optimize based on the camera’s own imaging resolution and accuracy.

3.2.2. Median Filtering

Depth camera captured point clouds often suffer from holes, noise and depth dis-
tortions due to sensor characteristics. Here we typically use median filtering to address
this issue.

The principle of median filtering is based on statistical sorting within a neighborhood.
For a sample point Pa(xa, ya, za), we define a custom spherical neighborhood N with a
radius of d:

N[(xa, ya, za), d] = {(x, y, z) | (x − xa)
2 + (y − ya)

2 + (z − za)
2 < d2}

(1)
The specific calculation method for median filtering is following: X

Y
Z

 =

 sorted{x|(x, y, z) ∈ N[(xa, ya, za), d]}
sorted{y|(x, y, z) ∈ N[(xa, ya, za), d]}
sorted{z|(x, y, z) ∈ N[(xa, ya, za), d]}

 (2)

Taking the median point generated in the ranking to replace the sample point
Pa(xa, ya, za), and the operation is as follows:

median(X), median(Y), median(Z) → (xm, ym, zm) (3)

Replacing the abnormal hole values with normal neighborhood values yields relatively
clean and reasonable point cloud data for the manhole cover.

3.2.3. Statistical Filtering

The core principle of statistical filtering is detecting and removing obvious outlier
points in the point cloud. For each point in a given point cloud dataset, statistical filtering
typically uses an outlier detection method based on Gaussian distribution. First, the mean
and standard deviation of depth values within a local neighborhood are calculated. The
neighborhood usually consists of points within a window or radius as well as nearby k
points. Once the mean and standard deviation are computed, statistical rules can be used
to determine whether a point should be marked as an outlier. The multiplier mul is usually
chosen by the user according to data characteristics.

Assuming the distances of all points in the point cloud follow a Gaussian distribution,
the shape and size of the point cloud cluster are determined by the mean µ and standard
deviation σ. Here we designate one point Pi(xi, yi, zi) in the point cloud, and the distance
from Pi to any other point Pa(xa, ya, za) is Li:

Li =
√
(xi − xa)2 + (yi − ya)2 + (zi − za)2 (4)

In order to obtain the optimal parameters for the statistical filter, we tried different
values of k and mul. Specifically, we tested k values of 10, 15, 20, 25, 30 to correspond to
different point cloud densities, and mul values of 1, 2, 3 to correspond to different filtering
strengths. We found that when k takes smaller values, it is easily affected by outliers and
the error is larger. When taking larger values, there is a risk of filtering out normal points.
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At the same time, when mul takes smaller values, the filtering effect is not significant, and
when taking larger values, useful information may be lost. Besides, the structured light
camera used in this paper also has a noticeable impact on the parameter selection. This
camera has a resolution of 640 × 480. Considering this, we choose a slightly larger than
minimum value of k = 20 to ensure effective filtering of camera noise while preserving key
information. Besides, the main source of noise for this camera is measurement errors which
tend to be more random. Therefore, we select a mul value around 1 standard deviation so
that noise can be significantly reduced without over filtering valid information.

In summary, taking into account both theoretical analysis, experimental optimization
and the specific noise characteristics as well as resolution constraints of the structured
light camera, we select k = 20 and mul = 1.817. This parameter combination can effectively
eliminate outliers while retaining major point cloud information, achieving the optimal
filtering effect, it can be calculated whether the distance of each point from its nearby
20 points falls within the range of µ ± σ·mul. Otherwise, the point is identified as an outlier.

3.2.4. Radius Filtering

The purpose of radius filtering is to identify and remove anomalous points by inspect-
ing the edge regions in the point cloud captured by the camera for noise.

Radius filtering is implemented by examining the number and distribution of points
within the neighborhood of each point. If the number of points within a point’s neighbor-
hood is below a threshold, that point is identified as edge noise. Radius filtering methods
typically consider the distance between points and allow parameter tuning based on spe-
cific application requirements. As shown in Figure 1, by setting the neighborhood radius to
0.15 cm and the threshold number of points to 12, edge points can be filtered out.

Figure 1. Radius Filtering Schematic: Point cloud in (a) before executing radius filtering, and in
(b) after performing radius filtering.

4. Point Cloud Processing Method
4.1. Theoretical Premise
4.1.1. Process Design

The point cloud processing workflow in this study follows the steps of first segmen-
tation, then classification, and finally detection. As shown in Figure 2, first the point
cloud is filtered and then the road surface point cloud is extracted using the RANSAC
plane segmentation algorithm. Next, the overall height of the point cloud is calculated
to determine if it is greater than 3 cm. For point clouds with heights within 3 cm, their
height values are retained and normal results are directly output. Whereas for point clouds
exceeding the threshold height, DBSCAN clustering algorithm is further utilized to seg-
ment and obtain point clouds of individual discrete objects. Subsequently, the fan-shaped
fitting manhole cover detector designed in this paper is used to judge each clustered object,
identifying point clouds with geometric structures matching manhole cover features as
manhole anomalies, and others as different road obstacles.
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Figure 2. Flowchart of processing pipeline to detect manhole covers from point clouds. Key steps
include filtering, road surface segmentation, clustering, and manhole recognition.

Finally, regardless of whether the source point cloud has undergone clustering seg-
mentation, the final manhole cover structural height information will be output.

4.1.2. Segmenting Road Surface Point Cloud by Using RANSAC

RANSAC proposed by Fishe [28] is a robust fitting algorithm commonly used for plane
detection and fitting in point cloud data. The key of this algorithm lies in its robustness
against noise and outlier points. As shown in Figure 3, the red points outside the plane are
considered as outliers and get removed, while the remaining points iteratively fit to obtain
an optimal plane. By sampling the point cloud data and identifying inliers, the equation of
the road plane can be estimated.

Figure 3. RANSAC Plane Fitting Algorithm.

After obtaining the road plane equation, coordinate transformation is then used to map
the fitted plane to the x-y plane, providing a reference baseline for subsequent calculation
of point cloud heights, thereby determining the height distance of off-road point clouds
relative to the road plane.
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The schematic in Figure 4 describes the blue points represent the road plane, while
the red points are separated off-road points. The maximum distance from inliers to the plane
model is set as 0.75 cm for plane fitting, with 5 sample points for fitting and a maximum
number of 500 k iterations. Please do note that point clusters fewer than 5 points are removed
here, aiming to prevent additional noise interference.

Figure 4. RANSAC Road Plane Point Cloud Segmentation Schematic: (a–c) depict point clouds of three
structurally distinct manhole covers.

At this point, the plane equation obtained through the RANSAC algorithm is represented
as ax + by + cz + d = 0. Subsequently, the set of points outside the fitted plane, denoted as
outlier R_outlier, is determined. To identify the highest and lowest points within this set,
the following formula is applied:

R_outlier = {(xi, yi, zi) | |axi + byi + czi + d| > 0.75} (5)

Then, the highest points Phst and lowest points Plst in the off-plane point set R_outlier
can be found by screening based on:

argMAXR_outlier(zi) = (xhst, yhst, zhst) (6)

argMinR_outlier(zi) = (xlst, ylst, zlst) (7)

The distances from Phst and Plst to the fitted plane can then be calculated using the
point-to-plane distance formula as follows:

dist =
|axi + byi + czi + d|√

a2 + b2 + c2
(8)

The above formulas delineate the process of computing the coordinates of the highest
and lowest points in the point cloud outside the manhole cover’s fitted plane, as well as
the distances from the fitted plane to these extreme points. In the subsequent steps, this
geometric information will play a pivotal role in the practical applications and further
research endeavors.

4.1.3. Application of DBSCAN in Point Cloud Clustering

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is an effective
clustering algorithm [29], commonly used for clustering and partitioning point cloud data.
The core idea of DBSCAN is to start from a seed point ε in the dataset, and iteratively
expand the cluster by calculating the distance between points and other points within its
neighborhood. If the neighborhood of a point contains at least MinPts points, then the point
is marked as a core point, and all connected points are assigned to the same cluster. Then,
the next point is selected from the core point’s neighborhood, repeating this process until
no new points can be added. Appropriate ε and MinPts parameters can cluster the off-road
points in the point cloud into different clusters. This helps better distinguish road structures
and manhole cover features in subsequent analysis. The clustering neighborhood distance
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parameter set in DBSCAN is determined based on the point cloud of manhole covers,
where hierarchical characteristics are more pronounced. In order to mitigate variations in
experimental results and achieve a more balanced experimental outcome, we typically set
the distance to one-third of the diameter of the manhole cover.

In this study, the DBSCAN algorithm is first utilized to cluster the road plane portion
of the point cloud, laying the groundwork for the feature detection in the following section
to verify whether there are manhole cover features, so as to facilitate the task of detecting
abnormalities in manhole cover height.

4.1.4. Manhole Cover Point Cloud Feature Detection Based on Sector Fitting Radius

In order to more precisely determine which clustered parts belong to manhole covers,
the SF (Sector Fitting) iterative point cloud algorithm based on least squares is proposed,
and the principle is shown in Figure 5. The SF algorithm aims to further refine the DBSCAN
clustering results by separating manhole cover points from other clusters. By iteratively
fitting a sector that best matches the point cloud edges, the curvature and radius character-
istics of the fitted sector are obtained to infer whether the point cloud is a manhole cover.

First, a starting point cloud P0(x0, y0, z0) is selected from the point cloud cluster as the
starting point. An initial circle center coordinate (Cx0, Cy0, Cz0) and initial radius R

′
are

randomly selected as initial iteration values, with a change threshold γ set.

Figure 5. Sector Fitting Process: Illustration.

In geometry, the centroid of an object refers to the average position of all the mass
points of that object. For a continuous mass distribution, the centroid can be calculated by
multiplying each mass point’s position by its mass, and then dividing by the total mass. For
a point cloud, the mass of each point can be considered equal. That is to say, the centroid of
a point cloud can be computed by averaging the coordinates of all the points. The point
cloud centroid provides information about the geometric structure and distribution of the
point cloud. During the fitting process, the variation of centroid is closely related to the
change of fitting results.

(1) For each point Pi in the point cloud, calculate its distance si to the circle center
coordinate (Cx0, Cy0, Cz0):

si =
√
(xi − Cx0)2 + (yi − Cy0)2 + (zi − Cz0)2 (9)

(2) Divide the points into two groups: the set sf_inlier with distances smaller than the
radius, and the set sf_outlier with distances greater than the radius:

s f _inlier = {Pi | si ≤ R} (10)

s f _outlier = {Pi | si > R} (11)

(3) Calculate the centroid coordinate (Cx
′
, Cy

′
, Cz

′
) of the point set sf_inlier:

Cx
′
=

1
|s f _inlier| · ∑(xi) (12)
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Cy
′
=

1
|s f _inlier| · ∑(yi) (13)

Cz
′
=

1
|s f _inlier| · ∑(zi) (14)

(4) Replace (Cx
′
, Cy

′
, Cz

′
) as the new circle center coordinate and update the radius R

′

R
′
=

1
|s f _inlier| · ∑(si). (15)

(5) Repeat the above steps until the change of R
′

is smaller than the set threshold γ or
the iteration limit is reached.

When the value of R
′

falls within the typical radius range of manhole covers, the point
cloud cluster is identified as part of the manhole cover point cloud. In this scenario, we
encounter two situations:

1. The manhole cover point cloud cluster is distributed on one side of the road plane.
2. The manhole cover point cloud cluster is distributed on both sides of the road plane.

Due to the coordinate transformation performed earlier in our discussion, it is only
necessary to calculate the sum of the absolute values of the positive and negative extremes
of the z-coordinates of the manhole cover point cloud cluster.

As illustrated in Figure 6, the initial segmentation of point cloud data is carried out
using the DBSCAN clustering algorithm, resulting in the extraction of multiple point
cloud clusters that are subsequently classified. Different categories of point clouds are
distinguished by distinct colors. Among the three samples subjected to the fan-shaped
fitting detection model filter, point cloud data in Figure 6a,c exhibit evident arc features,
allowing for a direct identification as manhole cover point clouds. This corresponds
to situations where the manhole cover exhibits a noticeable inclination relative to the
road surface.

Figure 6. DBSCAN + SF Selection Results: (a,c) depict the point cloud segmentation and selection
outcomes when the manhole cover is inclined, while (b) illustrates the point cloud segmentation in
the case of a relatively flat manhole cover.

In contrast, the point cloud in Figure 6b lacks conspicuous arc features. However, indi-
rect identification as a manhole cover is possible by analyzing the fan-shaped information
formed by the surrounding road protrusions. This is attributed to the fact that during the
RANSAC plane fitting process, fitting is done with the manhole cover’s plane as a reference,
while local variations in the actual road surface may exist. Consequently, the fan-shaped
detector can still infer the presence of a manhole cover through the surrounding road’s
fan-shaped characteristics, highlighting the rationality and robustness of the algorithm.

4.2. Results
4.2.1. Application and Experimental Setup of CloudCompare

In order to validate the accuracy and effectiveness of our proposed method for man-
hole cover structure assessment, experiments were conducted using data computed with
CloudCompare v2.9.0 as a comparative reference. CloudCompare is a free and open-source
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point cloud processing software known for its extensive functionalities, including point
cloud importation, visualization, registration, segmentation, and reconstruction. With its
intuitive user interface and powerful tools, CloudCompare has become a robust tool in the
field of point cloud research. In this section, structural height calculations are involved,
and as such, filtered point cloud data is directly utilized for measurements. The highest
and lowest points in the manhole cover region are identified, and corresponding distances
are recorded.

To obtain tangible point cloud height data, the experimental software settings are
outlined below:

1. Coordinate Transformation: Initially, a tool is employed to identify the fitting plane
of the manhole cover, enabling the transformation of the manhole cover point cloud
information from the world coordinate system’s x-y plane to the fitting plane.

2. Visualization: We utilize the visualization feature of CloudCompare to observe the
shape and distribution of the point cloud data, as well as to check for any potential
issues or outliers.

As depicted in Figure 7, the elevation maps based on the Z-direction provide a clear
representation of the manhole cover outlines for the four inspection chambers. The red
areas indicate lower terrain, and the specific distribution of point cloud heights is illustrated
in Figure 8.

Figure 7. Point Cloud Visualization Elevation Maps: (a–d) represent point clouds of manhole covers
with varying degrees of subsidence.
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Figure 8. Elevation Histogram of Manhole Cover Point Clouds: (a–d) correspond to the manhole
covers and labels in Figure 7.

The four bar chart labels in Figure 8 correspond to the elevation maps of the four
inspection chambers in Figure 7. In these bar charts, the x-axis represents the output height
in the Z-direction, while the y-axis denotes the number of points in the point cloud. It’s
important to note that, since the point cloud data is in the form of a phase image, the
actual height is the inverse of the output height. Therefore, higher points on the bar chart
correspond to lower points in reality.

Because of the substantial volume of raw point cloud data, we have employed 256 dis-
tance intervals for classification. For instance, in Figure 8a, the highest point is approxi-
mately at 2.5 cm, with a count of around 50 points. The lowest point is at −2.1 cm, with
fewer than 50 points. The red points represent the furthest distance from the fitted Z-plane,
and by referring to Figure 7a, it is evident that the red area corresponds to the manhole cover
region. Hence, the estimated subsidence of the manhole cover is approximately 2.5 cm.

4.2.2. Experiment

Urban road engineering guidelines [30] specify that a height difference over 3 cm
between the manhole cover and road surface can cause noticeable vibrations for passing
vehicles. Thus, covers exceeding 3 cm in structural height are categorized as abnormal
subsidence. Moreover, point cloud data quality standards for flat terrain [31] state an
8% maximum elevation error. This aids authorities to more effectively monitor structural
quality of covers for timely identification and handling of those not meeting road travel
comfort standards, thus ensuring quality and safety.

Table 1 compiles data for 12 manhole covers exhibiting significant structural varia-
tions (excluding road anomalies). The algorithmic experiments underwent ten iterations,
with consistent judgment results for each case. Subsequently, calculated values obtained
from these experiments were compared against manhole cover height data processed by
CloudCompare, serving as validation values. Simultaneously, the identification results for
abnormal structures were output, allowing for the assessment of the method’s performance
with real-world data.
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Table 1. Results of Calculated and Verified Data for 12 Sets of Manhole Covers and Output Structures.

Manhole Cover ID Validation Value (cm) Calculated Value (cm) Relative Error (%) Abnormality Status Abnormality Type *

M1 3.4000 3.5429 4.202 Yes Manhole Cover

M2 1.6900 1.7525 3.698 No None

M3 3.4500 3.5602 3.194 Yes Manhole Cover

M4 2.1900 2.2460 2.557 No None

M5 4.6400 4.3532 6.182 Yes Manhole Cover

M6 3.2700 3.3623 2.822 Yes Manhole Cover

M7 3.1400 3.3475 6.608 Yes Manhole Cover

M8 5.2100 4.8965 6.029 Yes Others

M9 3.7100 3.9420 6.253 Yes Manhole Cover

M10 2.7900 2.7269 2.262 No None

M11 3.2500 3.4207 5.252 Yes Manhole Cover

M21 5.7500 6.0421 5.080 Yes Manhole Cover

* The results of the ‘Abnormality Type’ are obtained through algorithmic analysis rather than manual identification.

Analysis of Table 1 indicates that the proposed algorithm effectively measured 12 man-
hole covers with pronounced inclinations. The percentage error values demonstrate that
the measurement discrepancies between the algorithm’s outputs and the validation results
consistently remained within 7%, meeting the requirement of a maximum allowable er-
ror of 8%. For manhole covers with actual heights within 3 cm, RANSAC segmentation
demonstrates exceptional height calculation performance. In cases where the manhole
cover height ranges from 3 cm to 5 cm, the fan-shaped fitting detection exhibits outstanding
performance. However, for manhole covers with heights exceeding 5 cm, height calcu-
lation errors tend to amplify, and the occasional misalignment of the fan-shaped fitting
detection model may lead to the misidentification of manhole covers as other features. This
phenomenon may be attributed to the steep slope of actual manhole covers, causing the
RANSAC algorithm to exclude a significant portion of the point cloud in the manhole cover
area during road plane segmentation. Nevertheless, given the infrequent occurrence of
manhole covers with structural heights exceeding 5 cm in road structures, classifying them
as road anomalies is deemed reasonable.

The Figure 9 illustrates the average time consumption for manual measurement,
semi-automated measurement using CloudCompare, and the algorithmic measurement
proposed in this study for the 12 manhole covers. It is evident that the algorithmic approach
significantly reduces the time required compared to manual and semi-automated measure-
ment methods, thereby substantially improving the efficiency of road surface detection.

Figure 10 illustrates a comparison of 20 manhole covers with structure heights less
than 5 cm, presenting measurement results, validation results, and classification outcomes.
The algorithm excels particularly around 3 cm, with noticeable performance fluctuations
around 1 cm and in the 4–5 cm height range. Moreover, for the 20 manhole covers with
heights less than 5 cm, the classification accuracy reaches 85%, but significantly declines
near 5 cm.

Figure 11 depicts 10 manhole covers with structure heights exceeding 5 cm. It’s
important to note that there are very few abnormal manhole covers with heights exceeding
5 cm in road scenarios. The algorithm’s classification performance is notably compromised
for heights greater than 5 cm, although the height calculation error remains within 8%.
Consequently, there is room for improvement in the algorithm’s ability to discern road and
manhole cover abnormalities for heights exceeding 5 cm.
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Figure 9. The chart illustrates the average time consumption comparison for manual measurement,
CloudCompare measurement, and custom algorithm measurement.

Figure 10. The chart compares measurements to validations for structures beyond 5 cm. Bars represent
measurements and validations, lines depict errors, and axis symbols indicate misclassifications. The
red X indicates a misclassification of the type.
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Figure 11. The chart compares measurements to validations for structures below 5 cm. The red X
indicates a misclassification of the type.

To better demonstrate the superiority of the fan-shaped fitting method proposed in
this study for manhole point cloud detection in the engineering context, we compared it
with the state-of-the-art PointNet++ object shape segmentation algorithm in point cloud
deep learning. The evaluation criteria for the experiments included accuracy and time
efficiency. The experiments were conducted on a dataset comprising 297 pre-prepared
manhole point clouds.

Based on the Table 2, although the PointNet++ algorithm exhibits slightly faster detec-
tion speed compared to the method proposed in this study, its actual detection accuracy
is inferior. This discrepancy may largely stem from the point cloud being collected at low
resolution near the ground, resulting in low discrimination between road surfaces and man-
hole covers, thereby posing obstacles during segmentation and training. Consequently, it is
evident that, compared to the PointNet++ algorithm, the DBSCAN+SF method proposed
in this study achieves an accuracy rate of 83% in this scenario, essentially meeting practical
operational requirements.

Table 2. Results of Calculated and Verified Data for 12 Sets of Manhole Covers and Output Structures.

Method Accuracy Spend Time (s/it)

DBSCAN+SF 0.832 5.15

PointNet++ 0.687 3.91

PointNet 0.592 7.42

In summary, the algorithm effectively handles common manhole cover abnormalities
and demonstrates precise height error control. However, in rare cases involving large-
span manhole cover abnormalities, additional assistance such as manual intervention or
alternative tools may be required, presenting new perspectives for refining detection tasks
and enhancing inspection processes in this field.

5. Conclusions

In response to the issue of manhole sinking in road engineering, a manhole detection
method based on structured light 3D scanning is proposed. This method utilizes a struc-
tured light camera to acquire point cloud data of the manhole and its surrounding road,
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employing a fan-shaped fitting model to detect key points on the manhole. Experimental
results demonstrate the effectiveness of the algorithm in calculating the structural height of
manholes and its capability to inspect common abnormal manholes, achieving automatic
identification. This paper discusses the functionality and usage of the commonly used
point cloud processing software, CloudCompare, in the field of measurement. The results
obtained from this method are compared with manual measurements and the average time
spent using our algorithm. The findings show a significant reduction in time compared to
traditional methods.

However, it is important to note the limitations of the proposed method. Firstly, the
method is limited to capturing images parallel to the road at a resolution of 640 × 480 pixels.
Additionally, it is advisable to avoid operating the system in heavy rain or snow conditions.
Currently, the algorithm is designed to detect and identify common circular manhole covers,
while other irregular shapes, such as square covers, are not included in the detection scope.

Additionally, the paper explores the impact of the 5 cm threshold on the algorithm’s
performance. Currently, the approach demonstrates excellent detection results for situations
below 5 cm. However, for scenarios above 5 cm, while height error detection is reliable, the
algorithm struggles with anomaly type identification. Therefore, the paper also proposes
future improvement strategies for handling manhole anomalies exceeding 5 cm.

This study utilized data from manholes on certain roads in Fujian Province and Zhe-
jiang Province, China, and the feasibility of the proposed approach can be validated using
the structural characteristics of manholes from other road networks. The automated man-
hole inspection method demonstrated practical applications in routine road maintenance,
emergency repairs, and road quality assessments, highlighting its significant utility. How-
ever, in terms of algorithm robustness, there is still room for improvement as there currently
isn’t a method to precisely differentiate between manhole and road anomalies above 5cm.
This study explores the application of structured light cameras and 3D reconstruction in
the field of manhole detection, providing insights for technological advancements in road
detection within this domain.
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