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Abstract: In the realm of software development, automated program repair (APR) emerges as a
pivotal technique, autonomously debugging faulty code to boost productivity. Despite the notable
advancements of large pre-trained language models of code (PLMCs) in code generation, their
efficacy in complex tasks like APR remains suboptimal. This limitation is attributed to the generic
development of PLMCs, whose specialized potential for APR is yet be to fully explored. In this paper,
we propose a novel approach designed to enhance PLMCs’ APR performance through source code
augmentation and curriculum learning. Our approach employs code augmentation operators to
generate a spectrum of syntactically varied yet semantically congruent bug-fixing programs, thus
enriching the dataset’s diversity. Furthermore, we design a curriculum learning strategy, enabling
PLMCs to develop a deep understanding of program semantics from these enriched code variants,
thereby refining their APR fine-tuning prowess. We apply our approach across different PLMCs
and systematically evaluate it on three benchmarks: BFP-small, BFP-medium, and Defects4J. The
experimental results show that our approach outperforms both original models and existing baseline
methods, demonstrating the promising future of adapting PLMCs for code debugging in practice.

Keywords: large language models of code; automated program repair; code debugging

1. Introduction

In an era where digital technologies permeate every aspect of our daily lives, the
ubiquity of software programs and systems has inadvertently led to an increase in software
bugs, posing significant challenges to software maintenance and reliability. Automated
program repair (APR) [1] has emerged as a pivotal innovation, streamlining the process
of software maintenance by automating the generation of patches to rectify software
defects, thereby reducing the reliance on labor-intensive manual debugging efforts. The
advent of artificial intelligence (AI)-driven approaches has marked a paradigm shift in
how we address the challenge of program repair, attracting substantial research interest
and investment in recent years. Among these techniques, large pre-trained language
models of code (PLMCs) [2–5] stand out for their exceptional code generation capabilities,
heralding a new era of AI-powered software engineering. These general-purpose PLMCs,
initially pre-trained on extensive corpora of unlabeled data through self-supervised learning
paradigms, demonstrate adaptability to specialized tasks like program repair with minimal
adjustments during fine-tuning. The success of language models in natural language
processing (NLP) [6–8] has laid a robust foundation for the application of PLMCs in APR,
suggesting a promising avenue for harnessing the power of advanced AI to enhance
software development and reliability efficiency.

Although applying PLMCs to the realm of program repair has shown to surpass
existing APR methodologies [9], their efficacy, as measured by success rates, remains
suboptimal. As shown in [10], the state-of-the-art PLMC CodeT5 [5] achieves an average
bug-fixing success rate of 18.3%, while the best non-PLMC-based APR techniques [11] is
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12.7%. As such, the quest to enhance the success rates of PLMCs in program repair tasks is
a formidable challenge.

While the integration of PLMCs into the APR domain holds considerable promise, the
exploration of the most efficient methodologies for leveraging these models to optimize
APR outcomes remains scant. The process of fine-tuning emerges as a pivotal strategy,
enabling the adaptation of PLMCs to APR tasks by leveraging specialized datasets tailored
for bug fixing. Notably, fine-tuning presents a significantly reduced computational cost
compared to the exhaustive demands of training a language model from the ground up [12].
It has been documented that such targeted fine-tuning can amplify the efficacy of PLMCs
in APR endeavors by upwards of 30% [13]. Consequently, the quest to improve fine-tuning
methodologies, to bolster the APR capabilities of PLMCs, presents a pressing challenge
that warrants thorough exploration.

Within the realm of APR, the practice of fine-tuning PLMCs is currently beset by sev-
eral formidable challenges. Firstly, the foundational pre-training methodologies employed
by PLMCs are predominantly derived from the domain of NLP. This transposition is com-
plicated by the differences between the syntax and semantics of programming languages
versus natural languages. Programming languages permit the expression of semantically
equivalent constructs through a wide array of syntactic variations, a flexibility that natural
languages often do not afford. This discrepancy leads to PLMCs’ diminished sensitivity to
the intricate interplay between code syntax and semantics, subsequently impeding their
efficiency in diagnosing and debugging erroneous code [14]. Secondly, the fine-tuning of
PLMCs typically relies on a corpus of historical bug-fix records, which are pairs of buggy
and corrected code snippets, collected via meticulously designed heuristics. This approach,
however, is hampered by the inherent limitations in the scope and depth of available bug-fix
datasets. In contrast to the abundant reservoir of open-source code available for training,
the datasets comprising bug fixes are not only scarce, but also of variable quality [15]. This
scarcity and variability constrain the potential of PLMCs in code debugging.

To effectively navigate the aforementioned challenges, we propose a general fine-
tuning framework designed to both enhance the training dataset’s diversity for bug fixes
and facilitate a more profound semantic comprehension by PLMCs during the fine-tuning
phase. Our approach encompasses three pivotal components: a code augmentation opera-
tor, a difficulty measurement module, and a dataloader scheduler, working in concert to
refine the training process. The framework employs an array of ten distinct code augmen-
tation operators to generate a multitude of syntactically varied yet semantically congruent
program variants. It simulates the varied methodologies software developers might employ
to achieve identical functional outcomes, thereby broadening the spectrum of bug-fixing
scenarios presented in the model. This methodological innovation not only expands the
diversity of the bug-fixing dataset, but also presents PLMCs with a richer set of syntactic
variations to learn from, thereby enhancing their adaptability and efficacy in addressing a
broader array of program repair tasks.

To assimilate the nuanced code semantic insights from the diverse syntactic representa-
tions of bug-fixing code variants, we propose an advanced curriculum learning mechanism.
This mechanism, inspired by pedagogical principles akin to human learning methodologies,
systematically organizes the training process into a structured “curriculum” for PLMCs.
Drawing upon the foundational concepts established by Bengio et al. [16], curriculum
learning’s efficacy in educational settings is adapted to the domain of APR, treating bug-
fixing code snippets as “learning materials” for PLMCs. This “bug-fixing curriculum“ is
meticulously crafted to optimize the fine-tuning phase, enhancing the PLMCs’ proficiency
in APR tasks. Central to our approach is the integration of a difficulty measurer and a
dataloader scheduler, which collectively evaluate and sequence the bug-fixing code samples
based on their complexity. Contrary to the conventional random sampling approach, our
methodology prioritizes a progressive learning path, presenting PLMCs with simpler tasks
initially and gradually introducing more complex challenges. This strategic arrangement
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mirrors the curriculum-based learning approach and is poised to significantly improve the
PLMCs’ learning efficiency and, consequently, their performance in code debugging.

While our approach can be integrated with various PLMCs, we implement it with
two representative PLMCs, GraphCodeBERT [4] and CodeT5 [5]. We conduct extensive
experiments on three benchmarks with different APR scenarios, including bug-fix com-
mits (BFPsmall and BFPmedium [17]) and real bugs with test cases in open source project
(Defect4J [18]). The experimental results demonstrate that, without manual adjustments to
the model architectures, PLMCs implemented with our approach outperform both original
models and existing baseline methods in generating accurate patches over the baseline
metrics. To delve deeper into the efficacy of our approach, we conducted a series of ablation
studies to evaluate the contributions of its core components. Additionally, our exploration
into various dataloader scheduler configurations further elucidates the adaptability and
robustness of our approach, reinforcing its practical utility in enhancing the APR process.
Additionally, we further explore the effectiveness of different types of code augmentation
operators. The comprehensive analysis and subsequent findings attest to the efficiency
and effectiveness of our approach, paving the way for its broader adoption in the field of
automated program repair.

To sum up, we make the following contributions:

• We introduce an innovative approach to fine-tuning PLMCs specifically for APR
tasks, diverging from traditional methodologies that typically employ a randomized
order for training examples. By strategically developing a bug-fixing curriculum,
we sequence the training process to progressively transition from simpler to more
complex examples.

• We propose a comprehensive curricular fine-tuning framework designed to elevate
the APR success rates of PLMCs. This framework incorporates a suite of ten distinct
code augmentation operators to enrich the diversity within the bug-fixing dataset.
Furthermore, it features an APR-specific difficulty measurer to evaluate the complexity
of bug-fixing code samples, alongside an effective dataloader scheduler that optimizes
the order of code data presented during training.

• We apply our approach to different PLMCs, and our extensive experiments demon-
strate that our approach substantially improves the performance of PLMCs in program
repair without manual intervention in model architecture design or excessive time cost.
Further analysis proves the generalizability of our approach in fixing real-world bugs.

This work is an extension of our ICSME 2023 paper [19]. Compared to the preliminary
version, we explore the effects of different code augmentation operators in Section 3, and the
generalizability in addressing real bugs of Defect4J in Section 4. Additional experimental
results and discussions of code augmentation operators and the generalizability of our
approach are included in Section 5. We also expand the evaluation to investigate the
effectiveness of our approach compared with other APR methods in Section 5.

2. Background and Related Work
2.1. Pre-Trained Language Models of Code

The advent of large pre-trained language models has significantly enhanced the ca-
pabilities across a broad spectrum of NLP tasks. This monumental success has catalyzed
a wave of innovative endeavors aimed at tailoring these pre-training methodologies to
the realm of programming languages, leading to the development of numerous PLMCs.
Analogous to the categorization of NLP models into encoder-only (e.g., BERT [7]), decoder-
only (e.g., GPT [20]), and encoder–decoder architectures (e.g., T5 [8]), PLMCs also follow
a similar architectural classification. Models like GraphCodeBERT utilize a bidirectional
Transformer encoder, leveraging multiple layers of self-attention to capture the nuanced
vector representations of code sequences. On the other hand, decoder-only models, such
as Codex [21], employ a Transformer decoder architecture, sequentially generating code
by processing all preceding tokens. Meanwhile, encoder–decoder models like CodeT5 [5]
jointly train bidirectional encoders and autoregressive decoders for comprehensive model-
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ing of source code. The encoder is used to obtain the vectorized embedding of input data,
while the decoder is used to generate output code.

It is noteworthy that, despite the architectural variances among these models and
their distinct pre-training paradigms, the essence of fine-tuning for APR tasks remains
universally applicable. In this paper, we propose a general framework that capitalizes on
fine-tuning existing PLMCs to amplify their APR success rates. While our methodology
is adaptable to a wide array of PLMCs, we validate its efficacy through empirical studies
on GraphCodeBERT and CodeT5. These two models are selected based on the following
reasons: (i) they are publicly available. Codex is not included since it is not open-source, and
thus cannot be fine-tuned; and (ii) they have proven track records in APR, underscored by
their high citation rates and authoritative performance. Through this focused examination,
we aim to underscore the applicability and effectiveness of our fine-tuning framework
across different PLMC architectures.

2.2. Language Model-Based Automated Program Repair

For APR, researchers have harnessed various language model-based strategies, broadly
categorized into universal and specific language model-based APR frameworks.

Universal language model-based APR methods [3–5,22–24] strive to develop versatile
PLMCs that cater to a range of coding tasks, including program repair. Given these models
are not tailor-made for APR, they necessitate fine-tuning with APR-centric datasets. Our
technique offers an enhancement to the fine-tuning efficacy of PLMCs, serving as a valuable
supplement to these existing methods.

Specific language model-based APR approaches concentrate exclusively on program
repair, utilizing language models to forge innovative APR methodologies. Yuan et al. [25]
introduce CIRCLE, an APR method grounded in T5 that progressively learns bug reso-
lution across various programming languages. Jiang et al. [26] pre-train a GPT model
on an extensive codebase and amalgamate it with NMT architecture. Distinct from these
techniques, our method sidesteps the need for custom language model architecture or addi-
tional pre-training phases. It instead focuses on enhancing model performance through the
strategic processing of training data in the fine-tuning phase. As a result, our approach can
be seamlessly and effectively implemented across different PLMCs, irrespective of their
pre-training goals.

To enhance the performance of program repair, researchers have adopted diverse
methodologies by refining code data [26–28]. Tufano et al. [17] introduced a code abstrac-
tion technique to reduce vocabulary size and ensure models focus on discerning common
patterns across various code modifications in bug-fixing instances. SequenceR [29] incorpo-
rates class-level context, abstracting the buggy context from the class to infer potential fixes.
Lutellier et al. [30] preprocess the buggy code and its contextual surroundings separately,
subsequently inputting these sequences into a neural machine translation (NMT) frame-
work. Chakraborty et al. [31] developed a multi-modal NMT-based tool that crafts patches
by processing diverse information modalities, including edit locations, code context, and
commit messages. Xia et al. [15] manipulate buggy code with mask tokens and encode this
alongside the surrounding context for model input. Ye et al. [32] create training samples
with bugs via a perturbation model, utilizing these artificially bugged codes as inputs for a
Transformer neural network. Our approach diverges from these methods by generating
code variants from abstracted bug-fixing pairs, preserving both the semantic integrity and
syntactic authenticity of the code. We then fine-tune PLMCs on this preprocessed data in a
strategic sequence to improve their APR success rates.

2.3. Curriculum Learning

Curriculum learning is a training paradigm that trains a model with easier samples first
and then gradually extends to more complex samples. This methodology mirrors the peda-
gogical approach of incrementally increasing the complexity of learning materials, starting
with a foundational, simplified subset of the training data. As the model’s training advances,
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it progressively encounters a broader spectrum of examples, introducing higher levels of
challenge that simulate the escalating difficulty found in human educational curricula.

Curriculum learning has garnered validation in cognitive science [33,34], and has been
adapted for training models in the realm of artificial intelligence. Bengio et al. [16] pio-
neered the curriculum learning strategy, showcasing its utility in supervised tasks within
visual and linguistic domains. This innovation has spurred a wide array of scholars to
integrate curriculum learning across diverse model frameworks and applications, including
computer vision [35] and natural language processing [36]. Hacohen et al. [37] undertook a
comprehensive study on employing curriculum learning for image classification using the
convolutional neural networks framework. Platanios et al. [38] introduced a competence-
based curriculum learning approach for neural machine translation, confirming its applica-
bility across both recurrent neural network and Transformer architectures. They developed
competence functions to regulate the number of training instances accessible to the model,
which has influenced the design of our dataloader scheduler. Penha et al. [39] explored
curriculum strategies for enhancing conversation response ranking in information retrieval,
demonstrating the efficacy of this approach with the BERT model. Wang et al. [40] ad-
vanced code comprehension accuracy in code understanding tasks by applying curriculum
learning to categorize transformed data, further enriched with test-time augmentation tech-
niques. Different from these studies, we conducted an exploration of applying curriculum
learning to automated program repair. We introduce an innovative method for categorizing
code samples by difficulty, predicated on code length, to exploit the nuances of bug-fixing
data. The process begins with shorter bug-fixing code pairs, progressively incorporating
longer samples.

The major challenges of curriculum learning are how to define the relative difficulty
of training examples and how to schedule the sequence of data subsets during the training
process. Addressing this, we propose a curriculum learning-based framework consisting of
a difficulty measurer and a dataloader scheduler. This framework is engineered to optimize
the learning trajectory of PLMCs, particularly in the context of code debugging, ensuring
they achieve optimal performance in program repair tasks.

3. Approach

In this section, we introduce our approach. We commence with a comprehensive
overview of the framework’s architecture, laying the groundwork for a deeper exploration.
Subsequently, we introduce each constituent element of our approach, encompassing the
bug-fixing code augmentation mechanism, the difficulty measurement module, and the
dataloader scheduler, providing a detailed exposition of their functionalities and interplay
within the framework.

3.1. Architecture Overview

The architecture of our approach is illustrated in Figure 1. We start with a set of buggy
code, referred to as B and its corrected version, F (i.e., (B, F)). The initial step in our approach
involves leveraging a suite of bug-fix code augmentation operators. These operators are
designed to produce a variety of syntactically distinct yet semantically consistent versions
of both B and F correspondingly. In the subsequent phase, we design an APR-based
difficulty measurer to decide the relative difficulty of the original training samples as
well as their corresponding variants. Lastly, we organize the training data using the
dataloader scheduler, which arranges the code examples in a way that gradually increases
in complexity, making it easier for PLMCs to digest and learn from the expanded set
of examples.
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Figure 1. An overview architecture of our approach. The key novel features are the augmentation
operator, the difficulty measurer, and the dataloader scheduler.

3.2. Bug-Fixing Code Augmentation

The initial phase of our curriculum learning-oriented framework focuses on preparing
high-quality “learning materials”. This process is designed to acquaint PLMCs with a
series of diverse code features, derived from a variety of bug-fixing programs that, despite
their structural differences, maintain functional parity. Consequently, it is essential to
generate multiple iterations of each bug-fix pair that preserve the underlying semantics
without alteration. Manual collection of such diverse examples is impractical, particularly
when dealing with extensive code datasets. Therefore, we employ an automated approach,
utilizing a series of code augmentation operators. These operators are meticulously crafted
to ensure that the augmented code samples retain their original semantics while exhibiting
syntactic naturalness, thereby facilitating an effective learning environment for PLMCs.

In this study, we concentrate on augmenting Java bug-fixing code, due to Java’s
prominence as the most extensively studied language in prior APR research [41]. There
are many methods for augmenting the code [42,43], and the more augmented methods
we use, in principle, the more code data we can obtain. To guarantee the efficacy of our
augmentation approach specifically for bug-fix pairs, we implement ten distinct code
augmentation operators, each designed to enhance the diversity and richness of our dataset.
Further, these ten operators can be categorically divided into three types based on the scope
and nature of the modifications they introduce:

• Control structure transformations:
Change If Statement: it changes a single if statement into a conditional expres-
sion statement.
Change Conditional Expression: it changes a conditional expression statement into
a single if statement.
Change If Else: it switches two code blocks in the if statement and the corresponding
else statement.
Change While to For: it replaces a while statement with a semantic-equivalent
for statement.

• API transformations:
Switch Equals Method: it switches the two string arguments on both sides of the
String.equals() function.
Change Increment Operator: it changes the assignment x++ into x+=1.
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Change Add Assignment Operator: it changes the addition assignment operator to
assignment operator, i.e., x+=1 becomes x=x+1.

• Declaration transformations:
Merge Declaration: it merges the declaration statements into a single compound
declaration statement.
Rearrange Statement Order: it swaps the positions of two adjacent statements
within a code block, provided that the first statement does not share any variables
with the second.
Switch Equality Operator: it swaps the positions of two expressions on either side
of the equality operator in an infix expression.

The first group focuses on alterations to the control structures, the second group
pertains to modifications in API usage, and the third group involves changes in variable
declarations. Each group is designed to aid the models in identifying and assimilating perti-
nent features from the code, all the while meticulously preserving the original semantics of
the code snippets. The ten augmentation operators we utilize adhere to three fundamental
principles: (i) they generate variants for both the buggy and fixed code, maintaining seman-
tic consistency while introducing diverse syntactic structures; (ii) for every bug-fix pair, the
syntactic alterations applied to the buggy and fixed code are identical to ensure uniformity;
and (iii) all applied transformations are correct, preserving the original semantics of the
bug-fix pairs without introducing any inaccuracies. As illustrated in Figure 2, the Change
If Statement augmentation operator exemplifies this approach by converting a standard
if statement in the original bug-fix pair (as depicted in Figure 2a,b) into a conditional
expression in the augmented pair (shown in Figure 2c,d). Given that the core semantics
of the buggy and corrected code remain intact post-augmentation, the augmented code
pairs maintain functional equivalence with their original counterparts, albeit with altered
syntactic configurations. By employing ten such operators, we can enrich the bug-fixing
dataset with a wide array of syntactically varied yet semantically identical programs. This
enhancement allows models to gain a deeper comprehension of different syntactic forms,
and to grasp the relationships between syntax and semantics.

(a) Original Buggy Code

(c) Augmented Buggy Code

private void METHOD_1() { 
TYPE_1 VAR_1 = VAR_2.METHOD_2(); 
final int count = VAR_1.METHOD_3(); 
for (int i = 0; i < count; i++) { 

TYPE_2 VAR_3 = METHOD_4(i); 

java.lang.CharSequence title = VAR_1.METHOD_5(i); 
if (title == null) title = STRING_1;
VAR_3.setText(title); 

} 
METHOD_6(); 

}

private void METHOD_1() { 
TYPE_1 VAR_1 = VAR_2.METHOD_2(); 
final int count = VAR_1.METHOD_3(); 
for (int i = 0; i < count; i++) { 

TYPE_2 VAR_3 = METHOD_4(i); 
if (VAR_3 != null) {

java.lang.CharSequence title = VAR_1.METHOD_5(i); 
if (title == null) title = STRING_1;
VAR_3.setText(title); 

}
}
METHOD_6(); 

}

private void METHOD_1() {
TYPE_1 VAR_1 = VAR_2.METHOD_2();
final int count = VAR_1.METHOD_3();
for (int i = 0; i < count; i++) {

TYPE_2 VAR_3 = METHOD_4(i);

java.lang.CharSequence title = VAR_1.METHOD_5(i);
title = (title == null) ? STRING_1 : title;
VAR_3.setText(title);

}
METHOD_6();

}

private void METHOD_1() {
TYPE_1 VAR_1 = VAR_2.METHOD_2();
final int count = VAR_1.METHOD_3();
for (int i = 0; i < count; i++) {

TYPE_2 VAR_3 = METHOD_4(i);
if (VAR_3 != null) {

java.lang.CharSequence title = VAR_1.METHOD_5(i);
title = (title == null) ? STRING_1 : title;
VAR_3.setText(title);

}
}
METHOD_6();

}

(b) Original Fixed Code

(d) Augmented Fixed Code

Figure 2. An example illustrating bug-fixing code augmentation. (a) shows a buggy code snippet
and (b) shows the corresponding fixed code (with the fixed part highlighted in blue), which are both
from the Bugs2Fix medium dataset. (c,d) show the results of applying Change If Statement aug-
mentation operator on (a,b), respectively (the changes are highlighted in red and green backgrounds).
They are both augmented by changing a single if statement into a conditional expression statement.
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3.3. Difficulty Measurer

Numerous criteria exist for gauging the complexity involved in rectifying a piece
of buggy code. In our approach, we draw upon two heuristic principles influenced by
elements known to affect the efficacy of PLMCs. These guiding principles are crafted to
provide a nuanced understanding of what constitutes ’difficulty’ in the context of code
repair, taking into account the intricacies that challenge PLMCs.

3.3.1. The Edits of Code

In Section 3.2, we outline a collection of augmentation operators tailored for bug-fixing
code datasets, designed to enhance the variety of training examples. However, the code
variations produced by these operators might introduce subtle disturbances to the baseline
data during the editing process. However, the code variants produced by these operators
might introduce minor perturbations to the original data during the editing of code snippets,
which could be viewed as a form of adversarial attack against the models [44–47]. As shown
in [48], PLMCs are particularly sensitive to these semantics-preserving modifications, which
could potentially reduce the performance of the models. The studies by Wang et al. [40] and
Liu et al. [49] have further demonstrated that data augmented with semantics-preserving
edits pose greater learning challenges for PLMCs than the original data. In light of this,
our difficulty measurement incorporates the presence of semantics-preserving edits in the
original bug-fixing code data as a key criterion. In our framework, the unaltered dataset is
deemed the “easy” scenario, while the dataset enriched with augmentation operators is
classified as the “hard” scenario.

3.3.2. The Length of Code

Building on the findings of Tufano et al. [17], which highlight the impact of input data
length on model training and efficacy, we set out to assess the influence of code length
on the learning challenges faced by PLMCs when tackling bug-fixing tasks. To explore
this concept empirically, we designed an experiment, outlined in Algorithm 1, aimed at
discerning the effects of code length variations on model outcomes.

The essence of Algorithm 1 lies in its exploration of the relationship between code
length diversity and model performance metrics. This exploration involves subjecting the
model to a series of test datasets characterized by differing code lengths and scrutinizing
the resultant performance disparities. Our methodology involves categorizing the bug-fix
pair dataset according to the length of the buggy code snippets. Subsequently, each category
is divided into training (80%), validation (10%), and test (10%) subsets in a randomized
manner (lines 5–14). Following the model’s training phase, which encompasses all length
categories within the training and validation sets, we proceed to assess its proficiency on
the test subsets, each distinguished by a unique code token count (lines 15–20).

We applied Algorithm 1 to the cutting-edge PLMC, CodeT5 [5], utilizing the Bugs2Fix
benchmark dataset [17], which comprises code methods capped at a maximum length
of 100 tokens. The entire dataset’s training set served as our input. To achieve a balance
between the number of categories and the number of bug-fix pairs within each category,
we designated N as 4 and K as 10,000. The outcomes depicted in Figure 3 highlight
CodeT5’s performance across various code length categories. These results reflect the
relative challenge posed by each group, with superior model performance correlating
with lower difficulty levels, and the reverse being true for diminished performance. As
illustrated in Figure 3, the model’s performance in program repair declines with increasing
code length. This trend underscores the significant influence that code length variability
exerts on the model’s ability to program repair, with shorter snippets typically being
easier to fix than lengthier ones. This observation aligns with our hypothesis that fixes
within longer code fragments are often more intricate, entailing a broader array of context
variables, identifiers, and literals that challenge the model’s interpretative capabilities. This
phenomenon has also been observed previously by Chen et al. [29]. Consequently, we
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categorize code pairs with shorter lengths as “easy” samples and those with longer lengths
as “hard” samples.

Algorithm 1 Code length validation algorithm

Input: Dataset P = {(B, F)} consists of bug B and corresponding fix F pairs, model M,
count N and K

Output: Experimental results Φ
1: Γ← {}, a set of training data
2: Θ← {}, a set of validation data
3: Λ← {}, a set of test data
4: Φ← {}, a set of experimental results
5: Sort P in ascending order based on the code length of B and denote the sorted dataset

as P′

6: Find the maximum length of samples in B and denote it as max_len
7: R← max_len/N
8: for i← 1 . . . N do
9: Randomly pick K pairs of (B, F) from P′ and denote the picked set as Pi, where the

length of B falls within the range of ((i− 1) · R, i · R ]
10: Divide Pi into three sets Γi, Θi, and Λi in an 8:1:1 ratio
11: Γ← Γ ∪ Γi
12: Θ← Θ ∪Θi
13: Λ← Λ ∪Λi
14: end for
15: Train model M with Γ and Θ
16: for Λi in Λ do
17: Calculate results on M and denote the outcome as Φi
18: Φ← Φ ∪Φi
19: end for
20: return Φ

 0
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Figure 3. The performance of CodeT5 across different code length groups.

3.4. Dataloader Scheduler

In this part of our discussion, we delve into the mechanics of how the dataloader
scheduler orchestrates the organization of training examples into a structured learning
curriculum, drawing upon insights from the difficulty measurer detailed in Section 3.3. To
craft this curriculum, we employ a scheduling function, denoted as S(t), which dynamically
tailors the subset of training data presented at each epoch. This function is conceptualized
as follows:
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Sp(t) = min

(
1,
(

t
1− cp

T
+ cp

) 1
p
)

(1)

where t is the current training epoch number, S denotes the fraction of training data in the
current epoch, c is the initial proportion of available easiest examples, and T represents the
total number of epochs during the training process. The hyperparameter p determines the
rate of adding new training samples to the current subset, where p ≥ 1.

The foundation of our approach is a function inspired by the competence model orig-
inally developed for machine translation by Platanios et al. [38]. Leveraging this model,
we have crafted a dataloader scheduler that effectively aligns the complexity levels of
bug-fixing code samples, as assessed by the difficulty measurer, with the learning needs
of PLMCs, as guided by the model training framework. As delineated in Section 3.3, the
difficulty measurer categorizes unaltered bug-fix code samples as “easy”, while consid-
ering those modified by augmentation operators as “hard”. In the implementation of
our dataloader scheduler, we commence the training with the “easy” samples, utilizing
them as the foundational set of training examples. To address the “harder” segments,
namely the augmented bug-fix code variants, we further stratify them according to the
code length—an indicator of complexity as per the difficulty measurer’s assessment. In
particular, aligning with the measurer’s view that shorter code snippets are less complex,
we organize these variants in ascending order of their buggy code length. Subsequently,
the scheduler function is employed to progressively integrate these sorted data into the
model’s training regimen, adjusting the input sequence based on the evolving training
dynamics. The scheduling process of the dataloader scheduler is intricately linked to the
feedback on training loss from the model trainer. As training advances, the scheduler is
designed to introduce data batches corresponding to the next level of difficulty, once the
model achieves convergence on the current set, a process visually represented in the right
segment of Figure 1.

4. Experimental Setup
4.1. Research Questions

• RQ1: Effectiveness of our approach. How effective is our approach in improving the
program repair performance of PLMCs?

• RQ2: Effectiveness of main components. How effective are the main components of
our approach?

• RQ3: Influence of different dataloader scheduler settings. How does our approach
perform with different dataloader scheduler settings?

• RQ4: Influence of different code augmentation operator types. What is the effect of
different code augmentation operators?

• RQ5: Efficiency of our approach. What is the time cost of applying our approach
to PLMCs?

• RQ6: Generalizability of our approach. What is the generalizability of our approach
in repairing real-world bugs?

4.2. Dataset

We evaluate our approach on three datasets, namely BFPsmall [17], BFPmedium [17],
and Defects4J (v1.2) [18]. The datasets used in our study are all sourced from an open-
source GitHub repository, yet they each adhere to distinct methodologies for identifying
bugs. BFPsmall and BFPmedium select commits based on repair-centric messages, while
the Defects4J dataset identifies bugs through the execution of test suites. The statistical
overview of these datasets is presented in Table 1.
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Table 1. Statistics of three automated program repair benchmarks.

Benchmark Training Set Validation Set Test Set

BFPsmall 46,680 5835 5835
BFPmedium 52,364 6545 6545
Defects4J - - 388

BFPsmall and BFPmedium mine bug fixes from public GitHub events recorded from
March 2011 to October 2017, focusing on commits of Java files flagged by keywords in-
dicative of repair activities. This process involves extracting the source code both before
and after each identified bug-fixing intervention, employing sophisticated code abstraction
strategies to retain crucial contextual information pertinent to the code’s functionality.
Within these datasets, each entry is composed of a Java method plagued by a bug alongside
its rectified counterpart. Following a rigorous selection process governed by established
criteria, code pairs that do not meet the standards are excluded, resulting in the catego-
rization of the remaining data into two distinct subsets: BFPsmall, encompassing code
fragments ranging from 0 to 50 tokens, and BFPmedium, including those that extend from 50
to 100 tokens.

Defects4J stands as a comprehensive repository of real-world bugs derived from
open-source projects. It includes over 300 meticulously documented and reproducible
bugs. Each bug is represented by a pair consisting of a version manifesting the bug and
its rectified counterpart, alongside a dedicated test suite engineered to activate the bug,
thereby facilitating the verification of potential patches. Furthermore, every bug-fix instance
in this dataset is paired with test cases specifically designed to confirm the efficacy of the
applied fix.

In the process of fine-tuning PLMCs using our approach, we employ a suite of ten
distinct code augmentation operators (elaborated upon in Section 3.2). These operators
are utilized to create a variety of code variants from the original training sets. Given
that Defects4J provides only the test set, we use the project-specific training data from
Ye et al. [32] as the original training set. After transforming the original training sets with
code augmentation operators, the generated variants are amalgamated with the original
data, resulting in enriched augmented datasets.

4.3. Baselines

In our evaluation, we use both GraphCodeBERT and CodeT5 as foundational models.
GraphCodeBERT is built upon the encoder-only framework reminiscent of BERT, em-

ploying a multi-layered bidirectional Transformer as its core structure. It uniquely integrates
code data flow into its design and is pre-trained through a triad of tasks: masked language
modeling, edge prediction, and node alignment, utilizing the extensive CodeSearchNet
dataset, which comprises over 2.3 million functions from six different programming lan-
guages, each accompanied by corresponding natural language annotations.

CodeT5 expands the horizon with its 220 million parameter construct, drawing from
the encoder–decoder scheme of T5. It contains four pre-training tasks: masked span
prediction, identifier tagging, masked identifier prediction, and bimodal dual generation.
Masked span prediction requires the model to predict hidden code segments to grasp
the code’s contextual structure; identifier tagging aims to categorize identifiers in code,
like variables and functions, enhancing code comprehension; masked identifier prediction
focuses on predicting hidden identifiers in code, deepening the model’s understanding
of code usage contexts; bimodal dual generation generates two related outputs from a
single input, such as code and its documentation, fostering the model’s understanding
across programming and natural languages. Its training ground is a huge-sized dataset of
8.35 million samples spanning eight programming languages.

We further compare our approach with other different APR methods. For BFPsmall and
BFPmedium benchmarks, we set additional baseline methods including Transformer [50],
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RoBERTa [51], CodeBERT [3], PLBART [52] and CoTexT [53]. For Defects4J benchmark, the
baseline APR methods include SequenceR [29], CoCoNuT [30], DLFix [54], BugLab [55],
Recoder [56], CURE [26], RewardRepair [57], DEAR [58], and SelfAPR [32].

4.4. Metrics

For BFPsmall and BFPmedium benchmarks, we use the Exact Match accuracy and BLEU-
4 score to evaluate program repair performance following [5]. BLEU-4 offers a more
flexible approach to assessing the extent of subword overlap, whereas Exact Match adopts
a stringent criterion that demands a perfect match between the predicted and the actual
patches in a genuine commit. Across these two evaluation metrics, outcomes are displayed
on a scale ranging from 0 to 100 (%), with superior performance denoted by a higher
percentile score.

For the Defects4J benchmark, we report the number of bugs that can be accurately
fixed by employing both unit testing and manual validation, in alignment with method-
ologies from previous studies. Initially, we execute test suites to autonomously pinpoint
patches that are plausible for each identified bug. This is succeeded by a thorough manual
inspection to affirm the accuracy of these patches.

5. Evaluation and Results
5.1. RQ1: Effectiveness of Our Approach

To substantiate the efficacy of our approach, we integrate it into two prominent
PLMCs, namely GraphCodeBERT and CodeT5. In the interest of maintaining experimental
equity, we adhere to the model parameter configurations as delineated in their respective
foundational papers, with the sole modification being an adjustment to the warm-up-steps
parameter to accommodate variations in dataset dimensions. For the deployment of our
approach, we calibrate the hyperparameter p to a value of 5 and fine-tune the PLMCs for
50 epochs.

The experimental results for both BFPsmall and BFPmedium datasets are shown in
Table 2. All baseline outcomes are sourced directly from the respective original publications.
Initially, it is noted that the “Naive Copy” strategy yields a significantly high BLEU-4
score, yet it registers a null value in exact match metrics. This observation suggests
a substantial overlap between the erroneous code and its correction, underscoring the
necessity of prioritizing Exact Match as the foremost evaluation criterion. We find that
GraphCodeBERT implemented with our approach, achieves an Exact Match accuracy of
17.82% in BFPsmall and 10.96% in BFPmedium, outperforming the original GraphCodeBERT.
Similarly, CodeT5 implemented with our approach achieves an exact match of 22.83%
in BFPsmall and 15.33% in BFPmedium, which also substantially outperforms the original
CodeT5 model. Moreover, CodeT5 implemented with our approach achieves the best
performance among all baseline methods.

It is evident that the application of our approach enhances the success rates of PLMCs,
with a notably greater improvement observed in datasets containing longer code samples.
This is attributed to the fact that the BFPmedium dataset encompasses code samples of longer
length, which include a broader array of context variables, identifiers, and literals. The code
augmentation operators have the capability to produce a wider variety of code variants for
these samples, thereby enriching the PLMCs with a more diverse set of bug-fix data during
the fine-tuning phase.

The empirical findings affirm that our approach significantly enhances the efficacy
of PLMCs in program repair tasks, without necessitating alterations to their inherent
architectural designs.
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Table 2. Performance of our approach on the Bugs2Fix benchmark.

Methods
BFPsmall BFPmedium

Exact Match BLEU-4 Exact Match BLEU-4

Naive Copy 0.00 78.06 0.00 90.91
LSTM 10.00 76.76 2.50 72.08
Transformer 14.70 77.21 3.70 89.25
RoBERTa (code) 15.90 77.30 4.10 90.07
CodeBERT 16.40 77.42 5.16 91.07
PLBART 19.21 77.02 8.98 88.50
CoTexT 21.58 77.28 13.11 88.40

GraphCodeBERT 17.30 80.02 9.10 91.31
GraphCodeBERT + our approach 17.82 88.43 10.96 88.43

CodeT5 21.61 77.43 13.96 87.64
CodeT5 + our approach 22.83 77.77 15.33 90.11

5.2. RQ2: Effectiveness of Main Components

To elucidate the impact of core components within our approach, we conduct an abla-
tion analysis. This entailed deploying our approach on the cutting-edge PLMC, CodeT5,
utilizing both the BFPsmall and BFPmedium benchmarks, and systematically removing el-
ements such as the curriculum learning (CL) mechanism and code augmentation (CA)
operators to gauge their individual contributions. Given that the CL mechanism is con-
tingent upon the enhanced dataset, the exclusion of CA operators inherently nullifies
the CL mechanism’s functionality. The outcomes of this study are tabulated in Table 3,
where the initial entry delineates the comprehensive performance of CodeT5 under the
full configuration. The ensuing entry details the effects of omitting the CL mechanism,
and the concluding row illustrates the results of excluding both the CA operators and the
CL mechanism.

Table 3 demonstrates that the exclusion of any component of our approach diminishes
its program repair efficacy, underscoring the integral roles of both the curriculum learning
mechanism and code augmentation operators in enhancing bug-fixing capabilities. These
results can be attributed to the fact that code variants generated by code augmentation op-
erators enable the model to discern more generalized syntactic and semantic relationships.
Concurrently, the curriculum learning mechanism’s design facilitates the model’s progres-
sive assimilation of increasingly complex bug-fixing code instances, thereby enriching the
training process and fostering a more profound comprehension of programming constructs.
By synergizing these elements, our approach significantly enhances the PLMC’s ability to
capture essential syntactic and semantic nuances during the fine-tuning phase.

Table 3. Results of ablation study on Bugs2Fix benchmark.

Methods Exact Match
BFPsmall BFPmedium

Full Setting 22.83 15.33
Remove CL 22.23 14.62

Remove CL + CA 22.14 14.19

5.3. RQ3: Influence of Different Dataloader Scheduler Settings

One argument that needs to be predefined in our approach is the dataloader sched-
uler’s parameter p, which determines the rate of adding new training examples to models.
With an increment in the value of p, an augmented volume of training data are administered
to the model during the initial phases.

To scrutinize the influence of varying p values, we conducted a series of experiments
on the BFPmedium, as illustrated in Table 4. Utilizing CodeT5 as the foundational model,
we implemented our approach with different p. To underscore the scheduler’s design
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effectiveness, we substituted its function with a geometric progression (GP) function,
referenced from [39], while maintaining consistency in all other experimental parameters.
Contrary to our approach, the GP function adds harder examples at a faster rate and
provides easier examples with more training time. Notably, all dataloader scheduler
strategies eventually incorporate the full training dataset during the terminal training phase.

Observations from Table 4 reveal that, across all configurations, our methodology
consistently surpasses the baseline. Even when compared with the GP scheduler function,
our approach remains superior under all p parameter settings. This superior performance is
attributed to our method’s provision of ample training duration for the model to internalize
complex examples, a boon for the curriculum learning mechanism. The empirical evidence
suggests that if we increase the value of p to larger values, such as p = 20, the results would
be relatively lower. In fact, setting p to infinity renders the scheduler function (1) value to
1, which means the curriculum learning mechanism no longer works. In general, while
distinct p values might influence model performance to some degree, our method broadly
enhances the model’s program repair capabilities.

Table 4. Success Rate of different dataloader scheduler settings on BFPmedium benchmark.

Methods Exact Match

Baseline 14.19
GP [39] 14.74
p = 1 15.29
p = 2 15.14
p = 5 15.33
p = 10 15.07
p = 20 15.00

5.4. RQ4: Influence of Different Code Augmentation Operator Types

In this section, we focus on exploring the impact of different types of code augmenta-
tion operations on the performance of automated program repair. The reason for choosing
this evaluation approach is that code augmentation techniques are one of the key factors
in enhancing the performance of PLMCs in automated program repair tasks. By testing
these techniques at various levels of granularity, we can gain a deeper understanding of
the specific effects of each augmentation operation on model learning and performance.
Similarly to RQ3, we conduct experiments on BFPmedium. We construct augmented datasets
of the same size employing code augmentation operators of different types (defined in
Section 3.2) and independently train CodeT5 on these datasets. This experimental design
allows us to compare the effects of different augmentation operation types under the same
experimental conditions, thereby accurately quantifying their impact on model perfor-
mance. The findings are presented in Table 5. The initial row displays outcomes utilizing all
code augmentation operators, whereas the subsequent rows, from the second to the fourth,
detail the results when omitting the augmentation operator types specific to declaration,
API, or control structure, respectively.

Table 5. Success rate of different code augmentation operator types on BFPmedium benchmark.

Methods Exact Match

All Types 15.33
Remove Declaration 14.65

Remove API 14.79
Remove Control 14.94

The results indicate that the omission of different types of code augmentation operators
results in diminished outcomes. We can also find that the contribution of control structure
transformation is the least compared with other types. We speculate that alterations to
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the control structure more significantly affects token sequencing and context compared
to augmentation techniques at other granularity levels. Given that the PLMC we use
is based on masked language modeling and exhibits sensitivity to context, these factors
make it more challenging for the models to assimilate knowledge and features introduced
through modifications to the control structure. This insight highlights the need for PLMCs
to delve deeper into the structural complexities of source code, thereby improving their
understanding of program semantics.

5.5. RQ5: Efficiency of Our Approach

In addressing this RQ, we assess the efficiency of our approach by measuring the time
it takes to apply it to a PLMC. CodeT5 serves as our baseline model, and we evaluate the
temporal expenditure on BFPsmall and BFPmedium. To maintain equitable conditions, all
experiments are conducted over 50 epochs. The findings are depicted in Table 6.

Table 6. The relative time required for applying our method. Baseline refers to the time cost of the
model fine-tuned without our approach.

Methods Time Cost
BFPsmall BFPmedium

Baseline 1 1
Our Method 1.08 1.28

From the results, we can find that after applying our approach, the training time on
the BFPsmall dataset is 1.08 times longer than without it, and it is 1.28 times longer on the
BFPmedium dataset. The reason for the relatively longer training time on the BFPmedium
dataset compared to the BFPsmall dataset is that the augmentation operators in our approach
can generate more code variants for the former. Given the expansion in data size and the
enhancement in model performance, this represents an acceptable time cost.

In practical applications, software developers utilize PLMCs that have been fine-
tuned with our approach. Consequently, the efficiency of generating patches in real-world
scenarios aligns with the performance of the original PLMCs.

5.6. RQ6: Generalizability of Our Approach in Repairing Real-World Bugs

In this RQ, we evaluate the generalizability of our approach in repairing real-world
bugs on the Defect4J benchmark. We use CodeT5 as a baseline model and apply our
approach to it. We also compare it with other APR tools, as shown in Table 7.

Table 7. Performance of our approach on Defects4J benchmark.

Methods # Correct

SequenceR 14
BugLab 17
DLFix 40

CoCoNuT 43
RewardRepair 44

DEAR 53
CURE 55

Recoder 64
SelfAPR 65

CodeT5 58
CodeT5 + our approach 67

As shown in Table 7, after applying our method to CodeT5, the number of correctly
generated patches increased by 9 compared to the original model, surpassing other APR
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tools. This corroborates the results of previous experiments. This finding further demon-
strates our method’s effectiveness in fixing real-world bugs, paving the way for its wider
implementation in automated program repair.

6. Conclusions

In this study, we proposed an innovative fine-tuning framework engineered to boost
the success rate of PLMCs in the realm of APR. Our approach employs a curriculum
learning mechanism to strategically sequence the training of bug-fixing code pairs, which
are derived using a series of code augmentation operators. We deploy our approach
on representative PLMCs to assess their adaptability and effectiveness. Our thorough
experimental analysis reveals that our approach substantially improves the performance of
PLMCs in program repair.

Despite the achievements of our approach, we recognize that it has certain limita-
tions. Firstly, because the total number of training epochs in the dataloader scheduler is
fixed, the model cannot dynamically adjust the number of iterations based on the current
training outcomes. Secondly, our experimental analysis was primarily conducted on Java
datasets. For datasets involving other programming languages or multi-languages, the
code augmentation operators we used might need to be replaced or redesigned.

Future research will be dedicated to expanding our framework to adaptively adjust
according to the training state of the model at different times and to further optimize the
quality and diversity of code augmentation operations, thus addressing a broader range
of programming errors. Moreover, we plan to explore the possibility of integrating our
method with other large language models to further increase the success rate of repairs. We
believe that with continuous effort and innovation, the application of PLMCs in software
engineering will become more widespread and efficient.
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