
Citation: Zangari, A.; Marcuzzo, M.;

Rizzo, M.; Giudice, L.; Albarelli, A.;

Gasparetto, A. Hierarchical Text

Classification and Its Foundations: A

Review of Current Research.

Electronics 2024, 13, 1199.

https://doi.org/10.3390/

electronics13071199

Academic Editor: Arkaitz Zubiaga

Received: 7 February 2024

Revised: 15 March 2024

Accepted: 18 March 2024

Published: 25 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Review

Hierarchical Text Classification and Its Foundations: A Review
of Current Research
Alessandro Zangari † , Matteo Marcuzzo † , Matteo Rizzo , Lorenzo Giudice , Andrea Albarelli
and Andrea Gasparetto *

Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University, 30123 Venice, Italy;
alessandro.zangari@unive.it (A.Z.); matteo.marcuzzo@unive.it (M.M.); matteo.rizzo@unive.it (M.R.);
lorenzo.giudice@unive.it (L.G.); albarelli@unive.it (A.A.)
* Correspondence: andrea.gasparetto@unive.it
† These authors contributed equally to this work.

Abstract: While collections of documents are often annotated with hierarchically structured concepts,
the benefits of these structures are rarely taken into account by classification techniques. Within
this context, hierarchical text classification methods are devised to take advantage of the labels’
organization to boost classification performance. In this work, we aim to deliver an updated overview
of the current research in this domain. We begin by defining the task and framing it within the
broader text classification area, examining important shared concepts such as text representation.
Then, we dive into details regarding the specific task, providing a high-level description of its
traditional approaches. We then summarize recently proposed methods, highlighting their main
contributions. We also provide statistics for the most commonly used datasets and describe the
benefits of using evaluation metrics tailored to hierarchical settings. Finally, a selection of recent
proposals is benchmarked against non-hierarchical baselines on five public domain-specific datasets.
These datasets, along with our code, are made available for future research.

Keywords: hierarchical text classification; multilabel classification; hierarchical metrics; natural
language processing; text classification survey

1. Introduction

Text classification (TC) is one of the most widely researched tasks within the natural
language processing (NLP) community [1]. Shortly put, TC methods are supervised
learning algorithms whose objective is to map documents (i.e., pieces of text) to a predefined
set of labels. The most common classification setting in practice is multiclass, where only
one label (i.e., class) can be associated with each document. There might only be two
labels to choose from (binary classification) or multiple. In contrast, multilabel classification
allows every document to be labeled with multiple categories. In either case, TC has
many practical applications, such as topic labeling, sentiment analysis, and named entity
recognition [2].

From a theoretical point of view, binary classification is the most generic classification
scenario, as long as the categories are stochastically independent [3]. If this is the case,
the problem can be translated into |C| independent problems, where C is a set of classes.
However, there are many practical scenarios in which this is not the case; hierarchical
text classification (HTC) is one of these. HTC is a sub-task of TC, as well as part of
the wider hierarchical multilabel classification (HMC). Vens et al. [4] define HMC as a
classification task where instances (i) may belong to multiple classes simultaneously, and
(ii) are organized within a hierarchy. Thus, as labels do indeed have a dependency on each
other (as made explicit by the hierarchy), the simplifying independence assumption cannot
be made.

Electronics 2024, 13, 1199. https://doi.org/10.3390/electronics13071199 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071199
https://doi.org/10.3390/electronics13071199
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3634-6607
https://orcid.org/0000-0002-0451-4899
https://orcid.org/0000-0002-9723-211X
https://orcid.org/0009-0005-7661-6789
https://orcid.org/0000-0002-3659-5099
https://orcid.org/0000-0003-4986-0442
https://doi.org/10.3390/electronics13071199
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071199?type=check_update&version=2


Electronics 2024, 13, 1199 2 of 57

1.1. What Is Hierarchical Text Classification?

The distinguishing property of HTC tasks is that the data they utilize have labels
organized in a multi-level hierarchy. Within this, each label can be seen as a node and may
have many possible children. In these types of situations, the hierarchical structure is key
to the achievement of well-performing classification methods.

This type of label organization is quite common; real-world classification datasets often
contain a large number of categories explicitly organized into a class hierarchy or taxonomy.
Moreover, this arrangement of information can sometimes be found even in corpora for
which the hierarchy was not initially devised. For example, a set of documents categorized
by their topics can usually be organized within large macro-areas that encompass subsets
of related subjects (for instance, the “sports” macro category can contain both “tennis”
and “football”). Indeed, hierarchies allow for intuitive modeling of what could instead be
complex relationships among labels (such as the is-a and part-of relationships).

Thus, thanks to the increased availability of TC datasets that integrate hierarchical
structure in their labels, as well as a general interest in industrial applications that utilize TC,
a large number of new methods for HTC have been proposed in recent years. Indeed, HTC
has many practical applications beyond classic TC, such as International Classification of
Diseases (ICD) medical coding [5,6], legal document concept labeling [7], patent labeling [8],
IT ticket classification [9], and more.

The strength of these “hierarchical classifiers” comes from their ability to leverage the
dependency between labels to boost their classification performance. This is particularly
important when considering the wider task of multilabel TC, which, in general, can be quite
difficult, and even more so when dealing with large sets of labels that contain many similar
or related labels [10]. Moreover, HTC methods tend to exhibit better generalization when
faced with new classes compared to their non-hierarchical counterparts. Newly introduced
classes are often subcategories of larger, pre-existing macro-categories. Consequently, these
hierarchical methods retain some of their knowledge from the parent nodes of these newly
introduced categories.

1.2. Related Work

Text classification is one of the most active research areas within NLP, and many
surveys and reviews have been published in recent years. These cover a wide range of
techniques used in NLP, from traditional methods to the latest deep learning applica-
tions [1,2,11–13]. However, these works cover the broader TC field and do not cover HTC
specifically (or mention it very briefly). In the following paragraphs, we instead present
some notable works within the field of HTC. We briefly touch on seminal works that
describe this field, while also highlighting recently published reviews that perform an
analysis of the existing methods.

One of the first works to directly address HTC is that of Koller and Sahami [14]. The
authors already highlight some of the most notable characteristics of HTC, such as the inad-
equacy of flat classifiers as opposed to their hierarchical counterparts (which we describe
in Section 3.1) and the proliferation of topic hierarchies. Sun and Lim [15] similarly address
the difficulties tied to utilizing flat approaches in hierarchical settings, as well as discussing
the issues related to standard performance metrics. As we will discuss in Section 3.3,
classification metrics such as precision, recall, and accuracy assume independence between
categories, which might give a skewed representation of a classifier’s real performance
(e.g., performing a misclassification on a child not but not on its parent should be consid-
ered better than entirely incorrect classifications). In a subsequent work, Sun et al. [16]
propose a specification language to describe hierarchical classification methods to facilitate
the description and creation of HTC systems.

More recently, Silla and Freitas [17] give a precise definition of hierarchical classifi-
cation and propose a unifying framework to classify this task across different domains
(i.e., not limited to text). They provide a comprehensive overview of this research area,
including a conceptual and empirical comparison between different hierarchical classifica-



Electronics 2024, 13, 1199 3 of 57

tion approaches, as well as some remarks on the usage of specialized evaluation metrics.
Stein et al. [18], on the other hand, address HTC directly, proposing an evaluation of
traditional and neural models on a hierarchical task. In particular, the authors aim to
gauge the efficacy of different word embedding strategies (which we outline in Section 2.1)
with several methods for the specific HTC task. Several methods are tested, also com-
paring the effect of different text embedding techniques by evaluating their effect on
both standard and specialized metrics. Similarly to other authors, they also advocate for
the inadequacy of traditional “flat” classification metrics in hierarchical settings. Lastly,
Defiyanti et al. [19] provide a review of a sub-class of hierarchical methods, namely,
global (big-bang) approaches (described in Section 3.1). The authors detail various al-
gorithms using the big-bang approach, mainly focusing on applications in bioinformatics
and text classification.

1.3. Contributions

In this work, we propose an analysis of the current research trends related to HTC,
performing a systematic search of all papers that have been published in the last 5 years
(i.e., between 2019 and 2023). We deem this range effective for analyzing recent work
while also providing a way to limit the scope. We collect papers querying the keywords
“hierarchical text classification”, “hierarchical multilabel”, and “multilevel classification” in Google
Scholar (https://scholar.google.com, accessed on 17 March 2024), PapersWithCode (https:
//paperswithcode.com, accessed on 17 March 2024), Web of Science (https://webofscience.
com, accessed on 17 March 2024), and DBLP (https://dblp.org, accessed on 17 March 2024).
We complement our search results by searching with the query “hierarchical AND ’text
classification’” on Scopus (https://www.scopus.com, accessed on 17 March 2024).

Moreover, in our experimental section, we report the performance of a set of recent
proposals, as well as several baselines, on five datasets. Three of these datasets are popularly
utilized in the literature, while two of them are newly proposed versions of existing
collections. In summary, the main contributions of this work can be summarized as follows:

• We provide an extensive review of the state of current research regarding HTC;
• We explore the NLP background of text representation and the various neural archi-

tectures being utilized in recent research;
• We analyze HTC specifically, providing an analysis of common approaches to this

paradigm and its evaluation measures;
• We summarize a considerable number of recent proposals for HTC, spanning between

2019 and 2023. Among these, we dive deeper into the discussion of several methods
and how they approach the task;

• We test a set of baselines and recent proposals on five benchmark HTC datasets that
are representative of five different domains of applications;

• We release our code (https://gitlab.com/distration/dsi-nlp-publib/-/tree/main/htc-
survey-24, accessed on 17 March 2024) and dataset splits for public usage in research.
The datasets are available on Zenodo [20], including two new benchmark datasets
derived from existing collections;

• Lastly, we summarize our results and discuss current research challenges in the field.

1.4. Structure of the Article

The rest of this article is organized as follows. Section 2 introduces the main NLP
topics and recent advancements relevant to the latest proposals in HTC. Section 3 then
dives into the specifics of HTC, describing the various approaches found in the literature
and hierarchical evaluation measures. Section 4 summarizes recently proposed methods,
analyzing in more detail a subset of them we wish to explore in the experimental section.
This section also introduces the most popular datasets utilized in HTC research. The
experimental part of this survey begins in Section 5, which outlines the datasets utilized
and the methods being benchmarked, as well as a discussion of the results. The manuscript

https://scholar.google.com
https://paperswithcode.com
https://paperswithcode.com
https://webofscience.com
https://webofscience.com
https://dblp.org
https://www.scopus.com
https://gitlab.com/distration/dsi-nlp-publib/-/tree/main/htc-survey-24
https://gitlab.com/distration/dsi-nlp-publib/-/tree/main/htc-survey-24


Electronics 2024, 13, 1199 4 of 57

then moves towards its end in Section 6, which briefly explores current research challenges
and research directions in the specific field of HTC, and draws its conclusions in Section 7.

2. NLP Background

Given the significant advancements in NLP over the last few years, our discussion
begins with an updated overview of the NLP topics that lay the foundation of any HTC
method. First, we describe text representation and classification from a generic point of
view, highlighting some of the most prominent approaches to the extraction of features
from text. Then, to provide sufficient background for recent methods discussed throughout
this article, we highlight some of the most notable neural architectures being utilized in the
literature as of now.

2.1. Text Representation and Classification

The interpretation of text in a numerical format is the fundamental first step of any
application that processes natural language. How text is viewed and represented has changed
drastically in the last few decades, moving from relatively simple statistics-based word
counts to more semantically and syntactically meaningful vectorized representations [21–23].
A richer text representation translates into more meaningful features, which—if utilized
adequately—lead to massive improvements in downstream task performance. In this
section, we overview the main approaches to text representation, highlighting major
milestones and how they differ from one another.

2.1.1. Text Segmentation

First, bodies of text must be segmented into meaningful units—a process called
tokenization for historical reasons [10]. Naturally, the most intuitive one is that of words,
though they are far from the only atomic unit of choice for this task. Indeed, this is a
non-trivial task because of many factors. For instance, vocabularies (i.e., the set of unique
words in a corpus of documents) might be too large and sparse when segmenting for words.
Moreover, some languages do not have explicit word boundary markers (such as spaces
for English).

This is a vast and interesting topic of its own, and we point readers to the work
by Mielke et al. [24] for further information on it. Very briefly, it is important to mention
that recent approaches rely on sub-word tokenization approaches, which broadly operate
on the assumption that common words should be kept in the vocabulary, while rarer
words should be split into “sub-word” tokens. This allows for smaller and more dense
vocabularies and has been successfully applied to many recent approaches. Examples of
sub-word tokenization approaches include Byte-pair Encoding [25], WordPiece [26], and
SentencePiece [27]. Even more recently, some authors have argued for different forms of
decomposition, such as ones utilizing underlying bytes [28], or even visual modeling based
on the graphical representation of text [29].

2.1.2. Weighted Word Counts

Some of the more traditional and widely utilized approaches in the past are based
on word occurrence statistics, effectively ignoring sentence structure and word semantics
entirely. The most common example is that of the Bag-Of-Words (BoW) representation;
in it, documents are simply represented as a count of their composing words, which are
then often weighted with normalizing terms such as the well-studied Term Frequency-
Inverse Document Frequency (TF-IDF) [21]. Briefly, TF-IDF measures word relevancy by
weighting it positively by how frequently the word appears in a document (TF), but also
negatively by how frequently it appears in all other documents (IDF). This way, words that
frequently appear in a document are highlighted, but only if they do not appear often in
other documents as well (as this negates their discriminative power).



Electronics 2024, 13, 1199 5 of 57

2.1.3. Word Embeddings

Weighted word counts such as TF-IDF weighted BoW fail to capture any type of se-
mantic and syntactic property of text. A major milestone towards the development of more
meaningful representations is the development of word embeddings, initially popularized
by works such as Word2Vec [30,31] and GloVe [22]. These vectorial representations of
text are learned through unsupervised language modeling tasks; briefly, language mod-
eling refers to the creation of statistical models created through word prediction tasks
and has been studied for many decades [32]. The resulting language models (LMs) are
useful in a variety of tasks, one of which is indeed the extraction of meaningful word and
sentence representations.

The LMs utilized to develop word embeddings are based on shallow neural net-
works pre-trained on massive corpora of documents, allowing them to develop meaningful
vectorial representations for words. The underlying semantic properties of these repre-
sentations have often been exemplified through vector arithmetic operations, such as the
classic example of ⃗king− m⃗an + ⃗woman ≈ ⃗queen. Nonetheless, at a practical level, these
vectors—i.e., word embeddings—can then be utilized as input features for downstream
algorithms (e.g., classifiers), leading to vast improvements in terms of performance.

2.1.4. Contextualized Language Models

Word embeddings have sometimes been defined as “static”, as their early iterations
produced representations that were unable to disambiguate the meaning of a word with
multiple meanings (i.e., polysemous words) [1]. An embedding for such a word, then,
would be an average of its multiple meanings, leading to an inevitable loss of informa-
tion. While much research has been dedicated to the addition of context to word em-
beddings (with notable results such as ELMO [33]), the introduction of the Transformer
architecture [23] (see Section 2.2.3) has been certainly the most pivotal moment towards the
development of contextualized LMs.

In layman’s terms, these models contextualize word embeddings by studying their
surrounding words in a sentence (the “context”) [34–38]. A notable change of Transformer-
based LMs over previous approaches is the lack of recurrence in their architectures, which
instead utilize the attention mechanism [39,40] as their main component. This was a drastic
change when considering that recurrent neural networks (RNNs) [41,42] were the go-to
approach for text interpretation before the introduction of purely attention-based models, as
they are particularly effective when dealing with sequential data. However, Transformers
are much more parallelizable and also have been shown to scale positively with increased
network depth, something that is not true for RNNs [43]. Therefore, larger and larger
Transformer-based LMs can be built (both in terms of training data and model parameters),
a practice that has seen widespread use in the most recent literature. Many recent models
are now referred to with the moniker of large language models (LLMs) because of the massive
amount of parameters they contain. Examples of this trend include GPT-3 (175 billion
parameters) [38], LLaMA (65 billion parameters) [44], GShard (600 billion parameters) [45],
and Switch-C (1.6 trillion parameters) [46]. More recently, some LLMs are being called
foundation LMs because of the broad range of few-shot capabilities that allow them to be
adapted to several tasks [47]. Within this context, researchers have been active in proposing
LLMs for HTC tasks [48].

2.1.5. Classification

In terms of classification, traditional word representation methods such as TF-IDF
(and, to a lesser extent, word embeddings) have been widely utilized as input features
for traditional classification methods such as decision trees [49,50], support vector ma-
chines [51,52], and probabilistic graphical models (e.g., naive Bayes and hidden Markov
models) [53,54]. The same can be said about word embeddings, which have, however,
seen much greater use with specialized neural network architectures such as convolu-
tional neural networks (CNNs) [55–58] and RNNs [59–61]. Transformer-based LMs such as



Electronics 2024, 13, 1199 6 of 57

the Bidirectional Encoder Representations from Transformers (BERT) [34] and Generative
Pre-trained Transformer (GPT) [36], on the other hand, have showcased outstanding classi-
fication results by passing the contextualized embeddings through a simple feed-forward
layer. The ease of adaptation of these models has highlighted the importance of developing
well-crafted representations for text. For a more in-depth description of classification
approaches in NLP, we refer the readers to Gasparetto et al. [1].

2.2. Notable Neural Architectures

Much of the progress achieved in the development of meaningful text representation
is attributable to neural networks, and deep learning in particular. While earlier approaches
discussed (such as Word2Vec and GloVe) were initially based on shallow multilayer percep-
trons [22,30], better results were later obtained with larger and deeper networks (i.e., more
layers, more parameters). In this section, we briefly overview some of the most influential
neural architectures and mention notable applications in the field of text representation.

2.2.1. Recurrent Neural Networks

RNNs [41] are networks particularly well-suited to environments that utilize sequen-
tial data, such as text or time series. This particular architecture allows these networks
to retain a certain amount of “memory”, making them able to extract latent relationships
between elements within sequences. In practice, this is performed by utilizing information
from prior inputs to influence the current input and output of the network.

Simple RNNs for text processing are fed a sequence of word embeddings, which are
processed sequentially. At each time step, the network receives both the next word vector
as well as the hidden state of the previous time step (Figure 1). Unfortunately, because of
their structure, standard RNN architectures are vulnerable to gradient-related issues, such
as vanishing and exploding gradients [62]. In response to this issue, these architectures
are frequently enhanced with gating mechanisms, the most popular being long short-term
memory (LSTM) [63] and gated recurrent unit (GRU) [64]. Briefly, these gates allow the
network to control which and how much information to retain, such as to enable the
modeling of long-term dependencies. RNNs that utilize these gates are often referred to by
the acronym of the gate itself, i.e., LSTM networks and GRU networks.

(a) Compressed basic RNN. (b) Basic RNN shown unfolded at different time steps.

Figure 1. Exemplification of a simple RNN structure.

A simple RNN [65] can be defined as in the equation below, where ht and xt are
the hidden state and input vector at time t, respectively, while Wh and Wx are learnable
weight matrices:

ht = σ(Whht−1 + Wxxt + bh) (1)

Here, σ is an activation function, typically tanh or Rectified Linear Unit (ReLU), and b
is a bias term. The output yt at each time step is usually derived from the state of the last
layer of the RNN at all time steps, for instance:

yt = σ(Wyht + by) (2)



Electronics 2024, 13, 1199 7 of 57

In the context of text representation, RNNs based on encoder–decoder architectures
have been widely utilized to extract meaningful textual representations [66]. Briefly, an
encoder–decoder structure can be understood as an architecture by which inputs are
mapped to a compressed yet meaningful representation (contained in the hidden states
between encoder and decoder). This representation should hopefully capture the most
relevant features of the input and can then be decoded for a variety of different tasks (e.g.,
translation). Autoencoders [67] are a particular class of encoder–decoder network that
attempts to regenerate the input exactly; they are particularly useful in creating efficient
representations of unlabeled data.

In this context, the hidden states between the encoder and the decoder make for a
semantically meaningful and compact representation of input words. The introduction
of bidirectionality (influence in both the left-to-right and right-to-left directions) in RNNs
has also been proved to be beneficial and has been used to achieve notable results, such as
the aforementioned ELMo [33], a bidirectional LSTM-based language model that marked
one of the first milestones towards the development of contextualized word embeddings.
Nonetheless, RNNs have inherent limitations because of how they process data sequentially,
making them ill-suited for parallelization. Furthermore, despite the improvements intro-
duced by LSTM and GRUs, RNNs still struggle with long sequences because of memory
constraints and their tendency to forget earlier parts of the sequence [62].

2.2.2. Convolutional Neural Networks

CNNs [68] are well-known neural architectures originally devised for computer vision
applications. However, these networks have since been extended to other fields, achieving
excellent results in NLP tasks as well [55,58]. The core structural element of CNNs is the
convolutional layer, which applies a feature detector (kernel or filter) across subsets of the
input (i.e., the convolution operation) to extract features. While this has a more intuitive
interpretation in computer vision (where the filter moves across the image to search for
features), the same reasoning can be applied to text. Intuitively, convolution as applied to
images can be thought of as a weighted average of each pixel based on its neighborhood; the
general idea of the process is outlined in Figure 2a. If we consider a vectorial representation
of text (i.e., word embeddings), applying a filter as wide as the embedding size (a common
approach) allows us to search for features within the sentence, as shown in Figure 2b. CNNs
often use pooling operators (such as max or average) to reduce the size of the learned
feature maps, as well as to summarize information.

(a) (b)

Figure 2. Exemplification of the application of convolutional filters in images and text.
(a) A convolutional filter (top left) sliding across a digit from the MNIST dataset [69].
(b) A convolutional filter sliding across the vectorial representation of a sentence. Here, the
filter is sliding in the conventional reading direction.

Various works have tested the efficacy of CNNs, especially as feature extractors on
word embeddings [58]. An obvious upside of these architectures is their speed (as they are
much more parallelizable than RNNs). Thus, CNNs produce efficient yet effective latent
representations that can be used to solve a variety of tasks (e.g., classification). Recent



Electronics 2024, 13, 1199 8 of 57

works have also revitalized the interest of CNNs in NLP by introducing temporal CNNs.
In short, these aim to extend CNNs by allowing them to capture high-level temporal
information [70,71].

2.2.3. Transformer Networks and the Attention Mechanism

As previously mentioned, one of the most influential neural architectures introduced
in recent years—especially in terms of text processing—is the Transformer architecture [23].
The foundational framework is that of an encoder–decoder with a variable number of
encoder and decoder blocks. In Section 2.1.4, we briefly touched upon the main innovation
introduced by Transformers, which is the complete lack of recurrence as a learning mecha-
nism. Instead, Transformers model context dependency between words entirely through
the attention mechanism [39,40], which is outlined in the remaining part of this section.

Attention is, in essence, a weighting strategy devised to learn how different compo-
nents contribute to a result. It was initially proposed in the machine translation domain [39]
as an alignment mechanism that matched each word of the output (translated sentence) to
the respective words in the input sequence (original sentence). The rationale behind this is
that, when translating a sentence, a good translation can only be obtained by looking at the
context of words and paying attention to specific words.

Vaswani et al. [23] used this mechanism in the Transformer architecture to allow
the model to process all input tokens simultaneously, rather than sequentially, as was
the case in previous recurrent networks. Input sequences are fed to the Transformer
encoder at the same time, and a positional encoding scheme is used in the first layers of the
encoder and decoder to inject some ordering information in the word embeddings. This
ensures word ordering properties are not lost, e.g., that two words appearing in different
positions in a sentence will have a different representation. Then, in all the remaining
layers, Transformers use self-attention layers to learn dependencies between tokens. The
layers are “self”-attentive, as each token pays attention to every other token in a sentence,
which is the main learning mechanism that allows for the disposal of recurrence. Indeed,
since tokens in the input sequence are being processed simultaneously, the encoders can
look at surrounding tokens in the same sentence and produce context-dependent token
representations [1].

Stacking several self-attention layers produces a multi-head attention (MHA) layer,
whose structure is shown in Figure 3. Vaswani et al. [23] argue that having multiple
attention heads in the layer enables the model to pay attention to different information in
distinct feature spaces and at different positions. Input sequences in the attention heads are
transformed using linear transformations to generate three different representations, which
the authors name Q (queries), K (keys), and V (values), following the naming convention
used in information retrieval (as in Equation (3)):

Q = XWQ, K = XWK , V = WV (3)

where WQ, WK ∈ Rdim×dk , WV ∈ Rdim×dv are the learned weight matrices. In the Trans-
former architecture, K and V are always generated from the same sequence (as we will
discuss, Q is used differently in the encoder and decoder part). The transformed sequences
are then used to compute the scaled dot-product attention, as follows:

Zk = ScaledDotAttention(Q, K, V) = softmax
(

QKT
√

dk

)
V (4)

While many definitions of attention exist in the literature, the authors decided to use
the scaled dot-product, mainly for efficiency reasons. The product of the key and query
matrices is scaled by

√
dk to improve the stability of the gradient computation. At an

intuitive level, we may envision a word q ∈ Q as being queried for similarity/relatedness
against keys k ∈ K, finally obtaining the relevant word representation by multiplying by V.



Electronics 2024, 13, 1199 9 of 57

The final result of the MHA layer is the concatenation of all heads multiplied by matrix
WO ∈ Rhdv×dim, which reduces the output to the desired dimension RN×dim:

Z = Concat(Zk)WO (5)

In encoder blocks, Q, K, and V are all generated by the input sequence and have the
same size; the general structure of an encoder block can be seen in Figure 4a. In decoder
blocks, Q comes from the previous decoder layer, while K and V come from the output of
the associated encoder. These blocks structurally differ from encoders in the presence of
another MHA layer, which precedes the standard one and is introduced to mask future
tokens in a sentence (Figure 4b). This allows the decoder to be “autoregressive” during
training, as it otherwise would trivially look forward in a sentence to obtain the result.

Figure 3. The multi-head attention layer used in the Transformer architecture.

(a) Encoder block. (b) Decoder block.

Figure 4. Transformer encoder–decoder architecture.



Electronics 2024, 13, 1199 10 of 57

With the widespread usage of Transformer blocks with MHA, researchers have stud-
ied the features extracted at each layer. Interestingly, some of these works found that
each encoding block may focus on the extraction of linguistic features at different levels:
syntactic features are mostly extracted in the first blocks, while deeper layers progressively
focus on semantic features [72,73]. This “layer specialization” phenomenon suggests that
stacking attention layers creates expressive representations that blend morphological and
grammatical features.

The attention mechanism served as the basis of various derived attention schemes.
For example, in the TC (including HTC) domain, hierarchical attention networks (HANs),
proposed by Yang et al. [74], have been widely used [75–77]. Their idea is to apply attention
hierarchically at different levels of granularity. In many applications, the mechanism is ini-
tially applied to words and used to produce more informative sentence representations, and
then it is also applied to sentences to produce better document representations. This method
adapts particularly well to the processing of long texts, since it leverages the hierarchical
nature of human-produced written documents, which are often structured hierarchically.

2.2.4. Graph Neural Networks

The ubiquity of graph structures in most domains has sparked much interest in the
application of neural networks directly to graph representations. In the NLP domain, a
body of text can be represented as a graph of words, where connections represent relations
that are potentially semantic or grammatical. As a simple example, a sentence could be
represented by word nodes, and adjacent words in the sentence would be linked by an
edge. Entire documents can also be linked together in a graph, for instance, in citation
networks, or simply considering their relatedness [1,78].

In the particular context of hierarchical classification, graphs of labels have often
been used to propagate hierarchy information between connected labels, with connections
usually representing parent–child relations.

Message Passing

The principle behind graph processing models is generalized by the message passing
neural network [79]. In this model, a message passing phase, lasting T time steps, is used to
update node and edge representations by propagating information along edges. First, for a
graph G = (V, E), the message at time t + 1 is computed for each node u ∈ V, depending
on the previous values of the nodes and edges e ∈ E. Therefore, for a node u,

mt+1
u = ∑

v∈N (u)
ϕ(xt

u, xt
v, et

uv) (6)

where ϕ is a function learned by a neural network, function N (u) gives the neighbor
nodes of u, and x ∈ X are node embeddings (representations). Equation (6) uses the sum
operation to aggregate the multiple messages coming from the neighbors of u, although
it could be replaced with other permutation-invariant operations, such as the average or
minimum. Once the messages have been computed, the node embeddings are updated
using an update function σ, which is also learned by a neural network:

xt+1
u = σ(xt

u, mt+1
u ) (7)

Analogously, Equations (6) and (7) could be adapted to compute the message starting
from neighbor edges instead of nodes and to update the edge representation accordingly.
Finally, in the readout phase, values from all nodes are aggregated by summing them together
and the output is used for a graph-level classification task.

Graph Convolution

The concept of message passing lends itself to the definition of a convolution operation
for graphs that can be used within graph convolutional neural networks (GCNs) [80]. In



Electronics 2024, 13, 1199 11 of 57

the literature, two main categories of GCNs are typically distinguished: spatial-based
and spectral-based. Similarly to the conventional convolution operation over an im-
age, spatial-based GCNs define graph convolutions based on the graph topology, while
spectral-based methods are based on the graph’s spectral representation [78,81,82]. In
this paragraph, we will only discuss the former type, which is more closely related to the
message-passing concept.

While many different definitions of convolution have been proposed, a simple spatial
convolution operator on a graph can be defined as:

Conv(xt
u) = σ

 ⊙
v∈N (u)

ϕ(xt
u, xt

v)

 (8)

in which
⊙

is a permutation invariant operation. The result of this operation can be
used to update each node representation, as exemplified in Figure 5. When

⊙
= ∑ and

ϕ(xt
u, xt

v) = xt
vWT + b, which is a simple linear transformation of the representation of

neighbor nodes, this operation can be defined in matrix form as:

Conv(X) = σ(A(XW T + b)) (9)

In the equation above, A ∈ Rn×n is the adjacency matrix, X ∈ Rn×d contain the nodes’
representation of dimensionality d, and W ∈ Rdout×d and b ∈ Rdout are the weight matrix
and bias term, respectively. The multiplication by the adjacency matrix A guarantees that
only neighbor nodes contribute to the updated representation X. Consequently, if multiple
convolutions are stacked, the message from each node can propagate further in the graph.
However, if too many layers are used, large portions of the graph could end up having
similar node representations, an issue often referred to as oversmoothing [83].

As a natural extension of the operation defined in Equation (9), A can be weighted
to reflect the importance of neighbors, for instance, by multiplying each entry with edge
weights. The attention mechanism can also be used to autonomously learn how much each
node should contribute to their neighbors’ representations. An example of this is graph
attention networks (GATs) [84], which use the Transformer’s MHA to compute the hidden
states of each node.

Figure 5. The propagation effect operated by two sequential graph convolutions concerning
node x. The red arrows showcase the information flow toward the target node.

2.2.5. Capsule Networks

Much recent literature explores the usages of capsule networks (CNs) [85] to find
structure in complex feature spaces. These networks group perceptrons—the base units of
feed-forward networks—into capsules, which can essentially be interpreted as groups of
standard neurons. Each capsule specializes in the identification of a specific type of entity,
like an object part, or, in general, a concept. Since a capsule is a group of neurons, its output



Electronics 2024, 13, 1199 12 of 57

is a vector instead of a scalar, and its length represents the probability that an entity exists
in the given input, as well as its spatial features.

Capsules have been first applied to object recognition [86] to address the shortcomings
of CNNs, such as the lack of rotational invariance. However, capsules have been proposed
in NLP applications as well; for instance, TC datasets often present labels that can be
grouped into related meta-classes that share common concepts. A hierarchy of topics may
include a “Sports” macro-topic, with “Swimming”, “Football”, and “Rugby” as sub-topics.
However, the latter two sports are more similar, both being “team sports” and “ball sports”,
something that is not made explicit by the hierarchy. CNs have been applied to HTC tasks
for their ability to model latent concepts and, hence, capture the latent structure present in
the label space. It is expected that a better understanding of the labels’ organization, such
as modeling the “team sports” and “ball sports” concepts, can be effectively exploited to
improve decision-making during classification [87,88].

Capsules

As briefly mentioned above, a capsule is a unit specialized in the following tasks:

• Recognizing the presence of a single entity (e.g., deciding how likely it is that an object,
or piece-of, is present in an image);

• Computing a vector that describes the instantiation parameters of the entity (e.g., the
spatial orientation of an object in an image or the local word ordering and semantics
of a piece of text [88]).

As a result, capsules can specialize and estimate parameters about the selected entities.
In contrast, neurons in standard MLPs can only output scalar values that cannot encapsulate
such a richness of information. Within CNs, capsules are organized in layers, and the output
of each child capsule is fed to all capsules in the next layer (i.e., parent capsules) using
weighted connections that depend on the level of agreement between child capsules. Higher
layers tend to specialize in recognizing more high-level entities, estimating their probability
using the information about sub-parts that are propagated by lower-level capsules [89].
Output between capsules is routed through the dynamic routing mechanism.

Dynamic Routing

Because each layer of capsules specializes in recognizing specific entities, subsequent
layers should make sense of the information extracted by previous layers and use it to
recognize more complex entities. However, not all entities detected in lower-level capsules
may be relevant. Hence, a routing-by-agreement method was proposed to regulate the flow
of information to higher layers.

The general principle behind the routing-by-agreement algorithm known as dynamic
routing [89] is that connections between capsules in layer l and a capsule j in layer l + 1
should be weighted depending on how much the capsules in l collectively agree on the
output of capsule j. When many of them agree, it means that all the entities they recognized
can be part of the composite entity recognized by capsule j, and as such, their output should
be sent mostly to capsule j.

The routing algorithm updates the routing weights (i.e., connections between capsules
in different layers) so that they reflect the agreement between them. Let {K,L} be two
subsequent layers of a CN, each made up of several capsules. Predictions made by capsule
i ∈ K about the output of capsule j ∈ L are computed as:

ûj|i = Wijui (10)

where ui is the activation vector of capsule i and matrix W is the learned transformation
matrix that encodes the part-to-whole relationship between pairs of capsules in two subse-
quent layers. A distinct weight matrix B is used to store the connection weights Bij between



Electronics 2024, 13, 1199 13 of 57

each capsule i ∈ K and capsule j ∈ L. The agreement is measured using the dot product,
and weights are updated as in the equation below:

Bij ← Bij + ûj|ivj (11)

where output vj represents the probability that the entity recognized by capsule j is present
in the current input and therefore, should be consistent with the information extracted by
lower-level capsules (i.e., the “guesses”), which is encoded in vector û. Hence, the output
of a capsule j ∈ L is the weighted sum of the predictions made by all capsules in the
previous layer K. Note that, since the activation vector must represent a probability, the
squash function is used to shrink the output into the (0, 1) range:

vj ← squash (sj) sj = ∑
i∈K

Cijûj|i (12)

During each iteration, the coupling coefficients (or routing weights) are computed as
follows:

Ci ← softmax (Bi), ∀ capsule i ∈ K (13)

This process ensures that the capsules in K that were more in agreement with the
capsules in L will send a stronger signal than the capsules that made a different prediction,
as opposed to higher-level capsules. Moreover, as Equation (12) shows, the output of the
capsules in subsequent layers is dependent on the prediction made in the previous layers.
This means that the higher the number of capsules that agree on the most likely prediction
of some capsules in the next layer (i.e., û), the more they can influence the output of those
capsules.

The routing process is repeated a fixed number of times before the algorithm proceeds
to the next layer and stops when all the connections between capsules are weighted. Finally,
this routing mechanism has been recently improved using the expectation-maximization
algorithm [90] to overcome some of the limitations of the former approach.

3. Hierarchical Text Classification

As a sub-task of the broader TC area, HTC methods have much in common with
standard text classifiers. In this section, we will outline the main aspects that differentiate
HTC from standard classification approaches and how they can be leveraged to achieve a
higher classification accuracy in the presence of a taxonomy of labels.

3.1. Types of Hierarchical Classification

Standard classifiers focus on what the HTC literature defines as flat classification. In it,
categories are treated in isolation (i.e., as having no relationship between one
another) [15,16]. In contrast, HTC deals with documents whose labels are organized
in structures that resemble a tree or a directed acyclic graph (DAG) [91,92]. In these struc-
tures, each node contains a label to be assigned, such as in Figure 6. Methods able to
work with both trees and DAGs can be devised, though a simpler technique is to simply
“unroll” or “flatten” sub-nodes with multiple parents for DAGs, thus obtaining a tree-like
representation. For this reason, this article (and much of the HTC literature) focuses on
hierarchies with a tree structure.

HTC approaches can be divided into two groups: local and global approaches [93].
Local approaches (sometimes called “top-down”) are defined as such because they “dissect”
the hierarchy, constructing multiple local classifiers that work with a subset of the node
labels. While more informed than flat classifiers—which ignore the hierarchy—there is
an inevitable loss of hierarchical information, as the aggregation of these classifiers tends
to ignore the holistic structural information of the taxonomic hierarchy. Depending on
the chosen approach, the amount of information regarding the hierarchy can be partial or
absent [94]. Local approaches (Figure 7b–d,) have been criticized because of their structural
issues, the most notable one being that they may easily propagate misclassifications [95,96].



Electronics 2024, 13, 1199 14 of 57

Furthermore, these models are often large in terms of trainable parameters and may easily
develop exposure bias because of the lack of holistic structural information [97]. While we
will discuss this in more detail later, this arises from the fact that, at test time, lower-level
classifiers use the prediction of previous classifiers, thus leading to a discrepancy in the
training process (which is usually based on ground truths).

(a) Label hierarchy based on a tree structure. (b) Label hierarchy based on a DAG structure.

Figure 6. Hierarchically structured labels (inspired by Wang et al. [91]). Both forms are
frequent in practice, though labels organized in a DAG require adaptation of either the
method or the structure.

(a) Flattened classifier. (b) Local binary classifiers. (c) Local per-level classifiers.

(d) Local per-parent classifiers. (e) Global classifier.

Figure 7. The most common approaches to HTC, exemplified on a tree-like hierarchy. Flat-
tened classifiers (a) lose all hierarchical information, while local classifiers (b–d) can incor-
porate some of this information. Global classifiers (e) aim to fully exploit the label structure.

Global methods aim to solve these shortcomings, as well as being frequently less
computationally expensive (as there is a single classifier) [17]. While the definition of global
classifiers is deliberately generic, one might imagine as global any individual classification
algorithm that directly takes into account the hierarchy. It is also worth noting that global
and local approaches can also be combined [98,99]. Figure 7 showcases the main approaches
to HTC, which we now briefly summarize.

3.1.1. Flattened Classifiers

The flat classification approach (Figure 7a) reduces the task to a multiclass (or multil-
abel) classification problem, therefore discarding hierarchical information entirely. Typically,



Electronics 2024, 13, 1199 15 of 57

only leaf nodes are considered, and the classification of higher levels of the hierarchy is
inherited from parent nodes [88,94].

3.1.2. Local Classifiers

Local classification approaches are generally divided into three categories that differ
in how they dissect the hierarchy. First, the class of local per-node (binary) approaches
(Figure 7b) considers each label as a separate class, disregarding the hierarchy completely.
This approach is among the simplest and resembles a one-versus-rest approach [14]. The
individual classifiers receive hierarchical information from the specific training and testing
phases, which we outline in Section 3.1.4. Local per-level methods (Figure 7d) assign a
classifier to each relevant category level, which is tasked to decide for that level alone.
Finally, local per-parent methods (Figure 7d) assign a classifier to all parent nodes, tasking
them to assign a sample to one of its children—therefore capturing part of the sample’s
current path through the hierarchy.

3.1.3. Global Classifiers

A global (or big-bang) [19] classification approach (Figure 7e) makes use of the entire
hierarchy to make the final classification decision. It is common (though not strictly
necessary) for global classifiers to perform actual classification on a flattened representation;
hierarchy information is therefore achieved through structural bias (i.e., the architecture of
the model) [17].

3.1.4. Training and Testing Local Classifiers

Differently from standard (flat) classification approaches, local classifiers usually
require specialized procedures for training and testing, both in terms of actual methods and
in the definition of positive and negative examples, as outlined in the following paragraphs.

Testing

Testing phases are usually characterized by a “top-down” flow of information. This is
the preferred approach to all local approaches. The system performs a prediction at the first,
most generic level, then forwards the decision to the children of the predicted class. As
mentioned, this makes these approaches vulnerable to error propagation (where a mistake
at higher levels leads to an inevitable mistake at the lower ones), unless a specialized
procedure is set in place to avoid this.

Local classifiers can be used independently, therefore lending themselves naturally
to multilabel scenarios. However, this might lead to class-membership inconsistency (by
which a child node disagrees with a parent classification); therefore, top-down approaches
are usually utilized.

Training

As local classifiers are defined at different levels of the hierarchy, examples may need
to be altered so that the objective makes sense at the local level. Several possible policies
may be utilized for the creation of these subsets of examples, each of which differs in how
“inclusive” they are. For instance, a decision can be made on whether or not to include
samples labeled with “AI” as positive examples for classifiers at the higher “Computer
Science” level in Figure 6a (while everything else is considered as a negative example). We
point interested readers to Silla and Freitas [17] for an in-depth overview of these policies.

It is also possible to allow for different classification algorithms in different nodes, an
approach that is often attributed to per-parent approaches [17]. To do this, training data
may be further split into sub-train and validation sets, and the best decider for each node is
selected dynamically.



Electronics 2024, 13, 1199 16 of 57

3.2. Non-Mandatory Leaf Node Prediction and Blocking

In hierarchical classification datasets, it may not always be the case that all predic-
tion targets correspond to leaves. Many authors distinguish between mandatory and non-
mandatory leaf node prediction (MLNP, NMLNP) [15,100]. Quite simply, in NMLNP scenarios,
the classification method should be able to consider stopping the classification at any level
of the hierarchy, regardless of whether it is a leaf node or not. The term applies to both tree-
and DAG-structured hierarchies. In this section, we briefly outline how the different types
of HTC approaches can deal with the latter, more complex case.

3.2.1. Flattened Classifiers

The flat classification approach simplifies the problem to a standard, non-hierarchical
classification problem. In that sense, if the target is restricted to the leaf nodes of the
structure, methods that follow this paradigm are unable to deal with NMLNP by design [17].
It is possible to naively extend the classification targets to include all possible labels, though
this would make the task much harder since flattened classifiers do not have any inherent
information about the hierarchy. As we will discuss in the following paragraphs, it is
possible to inject hierarchical information whilst maintaining the general classification
target and algorithm, which some global approaches do [101].

3.2.2. Local Classifiers

To deal with NMLNP, local approaches must implement a blocking mechanism, so that
inference may be stopped at any level of the hierarchy. A simple way to do this is by
utilizing a threshold on the confidence of each classifier; if during top-down prediction the
confidence does not meet the requirement, the inference process is halted [102].

An issue with such thresholds is that they may lead to incorrect early stopping of
classification. Sun et al. [103] define this as the blocking problem, which refers to any case
in which a low confidence rating of a parent classifier mistakenly hints that an example
does not belong to its actual macro-class. As a consequence, the example will never reach
the classifier for its appropriate sub-class. The authors propose some blocking reduction
methods, which generally act by reducing the thresholds of inner classifiers or by allowing
lower-level classifiers to have a second look at rejected examples.

3.2.3. Global Classifiers

Global classifiers utilize a single, usually complex algorithm that integrates the hierar-
chy into its internal reasoning. As mentioned, it is common to base global classifiers on an
existing flat classification approach and modify it to take into account the class hierarchy.
Global classifiers can also be used in NMLNP scenarios, though specific strategies might be
needed in this case to enforce class-membership consistency in predictions. Likewise, it is
also possible to integrate a top-down prediction approach (which would be internal to the
algorithm) to avoid this issue.

3.3. Evaluation Measures

As HTC issues are inherently multiclass (or multilabel), many researchers choose to uti-
lize standard evaluation metrics widely adopted in classification scenarios. As mentioned,
however, many authors argue that these measures are inappropriate [15,17,18,104–106].
Intuitively, these arguments are based on the shared belief that ignoring the hierarchical
structure in the evaluation of a model is wrong because of the concept of mistake severity;
in other words, a model that performs “better mistakes” should be preferred [107]. This
follows from two considerations. Firstly, predicting a label that is structurally close to the
ground truth should be less penalizing than predicting a distant one. Secondly, errors in the
upper levels of the hierarchy are inherently worse (e.g., misclassifying “football” as “rugby”
is comparatively better than misclassifying “sport” as “food”). These considerations also
make sense when considering real-world applications of HTC, such as ICD coding [5,6]
and legal document concept labeling [7]. A better mistake entails that most ancestor nodes



Electronics 2024, 13, 1199 17 of 57

in the prediction path were correct, meaning that most of the macro categorizations of
the sample were accurate. In most scenarios, a mistake of this type is preferable to one in
which the macro category is wrong, the latter of which might have severe consequences.
Moreover, understanding the severity and type of a model’s errors can aid during the
development process and possibly lead to new strategies to prevent them.

In this section, we will provide an outline of the most common evaluation met-
rics utilized in HTC, both standard and hierarchical. For a more in-depth analysis of
these metrics, as well as of the issues they present and how to address them, we refer
to Kosmopoulos et al. [105].

3.3.1. Standard Metrics

The most common performance measures utilized in “flat” classification are derived
from the classic information retrieval notions of accuracy (Acc), precision (Pr), and recall (Re).
As in any other supervised learning task, we consider the truthfulness of a model’s predic-
tions against the ground truth derived from the dataset. Formally, let {(x0, y0), . . . , (xn, yn)}
be a set of labeled training examples, where x ∈ R is an input example and y ∈ {0, 1}L

is the associated label vector, with L being the set of label indices (therefore, |L| is the
number of categories). For each label l ∈ L, we can calculate category-specific metrics by
considering positive (P) and negative (N) predictions for each example. A prediction is
considered true (T) if it agrees with the ground truth and false (F) otherwise.

Accuracy measures the ratio of correct predictions over the total of number predictions.
Precision is instead a measure of correctness, quantifying the proportion of true positive
predictions among the ones made, while recall is a measure of completeness, quantifying
the proportion of overall positives captured by the model. Notably, the latter two metrics
have a larger focus on the impact of false predictions. Accuracy, precision, and recall are
defined as follows (Equation (14)):

Acc =
|TP|+ |TN|

|TP|+ |TN|+ |FP|+ |FN| Pr =
|TP|

|TP|+ |FP| Re =
|TP|

|TP|+ |FN| (14)

Precision and recall do not effectively measure classification performance in
isolation [3]. Therefore, a combination of the two is commonly utilized. The F-measure
(Fβ) is the most popular of these combinations, providing a single score according to some
user-defined importance of precision and recall (i.e., β). Normally, β = 1, resulting in the
harmonic mean of the two measures (Equation (15)):

Fβ =
(β2 + 1) · Pr · Re

β2 · Pr + Re
F1 = 2 · Pr · Re

Pr + Re
(15)

Accuracy naturally extends to multiclass settings without being able to weigh the
contribution of class differently. Precision and recall can be averaged in different ways;
macro averaging considers all class contributions equally (Equation (16)), while micro
averaging treats all examples equally (Equation (17)):

Prmacro =
∑m

i=1 Pri

m
Remacro =

∑m
i=1 Rei

m
(16)

Prmicro =
∑m

i=1 |TPi|
∑m

i=1 |TPi|+ |FPi|
Remicro =

∑m
i=1 |TPi|

∑m
i=1 |TPi|+ |FNi|

(17)

where m is the number of categories. Micro-averaging may be useful when the class
imbalance is severe and needs to be accounted for in the measurements. Support-weighted
metrics are also an alternative in such cases. F-measures may be micro- or macro-averaged
as well, utilizing the corresponding averaged versions of precision and recall.



Electronics 2024, 13, 1199 18 of 57

3.3.2. Hierarchical Metrics

As outlined before, standard metrics lack the capability of reflecting the relationships
that exist among classes. In this context, Sun and Lim [15] propose to solve this issue
by introducing hierarchical metrics based on category similarity and distance. Category
similarity evaluates the cosine distance of the feature vectors representing predicted and
true categories, while category distance considers the number of links between the two in
the hierarchy structure. While interesting, these measures have practical issues, which Kir-
itchenko et al. [104] outline (such as inapplicability to DAGs and multilabel tasks). Instead,
they propose to extend traditional precision and recall. To do this, they augment the set of
predicted and true labels to include all their ancestors (Figure 8) and calculate the metrics
on the augmented sets.

Figure 8. Tree hierarchy with predicted (squares) and ground truth (circles) labels, with the
ancestors of each highlighted. As the two sets have a node in common, the misprediction
should be considered less severe.

Formally, let Ŷaug be the augmented set of predictions containing the most specific
predicted classes and all of their ancestors and Yaug the augmented set of the most specific
ground truth class(es) and all of their ancestors. Then, hierarchical metrics (h-metrics) can
be defined as follows (Equation (18)):

hPr =
∑i |Ŷaug ∩Yaug|

∑i |Ŷaug|
hRe =

∑i |Ŷaug ∩Yaug|
∑i |Yaug|

hFβ =
(β2 + 1) · hPr · hRe

β2 · hPr + hRe
(18)

However, Kosmopoulos et al. [105] observe that this approach overpenalizes errors in
which nodes have many ancestors. Specifically, false positives predicted at lower levels
of the hierarchy strongly decrease the precision metric, while recall tends to be boosted,
since adding ancestors is likely to increase the number of true positives (false positives
are ignored). Drawing from the lowest common ancestor (LCA) concept defined in graph
theory [108], they propose LCA-based measures as a solution. Briefly, and in the context of
tree structures, the LCA of two nodes can be defined as the lowest (furthest from the root)
node that is an ancestor of both. Therefore, these new measures are defined similarly to the
one in Equation (18), but with the expanded sets defined in terms of LCA rather than on
full node ancestries [18]. Despite these issues, the hierarchical metrics of Equation (18) are
still considered effective measures across a broad range of scenarios [17].

Some authors report metrics that explicitly evaluate the difference, in terms of path
distances through the hierarchy, between class predictions and ground truth labels. In
particular, Sainte Fare Garnot and Landrieu [109] define the average hierarchical cost (AHC)
of a set of predictions. Given two labels a, b ∈ L, define dist(a, b) as the number of edges
that separate two labels in the hierarchy tree. In turn, for a set of labels S, let dist(a, S)
be the minimum distance between the node and the set, i.e., min(dist(a, s) ∀s ∈ S). If



Electronics 2024, 13, 1199 19 of 57

predictions and ground truth labels are expressed as vectors ∈ {0, 1}L (as before), the AHC
can be defined as (Equation (19)):

AHC(Y, Ŷ) =
1
|Y|∑j

ŷj dist(j, Y) (19)

In practice, this measure evaluates how “far off” the predictions were from the closest
common ancestor (and, in that, are not too dissimilar for LCA-based measures). As a
consequence, a low AHC indicates that mistakes were, on average, not too distant from the
ground truth.

3.3.3. Other Metrics

Depending on the particular aspect of HMC being tackled, other types of metrics,
often borrowed from neighboring disciplines, may be warranted. In this section, we briefly
introduce them.

Some works report rank-based evaluation metrics, which are widely used in the more
general context of multilabel classification [110,111]. Among many, the two most commonly
utilized are precision and normalized discounted cumulative gain at k (Pr@k, NDCG@k).
Briefly, given a model’s prediction (i.e., a probability vector across labels), we can sort
the labels in descending order based on the output probabilities. Then, Pr@k indicates
the fraction of correct predictions in the top-k labels of this sorted list, whereas NDCG@k
measures the ranking quality (i.e., how high correct labels are ranked). For a more precise
description of these metrics, which are often utilized in recommendation systems and, more
generally, in information retrieval, see Marcuzzo et al. [112].

In methods able to categorize labels at different levels of the hierarchy separately,
many authors choose to showcase the accuracy score at each separate level, as well as
a single overall score [87,113]. The overall score is the one obtained by classifying the
last level of the hierarchy given the (possibly incorrect) predictions of the parent classes.
In some cases, authors utilize subset accuracy, where all labels must match the ground
truth exactly.

Lastly, some authors utilize the Hamming loss [114,115] metric for HTC. This measure
evaluates the fraction of misclassified instances, i.e., true labels that were not predicted or
predictions that were not in the ground truth. A comprehensive review of these metrics, as
well as less-commonly utilized ones, may be found in Zhang and Zhou [116].

4. Hierarchical Text Classification Methods

In this section, we provide an overview of approaches devised to solve HTC tasks in
the 2019–2023 period. Section 4.1 introduces the main class of methods and Section 4.2 lists
all relevant works we found in our literature review. Finally, a subset of these is analyzed
in more detail in Section 4.3.

4.1. Overview of Approaches

In this section, we provide a high-level overview of notable approaches for HTC that
differentiate themselves from more standard approaches for TC and that we find to be
popular within the literature. The categories presented are not hard partitions, but rather
emergent categories with possible overlap.

Sequence to sequence approaches, as the name suggests, re-frame HTC as a Seq2Seq
problem, where the input is the text to classify and the output is the sequence of labels, such
as to obtain better modeling of the local label hierarchy [117]. Target labels for each text
are flattened to a linear label sequence with a specific order via either sorting, depth-first
search, or breadth-first search. Each prediction step generates the next label based on both
the input text and the previously generated label; this way, the model can capture the level
and path dependency information among labels. Several frameworks have been proposed
utilizing this approach [118,119], many arguing for improved label generation and better
use of co-occurrence information [120–122].



Electronics 2024, 13, 1199 20 of 57

Graph-based approaches encode the hierarchy with specialized structure encoders, which
allow for better utilization of the mutual information among labels. Tree-based and graph-
based approaches have been proposed to encode the hierarchy, with both showcasing
good results [97,123]. Several methods apply GCNs to the hierarchy of labels, often in a
joint manner with the encoding of the text to enrich the representation [124]. Additional
techniques are often applied to improve label correlation and to better model their co-
occurrence [125–128]. Some authors, such as Ning et al. [129], argue that graph-based
approaches may lose on the directed nature of the tree hierarchy and thus introduce
unidirectional message-passing constraints to improve graph embedding. Other works
utilize GCNs to reinforce feature sharing among labels of the same level [130]. While graph
NNs and GCNs in particular are by far the most popular architecture in these approaches,
some authors utilize Transformer-based approaches such as Graphormers [91]. All in all,
graph-based approaches have obtained excellent results, and the integration of structural
information in classification frameworks has proved very successful.

KG-based approaches argue that the integration of external knowledge can enhance clas-
sification. They attempt to incorporate this knowledge into the model using graph-based
representations, known as knowledge graphs (KGs). A KG comprises nodes that represent
real-world concepts or entities. The relationships between these concepts are depicted by
edges, which can vary in type depending on the relationship they represent [112]. Well-
established examples of KGs in the NLP community include DBpedia [131] and Concept-
Net [132]. These methods, while technically a subset of the earlier mentioned graph-based
approaches, distinguish themselves by utilizing KGs to encode external knowledge, as
opposed to problem-specific data. KG-based methodologies typically utilize KGs to gen-
erate knowledge-aware embeddings. Several techniques have been proposed to encode
entity–relation–entity triples [133,134]. These embeddings encapsulate the relationships
between entities and effectively augment the representation with data that would not be
accessible in a task-specific setting, thereby enhancing generalizability across different
tasks [135]. Although only a few studies have attempted to use KGs specifically for HTC,
we consider them a promising research direction, given their success in broader TC and
NLP applications.

Finally, alternative tuning procedures for LMs are being heavily researched in NLP
and have showcased promising results in HTC as well. Prompt-tuning aims to reduce the
difference between the pre-training and fine-tuning phases, wrapping the input in a natural
language template and converting the classification task into an MLM task. For instance, an
input text x may be wrapped as “x is [MASK]” (hard prompt). Virtual template words may
also be used, allowing the LM to both learn to predict the “[MASK]” and tune the virtual
template words (soft prompt). A verbalizer is then utilized to map the predicted word to the
final classification [136], with custom verbalizers for HTC also being developed [137]. On
the other hand, prefix-tuning only tunes and saves a tiny set of parameters in comparison
to a fully fine-tuned method while maintaining comparable performance. To do this,
prefix-tuning learns prefix vectors associated with the embedding layer (and, in recent
works, each LM layer), while the rest of the LM has its parameters frozen, to fit the target
domain better. Specific frameworks for HTC have been developed, training prefix vectors
by considering their topological relationship in the hierarchy [138].

4.2. Recent Proposals

Tables 1–4 display the results of our search for the latest applications of HTC to
the NLP domain. While we do not discuss them, it should be mentioned that other
domains of application of HMC have much in common with HTC, and one could also
draw inspiration from such works (for example, protein function prediction in functional
genomics) [139–142].



Electronics 2024, 13, 1199 21 of 57

Table 1. Hierarchical text classification methods. Names for models are reported when
authors provide them. ✗ and ✓ stand for code missing and code available, respectively.

Method Base Datasets Code Novelty

HCCMN [143] TCN, LSTM, ATT CRTEXT, Fudan,
Sogou, TouTiao ✗

Combine TCN with LSTM for extraction of contextual
information and temporal features from Chinese text

[117] CNN, LSTM, ATT RCV1, AAPD,
Zhihu-QT ✗

Usage of local and global information, new Seq2seq model
with CNN encoder and LSTM decoder

HLSE [144] CNN MeSH ✗ Hierarchical label set expansion for label regularization
[145] k-means, SVM Hamshahri ✗ HTC of Persian text with weak supervision using clustering

[146] SVM, MLP - ✗
Mixed deep learning and traditional methods for HTC in the
automotive domain

WeSHClass [147] CNN NYT, AAPD, Yelp ✓ Weakly supervised HTC with pseudo-document generation
HMC-CAPS [88] CN BGC, WOS ✓ Compare CapsNets with other NNs

HTrans [148] GRU, ATT RCV1 ✗
Recursive training of LMs on branches of tree-shaped
hierarchies of labels

NeuralClassifier [149] - RCV1, Yelp ✓
Toolkit to quickly set up HTC pipelines with multiple
algorithms

HARNN [76] RNN, ATT Patent ✓ Hierarchical attention unit (HAM)
HiLAP [99] BASE RCV1, NYT, Yelp ✓ RL framework to learn a label assignment policy

HLAN [7] LSTM, ATT EURLEX,
EURLEX-PT ✓ HTC of legal documents, new Portuguese corpus

[150] RF, DT, NB, SVM HS-Ind ✓ Categorization of hate speech expression in Indonesian tweets

HKUST [151] NB, EM RCV1, 20NG ✓
Path cost-sensitive learning algorithm to leverage structural
information of hierarchy and unlabeled/weakly-labeled data

NETHIC [152,153] MLP DANTE ✓ DNN for efficient and scalable HTC

LSNN [154] MLP 20NG, DBpedia,
YahooA ✗

Unsupervised clustering to exploit label relation, neural
architectures to learn inter- and intra-label relations

HG-Transformer [111] TRAN RCV1, Amazon ✗
Transformer-based model, weighted loss using semantic
distances

H-QBC [155] QBC (AL) Enron, Reuters ✗
Active learning framework for HTC for classification of
datasets with few labeled samples

GMLC [118] LSTM, ATT - ✗
Seq2seq multi-task framework with hierarchical mask matrix
to learn cross-task relations

3LBT [156] SVM, NB, DT, RF HARD ✗
Framework for sentiment classification of Arabic texts using
multi-level hierarchical classifiers, using SMOTE technique

[157] FIN-NEWS-CN ✗
Weakly supervised model driven by user-generated keywords,
adopting a confidence-enhancing method during training

C-HMCNN [158] MLP Enron, 19 + ✓
Coherent predictions using a hierarchical constraint, usage of
hierarchical information

HyperIM [110] GRU RCV1, Zhihu,
WikiLSHTC ✓

Embedding of label hierarchy and document in the same
hyperbolic space, with explicit modeling of label–word
semantics

LCN [159] CNN 20NG ✗ Different approaches with CNNs for HTC
[119] GRU, ATT WOS, DBpedia ✗ Seq2seq model, auxiliary tasks, and beam search
HiAGM [97] LSTM, GCN RCV1, WOS, NYT ✓ Extraction of hierarchical label information

ONLSTM [113] LSTM WOS, DBpedia ✓
Sharing parameters for sequential prediction of next-level
label

F-HMTC [160] BERT - ✓ BERT embeddings with hierarchy-based loss

[161] TRAN B-SHARP ✗
Hierarchical Transformer for classification based on ensemble
of three models

CorNet [162] BERT, CNN, RNN EURLEX, Amazon,
Wikipedia ✓

Model-agnostic architecture for MLTC to enhance label
predictions to consider the labels’ correlation

MAGNET [125] LSTM, GAT
Reuters, RCV1,
AAPD, Slashdot,
Toxic

✓
Improving GCN with GAT for considering label correlation
and co-occurrence



Electronics 2024, 13, 1199 22 of 57

Table 2. Hierarchical text classification methods. Names for models are reported when
authors provide them. Base models marked as “n/a” represent works that propose new
losses, metrics, or training regimes rather than new methods. ✗ and ✓ stand for code
missing and code available, respectively.

Article Base Datasets Code Novelty

PAC-HCNN [8] CNN, ATT, GLU - ✗
Stacked hierarchical convolutional layers for HTC of Chinese
patent dataset

[163] Co-training - ✗
Semi-supervised approach for HTC of research papers based
on co-training algorithm

JMAN [164] GRU Bibsonomy, Zhihu,
CiteULike ✓

Attention mechanism to mimic user annotation behavior, loss
regularization to capture label co-occurrence relations

[120] LSTM, TRAN USPTO ✗
HTC as sequence generation, teacher forcing with scheduled
sampling in training, beam search to choose output labels

MATCH [165] TRAN (CorNet) MAG-CS, PubMed ✓
E2E framework for classification with large hierarchies of
labels and documents’ metadata

[166] TRAN, GNN MAG-CS, PubMed ✗
Incorporate text metadata and label structure using
heterogeneous graphs

RLHR [167] BERT, RL WOS, Yelp, QCD ✓
Label structure modeling using Markov decision process and
RL with pre-trained LMs for zero-shot TC

HCSM [168] LSTM, CN RCV1, EURLEX,
WOS ✗

Combine global label structure and partial knowledge
learning to emulate cognitive process

HiMatch [124] BERT, GCN, GRU,
CNN

RCV1, EURLEX,
WOS ✓

Semantic matching method to learn relationship between
labels and text

HIDDEN [169] CNN RCV1, NYT, Yelp ✓
Embed hierarchical label structure in label representation
jointly training the classifier

HE-AGCRCNN [170] CNN, ATT, CN,
RNN RCV1, 20NG ✓

Architecture, graph-of-words text representation,
taxonomy-aware margin loss

HVHMC [171] GCN WOS, AAPD, Patent ✗

Loosely coupled GCN to capture word-to-word,
label-to-word, and label-to-label associations, correlation
matrix and hybrid algorithm to capture vertical and
horizontal dependencies

CoPHE [172] n/a MIMIC-III ✓
New metrics for hierarchical classification for large label
spaces

CLED [87] CN, CNN, GRU DBpedia, WOS ✓
Concept-based label embeddings to model sharing in
hierarchical classes

HMATC [173] Tree-based
(HOMER) MLAD ✓

HTC in multilabel setting for Arabic text, introduction of new
Arabic corpus

ICD-RE [6] AE, TRAN MIMIC ✓
Re-ranking method to learn label co-occurrence with
unknown label hierarchies

SASF [126] GCN, GRU, CNN WOS, BGC ✗
Hierarchy-aware label encoder and attention mechanism
applied to document labels and words

L1-L2-3BERT [115] BERT - ✗
Hierarchical classification using multi-task training with
penalty loss

HierSeedBTM [174] HuffPost, 20NG - ✗
Dataless hierarchical classification with iterative propagation
mechanism to exploit hierarchical label structure

THMM [175] ATT Patent ✗ Pre-trained LM with multi-task architecture for efficient HTC

TaxoClass [176] RoBERTa Amazon-531,
DBpedia-298 ✗ HMTC with class surface name as the only supervision signal

HTCInfoMax [177] HiAGM-LA RCV1, WOS ✓
Text-label mutual information maximization and label prior
matching

PAAM-HiA-T5 [178] T5 RCV1, NYTimes,
WOS ✗ Hierarchy aware T5, path-adaptive mask mechanism

HFT-ONLSTM [113] LSTM WOS, DBpedia ✗
Hierarchical fine-tuning approach with joint embedding
learning based on labels and documents

HPT [136] BERT, GAT RCV1, WOS, NYT ✓
Hierarchy-aware prompt tuning and MLM suitable for
handling label imbalance



Electronics 2024, 13, 1199 23 of 57

Table 3. Hierarchical text classification methods. Names for models are reported when
authors provide them. Base models marked as “n/a” represent works that propose new
losses, metrics, or training regimes rather than new methods. ✗ and ✓ stand for code
missing and code available, respectively.

Article Base Datasets Code Novelty

HE-HMTC [179] BiGRU, SDNE

WOS, Amazon,
DBpedia,
WebService,
BestBuy

✓
Level-by-level hybrid embeddings, graph embedding of
category structure

LA-HCN [94] ATT RCV1, Enron,
WIPO-alpha, BGC ✗

Label-based attention learned at different hierarchical levels,
local and global text embedding

HGCLR [91] TRAN RCV1, WOS, NYT ✓
Contrastive learning, graph-based Transformers for sample
generation

Seq2Tree [93] T5 RCV1, WOS, BGC ✗
Decoding strategy to ensure consistency in predicted labels
across levels, new metrics for HTC

HBGL [180] BERT RCV1, WOS, NYT ✓
Hierarchical label embeddings encoding label structure using
both local and global hierarchical data

MF-RA [181] MF, ATT - ✗
Recursive attention mechanism to capture relations between
labels at different levels, applied to the MF algorithm

CHAMP [107] n/a RCV1, NYT ✗
Definition of new metrics and modified BCE loss for
hierarchical classification

OWGC-HMC [114] MLP Aizhan ✗
Online classifier for genre classification based on entity
extraction and embedding with hierarchical regularization
term

HMC-CLC [182] BN RCV1, Enron,
imclef07a ✗

Exploit label correlations for HTC with greedy label selection
method to determine correlated labels dynamically

ML-BERT [101] BERT Linux Bugs ✓
Global approach with multiple BERT models trained on
different hierarchy levels, test of document embedding
strategies

DASHNet [183] LSTM, GRU DialogBank, GDC ✓
BiTree-LSTM computes prior probabilities of hierarchical label
correlation, grammatical, lexical, and contextual encoding

P-tuning v2 [138] BERT WOS, Amazon ✓
Prefix tuning in local and global HTC methods to reduce
parameters to fine-tune in pre-trained LMs

HR-SciBERT [184] Bi-LSTM, BERT WOS, CORA, MAG,
SciHTC ✓

New dataset, multi-task learning jointly learns topic
classification and keyword labeling

HLSPC [127] GCN, Bi-LSTM,
ATT USPTO ✗

Leverage label descriptions of patents to find semantic
correlation between texts and hierarchical label descriptions
with attention

TReaderXML [185] TRAN, ATT RCV1, Amazon,
EURLex ✗

Dual cooperative network based on multi-head self-attention,
dynamic and fine-grained semantic scope from teacher
knowledge to optimize text prior label semantic ranges

LD-GGNN [186] GCN, BiGRU RCV1, WOS,
NYTimes ✗

Gated GNN as structure encoder with fine-grained adjacency
matrix for better label dependence extraction and reduced
over-smoothing, dynamic label dividing to differentiate
sibling labels

[187] MLP, BERT Non-profit Tweets
(private) ✗

Neighborhood exploration data augmentation, MLP blocks
for each layer of the hierarchy with modular adapters

[188] BoW, CNN, TRAN RCV1, DBpedia,
BestBuy ✓

Analyze and compare privacy–utility trade-off in DP HTC
under a white-box MI adversary

LSE-HiAGM[123] GCN, HiAGM RCV1, WOS,
NYTimes ✗

Introduce a common density coefficient of labels to measure
their structural similarity, re-balance loss to alleviate label
imbalance

Seq2Label [121] BART RCV1, WOS, BGC ✗

HTC as a sequence generation problem, novel Seq2Label
framework to learn label hierarchy in a random generative
way, hierarchy-aware negative sampling against error
accumulation

XR-LAT [189] TRAN MIMIC-II/III ✓
Transformer recursively trained model chain on a predefined
hierarchical code tree with dynamic negative label sampling

HTC-CLIP [190] BERT WOS, NYTimes ✗
Combines contrastive learning-guided hierarchy in a text
encoder and a path-guided hierarchy

GACaps-HTC [191] GAT, CN RCV1, WOS ✓
A GAT extracts textual representations while integrating label
hierarchy information, whereas CN learns latent label
relationships to infer classification probabilities



Electronics 2024, 13, 1199 24 of 57

Table 4. Hierarchical text classification methods. Names for models are reported when
authors provide them. ✗ and ✓ stand for code missing and code available, respectively.

Article Base Datasets Code Novelty

HTMC-PGT [192] XLNet, LSTM PGT (private) ✗
HTC as a parameter-solving problem for multiple multiclass
classifiers in a classifier tree

[193] BERT Private ✓
Multi-per-level local classifiers based on BERT for analyses of
wildlife exploitation

HiDEC [194] ATT RCV1, NYTimes,
EURLEX ✓

HTC as a sub-hierarchy sequence generation, recursive
hierarchy encoder–decoder with self-attention to exploit
dependency between labels

UMP-MG [129] GCN E-commerce, WOS ✗
HTC as sequence generation through auto-regressive decoder,
top-down and down-top unidirectional message-passing

Z-STC [195] BERT WOS, DBpedia,
Amazon ✓

Zero-shot prior generation for labels based on semantic
alignment of documents and labels, upwards score
propagation (USP) to propagate confidence scores upwards in
the taxonomy

LED [196] BERT RCV1, WOS, BGC,
AAPD ✗

Hierarchy-aware attention module and pairwise matching
task to capture hierarchical dependencies of labels

HLC-KEPLM [197] BERT, RoBERTa Private ✗
Knowledge-enhanced pre-trained language model that learns
with multiple local classifiers with knowledge fusion

[198] Graphormer, BERT,
ATT

RCV1, WOS,
NYTimes ✗

Generative data augmentation for HTC, leverages both
semantic-level and phrase-level hierarchical label information
to enhance the label controllability and text diversity

[5] Bi-LSTM MIMIC-III ✗ Two-stage decoding model for hierarchical 2-level ICD codes

K-HTC [135] GCN, BERT WOS, BGC ✓
Knowledge graph integration in text and label representation,
contrastive learning with knowledge-aware encoder

[128] BERT, GCN EDOS SemEval-23 ✗
BERT to encode text and labels, hierarchy-relevant structure
encoder to model relationships between classes, class-aware
attention, self-training against imbalanced classes

HypEmo [199] RoBERTa GoEmotions, Emp.
Dialogues ✓

Label embeddings learned in both Euclidean and hyperbolic
space to combine LMs with hierarchy-aware representation

HiTIN [200] TextRCNN, BERT RCV1, WOS,
NYTimes ✓

Structure encoder optimization for dual-encoder frameworks
through the encoding of label hierarchies into unweighted
trees

LCN [201] CN WOS, BGC ✗
Hierarchical capsule framework, each capsule classifies one
label, same level labels correspond to groups of competing
capsules

HierVerb [137] BERT RCV1, WOS,
DBpedia ✓

Multi-verbalizer framework, learn vectors as verbalizers
constrained by hierarchy and contrastive learning, path-based
metric

DLAC [202] Bi-LSTM, CNN WOS, BGC, AAPD ✗
Dual-channel text classification, a global label classification
channel, and a deep-level label-assisted classification channel

HOOM [9] SVM Private ✗
IT ticket classification, hybrid model based on SVM-based
offline component and Passive Aggressive Classifier online
component

PeerHTC [130] GCN WOS, BGC ✓
GCN to reinforce feature sharing among peer (same-level)
labels, sample importance learning to alleviate label confusion

TML/TARA [203] Base WOS, Emotion,
GoEmotions ✓

Calibration method for prompt-based learning, improve
information diffusion and context shift issues in the output
embeddings

Seq2Gen [122] mBART Blog (novel) ✗
Unseen label generation by considering label hierarchy as a
sequence of labels, semi-supervised learning for better
generation

MTMD [204] Bi-LSTM, BERT Private ✗
HTC as sequence generation, multilevel decoupling strategy
to guide label generation

[205] GCN Private ✗
GCN-based multilevel classification for users’ needs in online
medical communities to improve targeted information
retrieval

HJCL [206] BERT RCV1, BGC,
NYTimes, AAPD ✓

Instance-wise and label-wise contrastive learning techniques
on hierarchy

[207] RoBERTa SemEval 20 T11 ✓

Multi-instance multilabel learning for propaganda
classification, simultaneously classifies all spans in an article
and incorporates the hierarchical label dependencies from the
annotation process

4.3. Analyzed Methods

As the number of works is too large to provide an exhaustive description of each
of the proposals in Tables 1–4, we provide an analysis of a subset of these based on two



Electronics 2024, 13, 1199 25 of 57

criteria: (i) the authors provide a code implementation, and (ii) the methods were tested on
the two most common public datasets (RCV1 and WOS). These methods are also the ones
considered when gathering implementations to test for the experimental part of this survey.

4.3.1. HTrans

In their work, Banerjee et al. [148] propose Hierarchical Transfer Learning (HTrans), a
framework to improve the performance of a local per-node classification approach. The
general intuition is that knowledge may be passed to lower-level classifiers by initializing
them with the parameters of their parent classifiers. First, they utilize a bidirectional
GRU-based RNN enhanced with an attention mechanism as a text encoder and then use a
fully connected network as a decoder to produce the class probability. Word embeddings
are initialized with GloVe pre-trained embeddings. One such model is trained for each
node in the hierarchy tree with binary output, and child nodes share parameters with
the classifiers of ancestor nodes. This can be seen as a “hard” sharing approach, which
utilizes fine-tuning to enforce inductive bias from parent to child nodes. The inference
is achieved through a standard top-down approach. The authors perform an ablation
study by removing parameter sharing and attention and also compare their results with
a multilabel model initialized with weights from the binary classifiers, showcasing solid
improvements when including their proposed enhancements.

4.3.2. HiLAP

Mao et al. [99] tackle the issues that arise from a mismatch between training and
inference in local HTC approaches. They propose a reinforcement-learning approach as
a solution, modeling the HTC task as a Markov decision process; the task consists in
learning a policy that considers where to place an object (which label) as well as when to
stop the assignment process (allowing for NMLNP). In other words, such a policy allows
the algorithm to “move” between labels or “stop” when necessary. Though theoretically
extendable to any neural encoder, the authors use TextCNN [58] with GloVe vectors and
BoW features in the document encoder to produce fixed-size embeddings. They also create
randomly initialized embeddings for each label, producing an “action embedding” matrix,
as each label defines an action for the agent. The encoded document is concatenated with
the embedding of the currently assigned label to produce the current state vector. After
passing it through a two-layer fully connected network with ReLU activation, the state
vector is multiplied by the action embedding matrix to determine the probabilities of all
possible actions. In the beginning, each document is placed on the root node, and the
assignment stops when the “stop” action is selected as the most probable. The loss function
is defined in terms of the overall F1 score between the previous and the current time step.
The proposed Hierarchical Label Assignment Policy (HiLAP) yields excellent results, in
particular in terms of consistency of parent-child assignments concerning the hierarchy
of classes.

4.3.3. MATCH

The authors of MATCH [165] propose to boost the multilabel classification perfor-
mance by learning a text representation enriched with document metadata and further
adding a regularization objective to exploit the label hierarchy. The first component of their
architecture is a metadata-aware pre-training scheme that jointly learns words and meta-
data embeddings considering the vicinity between documents and related metadata and
labels. A modified Transformer encoder is then used to compute document representations:
to cope with large label spaces, several special tokens ([CLS]) are pre-pended to input
sequences, followed by the metadata tokens and the document’s words. The representation
of all [CLS] tokens is then concatenated and passed into a fully connected layer with a
sigmoid activation function. An L2 regularization (hypernymy regularization) is applied to
the classification layer (i.e., to the weight matrix), forcing the parameters of each label to be



Electronics 2024, 13, 1199 26 of 57

similar to those of its parent. For all pairs of parent (l) and child labels (l′) the regularization
term is expressed as:

Rparameter = ∑
l∈L

∑
l′∈σ(l)

1
2
∥wl −wl′∥2 (20)

where L is the set of labels, σ(l) is the set of parent labels of l, and wl denotes the parameters
of a label l. The final predictions are also regularized to penalize the model when the
probability of a parent label is smaller than the one for the child label. The value is summed
over all documents d ∈ D, as in the equation below:

Routput = ∑
d∈D

∑
l∈L

∑
l′∈σ(l)

max(0, πdl − πdl′) (21)

where πdl represents the probability that document d belongs to child class l. The authors
report the results of an ablation study that confirms the metadata embedding strategy and
hierarchy-aware regularization are both beneficial to the classification task.

4.3.4. HiAGM

Zhou et al. [97] propose an end-to-end hierarchy-aware global model (HiAGM) that
leverages fine-grained hierarchy information and aggregates label-wise text features. Intu-
itively, they aim to add information to traditional text encoders by introducing a hierarchy-
aware structure encoder (the structure being the hierarchy). As structure encoders, the
authors test a TreeLSTM and a GCN adapted to hierarchical structures. Moreover, they
propose two different frameworks: one based on multilabel attention (HiAGM-LA), and
one on text feature propagation (HiAGM-TP). HiAGM-LA utilizes the attention mechanism
to enhance label representations in a bidirectional, hierarchical fashion, utilizing node
outputs as the hierarchy-aware label representation. HiAGM-TP, on the other hand, is
based on text feature propagation in a serial dataflow; text features are used as direct inputs
to the structure encoder, propagating information throughout the hierarchy. For multilabel
classification, the binary cross entropy (BCE) loss is used, as well as the regularization term
Rparameter that was described for MATCH.

4.3.5. RLHR

The approach used by Liu et al. [167], which tackles zero-shot HTC, includes a rein-
forcement learning (RL) agent that is trained to generate deduction paths, i.e., the possible
paths from the root label to a child label, to introduce hierarchy reasoning. The reward is
assigned depending on the correctness of the predicted paths, which should be sub-paths
of the ground truth set of paths to positively reward the agent. Moreover, the authors
design a rollback algorithm that overcomes the inefficiencies of previous solutions and
allows the model to correct inconsistencies in the predicted set of labels at inference time.
The zero-shot task is formulated as a deterministic Markov decision process over label
hierarchies. BERT and DistilBERT are used as base models, which are pre-trained on a
binary classification task with a negative sampling strategy. Several training examples are
created by pairing each document with one of its labels as well as some irrelevant labels to
provide positive and negative examples. Using the pre-trained model, a policy is learned
to further tune the model on the binary classification task.

4.3.6. HiMatch

In HiMatch [124], the HTC task is framed as a semantic matching problem, and the
method is used to jointly learn embeddings for documents and labels as well as to learn a
metric for matching them. The proposed architecture first utilizes a text encoder akin to the
one used by HiAGM. Then, a label encoder is used to produce label embeddings enriched
with dependencies among labels. It uses the same GCN architecture as the text encoder;
label vectors are initialized with BERT’s pre-trained embeddings. The document and label
representations are used in the label semantic matching component, which projects text



Electronics 2024, 13, 1199 27 of 57

and labels into a common feature space using two independent two-layer feed-forward
networks. A cross-entropy objective is used for training with two regularization terms: one
to force documents and respective labels to share a similar representation, measured in
terms of mean square error, and a second to penalize close semantic distance between a
document and incorrect labels. The latter constraint uses a triplet margin loss objective with
Euclidean distance. All components are trained jointly, and the authors report improved
performance over a BERT-based model fine-tuned on multilabel classification.

4.3.7. HE-AGCRCNN

The usage of CNs has also been proposed for HTC tasks. Aly et al. [88], for instance,
adapt a CN to exploit the labels’ co-occurrence, correcting the final predictions to in-
clude all ancestors of a predicted label to ensure consistent predictions. More recently,
Peng et al. [170] discuss the drawbacks and strengths of several popular neural networks
used for text processing, including CNNs, RNNs, GCNs, and CNs. They propose to com-
bine them in a single architecture (AGCRCNN) so that they can better capture long- and
short-range dependencies and both sequential and non-consecutive semantics. In their
work, documents are modeled using a graph of words that retains word ordering informa-
tion: after a lemmatization and stop-word removal step, each word is represented as a node
with its position in the document set as an attribute. A sliding window is passed over the
document and edges between nodes are created, weighted on the number of times a word
co-occurred in all sliding windows. For each document, they extract a sub-graph whose
nodes are the document’s words with the highest closeness centrality—a measure of the
importance of words in a document—and their neighbor nodes, up to a fixed number. The
nodes are then mapped to Word2Vec embeddings, obtaining a 3D representation that is fed
to the attentional capsule recurrent CNN module. This is composed of two blocks, each one
containing a convolutional layer to learn higher-level semantic features, and an LSTM layer
with an attention mechanism to learn local sequentiality features specific to each sub-graph.
A CN with a dynamic routing mechanism is finally used for multilabel classification. They
perform an ablation study comparing several variations of their architecture, as well as
previously proposed deep learning classifiers, showcasing better results for their proposed
model on two datasets.

4.3.8. CLED

As another example of the application of CNs to HTC, Wang et al. [87] propose the
Concept-based Label Embedding via Dynamic routing (CLED), in which a CN is used to
extract concepts from text documents. Concepts can be shared between parent and child
classes and can thus be used to support classification based on hierarchical relations. The
top-n keywords from each document are used as concepts and encoded with GloVe word
embeddings. A clustering procedure is utilized to initialize concepts’ embeddings with the
clusters’ center. Dynamic routing is then used to learn concepts’ embeddings; agreement is
only measured between capsules representing parent and child classes.

4.3.9. ICD-Reranking

Tsai et al. [6] tackle the task of automatic ICD coding in medical settings, which
requires multilabel classification of clinical nodes in hierarchically dependent diagnostic
codes. The authors propose to pair a base predictor (responsible for the generation of
top-k most probable label sets) with a re-ranking step. In particular, it is the re-ranker
that is designed to capture correlation and co-occurrence between labels. They propose
two agnostic re-ranking methods, which they validate across different base predictors
to prove the generalizability of their proposed re-rankers. Both re-ranking methods are
trained on the same training data as the candidate generator. The first approach, MADE,
uses joint probability as a way to score label sets, estimating it by decomposing it in an
autoregressive fashion with random ordering. As this approach may fail to capture non-
sequential dependencies, they also propose Mask-SA, a self-attentive approach inspired



Electronics 2024, 13, 1199 28 of 57

by NLP’s masked language models (MLM) that estimates a distribution over the label
vocabulary for the masked input given all other elements in the set. The authors showcase
a consistent improvement across three different predictors on two datasets.

4.3.10. HGCLR

Wang et al. [91] argue against the encoding of text and label hierarchy separately,
and instead propose to aggregate the two representations. They emphasize the fact that
the label hierarchy is static, thus translating to an individual representation by the graph
encoder. As the interaction becomes redundant, they argue for the direct injection of
this representation into the text encoder. The hierarchy-aware representation is achieved
through a contrastive learning approach focused on generating positive examples that are
both label-guided and hierarchy-involved. The construction of such examples is driven by
the observation that a select number of keywords is sufficient to attach a label; similar to an
adversarial attack, then, new examples might be created by modifying tokens within the
text. However, the aim is not to disrupt the example like in an adversarial attack but rather
to modify unimportant tokens to keep the classification results unchanged. From a technical
perspective, important keywords are defined by evaluating the attention weight of token
embeddings, while graph embeddings are obtained through a modified Graphormer [208].

4.3.11. HIDDEN

Chatterjee et al. [169] devise a way to create label embeddings by leveraging the
properties of hyperbolic geometry, which is helpful in the representation of organized
structures (like hierarchies). They adopt a specific hyperbolic model, the Poincaré ball
model. Briefly, in this model, the distance between pairs of points falls exponentially as one
moves from the origin toward the surface of the ball. The authors claim that this property
can be used to represent arbitrarily large hierarchies, where the root of the hierarchy can
be thought of as being close to the origin and the leaves lie on the surface of the ball. A
TextCNN [58] is used to learn document embeddings, while the hyperbolic model is used
to learn label embeddings through a document–label alignment criterion based on the dot
product between embeddings. Additionally, a second loss term is used to push labels closer
in the hyperbolic embedding space based on their co-occurrence. Their results suggest that
the joint learning objective increases performance metrics compared to a model sequentially
optimized on the two objectives.

4.3.12. CHAMP

Vaswani et al. [107] propose a modified BCE loss definition that accounts for the
severity of mispredictions, which they name Comprehensive Hierarchy Aware Multilabel
Predictions (CHAMP). More specifically, the CHAMP loss function penalizes false positives
depending on the distance between the incorrectly predicted label and the true labels. On
the other hand, false negatives are always considered equally severe. For a set of labels
L, a ground truth vector y ∈ {0, 1}L, and a prediction ŷ ∈ {0, 1}L, the loss function is
defined as:

CHAMP(y, ŷ) = −
|L|

∑
j=1

yj log ŷj + (1 + sS(j)) (1− yj) log(1− ŷj) (22)

where sS(j) is the measure of severity of false positive label j, which depends on the distance
from the ground truth label set S. Assuming dist(j, S) is the minimum distance between j
and any label in S, the severity can be defined as:

sS(j) = β ·
dist(j, S)
distmax

(23)

Being an alternative loss function, this approach is natively model-agnostic. The
authors found substantial improvements in terms of the area under the precision–recall



Electronics 2024, 13, 1199 29 of 57

curve (AUPRC) and retrieval metrics over their baselines trained using the BCE loss on
several datasets.

4.3.13. HE-HMTC

Ma et al. [179] propose HE-HMTC, a local per-level approach where a different model
is used at each level of the hierarchy of labels. First, a bidirectional GRU encoder is
used for text representation. Forward and backward hidden states are concatenated to
obtain an encoded document. A Structural Deep Network Embedding (SDNE) [209] graph
embedding method is used to obtain compressed representations for each label in the
hierarchy. Specifically, SDNE is an auto-encoder trained separately to reconstruct the
adjacency matrix of the DAG that is used to represent the hierarchy and allows the capture
of both structural and semantic features of the label set. At each level, the classifier receives
the text representation from the encoder at the previous level, as well as the previous
label embedding. This vector is finally passed through a fully connected layer and a
softmax activation, generating the final probabilities for a level of classes. The process stops
when the last level of labels is reached. They validate the model on several datasets and
perform an ablation study to confirm the impact of the graph encoder and different text
encoding schemes.

4.3.14. HTCInfoMax

Deng et al. [177] build upon the work carried out by Zhou et al. [97], adding two
modules on top of the HiAGM model. They use the probability distribution produced by
the encoder and a discriminator to estimate the mutual information between a document
and its labels. This module is used to clean documents of irrelevant label information
and to embed documents with corresponding labels’ information. The second module is
used to constrain the label encoder to learn better label representations, especially for low-
frequency labels. They use a loss function to maximize the mutual information between
text and labels, as well as a regularization term that pushes the learned distribution of
labels close to its true distribution. The authors showcase superior performance to HiAGM
on two datasets, as well as demonstrating the effectiveness of each module through an
ablation study.

4.3.15. GACaps-HTC

Bang et al. [191] propose a global approach combining GNNs to extract and encode
label-hierarchy information and CNs to learn implicit relationships between labels. The
GACaps-HTC first encodes documents using pre-trained BERT or SciBERT models, fol-
lowed by a convolutional layer to generate label-specific embeddings of the input text for
each label. These representations are then used in a GAT to embed hierarchy information
through the propagation of label-specific information to neighbor labels. The label-specific
and hierarchy-aware representations are generated based on the attention weights learned
by the GAT and are finally passed to a two-layer CN. The activation vectors from primary
capsules determine the probability of labels for each specific document and the dynamic
routing algorithm learns how to distribute this information to the digit capsules that per-
form the final classification. The model is optimized end-to-end using focal loss and a
contradiction term is added to encourage the model to label with fine-grained labels only
when the parent label is also assigned. The results are reported to be superior to HGCLR
(the strongest baseline) [91] on both the WOS and RCV1 datasets.

4.3.16. HiDEC

Im et al. [194] propose an approach to reduce the complexities of hierarchy-aware
models, pairing a hierarchy encoding mechanism with a text-hierarchy attention mecha-
nism. First, a minimal sub-hierarchy is extracted for each document containing its target
labels and encoded as a sequence with positional encoding. The authors assume that it
is not needed to consider the whole hierarchy since most of the labels are irrelevant to a



Electronics 2024, 13, 1199 30 of 57

document. Subsequently, hierarchy embeddings are processed using multi-head masked
self-attention to learn an encoding for the sub-hierarchy sequences. Input documents
are embedded using a text encoder. A multi-head attention mechanism is used to match
hierarchy information to encoded documents, producing a weighted representation of
tokens to the document labels. Finally, the recursive decoder uses this representation to
decode the hierarchy of labels of a document. The model is trained end-to-end using a
modified BCE loss, and strong results are reported on the RCV1 dataset, beating baselines
like HGCLR and HiMATCH.

4.3.17. K-HTC

Liu et al. [135] leverage external knowledge from ConceptNet (a knowledge graph)
to improve HTC. First, input documents are processed to recognize and map concepts to
ConceptNet entities. These entities and their relations are extracted to compose a pruned
KG, which is used to pre-train concept embeddings utilizing the TransE model [133]. The
pre-trained concept embeddings are then passed to a knowledge-aware text encoder based
on GraphSAGE [210] to obtain expressive node representations for each concept that also
consider neighboring concepts. Raw word embeddings are obtained with BERT and then
fused with the representation from aligned concepts. The same encoding strategy is also
used to obtain knowledge-aware embeddings of target labels, which can be seen as an
acyclic graph. A GCN is then used to propagate the representation of labels on the label
hierarchy graph. Finally, label attention is utilized to obtain the class-enhanced document
representation. BCE loss is used in the optimization, along with two contrastive loss terms.
The first ensures that document representations are closer when the number of concepts
shared by the document is high. Similarly, the second moves documents with related
labels (i.e., with shared ancestors in the hierarchy tree) closer. Experiments show strong
performance, with results superior to HGCLR and HPT.

4.3.18. HiTin

Zhu et al. [200] propose to convert the label hierarchy into a simplified tree structure
to remove noisy (or less discriminative) information and then encode this knowledge in
the text representations. First, text is encoded using BERT (though any text encoder would
work). Then, a structure encoder applies the complexity reduction to the hierarchy of labels
through an entropy-minimization scheme, which produces the simplified hierarchy tree.
A message-passing mechanism is then adopted to learn document representation based
on the latter. A BCE loss is used, with a regularization term to encourage related labels to
share model parameters (soft parameter sharing). Experiments show strong performance,
with results superior to HGCLR, HiMATCH, and other BERT-based models.

4.3.19. PeerHTC

Song et al. [130] argue that labels in different branches of the hierarchy may still
carry mutual relevancy information and thus develop an approach that aims to exploit
such latent relationships. To encode more information in the label embeddings, two
strategies are used. The first strategy is similar to HiAGM and is used to embed hierarchy
information (depth-wise), combining top-down and bottom-up embeddings obtained by
an LSTM encoder. Breadth-wise relationships (encoded in peer-wise embeddings) are
also learned using two GCNs, one considering only labels at the same depth and one
considering the complete hierarchy. Secondly, the authors propose a strategy to learn the
adjacency matrix used in the GCN. To do this, a warm-up training phase is utilized to
initialize the adjacency matrix used in the GCN for the training phase. Two approaches are
tested, using Spearman’s correlation and cosine similarity between predicted probabilities
and embeddings, respectively. The final hierarchy- and peer-aware embeddings are then
fused using a non-linear projection to form the final label embeddings. The attention
mechanism is used to align this label information with the encoded documents and is used
to produce the final weighted representation for a document that is used for classification.



Electronics 2024, 13, 1199 31 of 57

The BCE loss is used with a weighting strategy to penalize confusion between labels that
frequently appear together in the dataset. The reported results surpass the performance of
HTCInfoMax and HiAGM baselines.

4.3.20. HJCL

Yu et al. [206] propose a contrastive learning approach to overcome the challenges of
previous work in determining contrastive pairs of samples. Both labels and documents are
embedded using BERT, and a GAT is used to refine the label embeddings to reflect hierar-
chical information. Transformer’s MHA is then used to obtain label-aware embeddings
weighted by their relatedness to each label. Contrastive learning is then used to narrow the
distance between representations of anchors with positive labels, with the added constraint
that lower-level labels should be closer than higher-level ones. However, this approach
reportedly does not perform well in a multilabel setting, as labels that are close in the
hierarchy could be moved far apart. Hence, a contrastive learning step between labels is
also added to ensure that label embeddings with the same target labels are kept close in the
latent space. The zero-bounded log-sum-exp and pairwise rank-based loss (ZLPR) [211]
is used for optimization, along with the two contrastive learning terms. The results are
compared with several baselines, including HGCLR, Seq2Tree, and HTCInfoMax, reporting
2–5% improvements in F1 metrics.

4.3.21. HBGL

Jiang et al. [180] devise a method to make use of the global hierarchy and also exploit
the local information that is specific to the label hierarchy of each document. The authors
use BERT to initialize label representation of the hierarchy graph; attention masks are used
to ensure the model attends only to parent and child labels and an MLM objective is used
to embed hierarchy information fine-tuning label representations by learning to fill masked
leaf labels. To avoid overfitting, the parameters of the BERT encoder are frozen, and only
the last layer producing the global hierarchy-aware embeddings is learned. These are used
to compute embeddings for local hierarchies: all paths to leaf labels for each example are
encoded into a sequence of embeddings and are considered local hierarchies. BERT is
trained to predict the next label in the local sequence given the previous labels and the
input text. Masking is used to ensure there is no leakage of “target" information, as in the
original BERT. At inference time, the model is used in an autoregressive fashion, and the
probabilities of each label are computed with a sigmoid activation. Experiments are carried
out on three datasets, showcasing improved performance over HGCLR, HTCInfoMax,
and HiAGM.

4.3.22. HPT

Prompt-tuning approaches aim to close the gap between the pre-training and fine-
tuning phases, with many authors claiming that traditional fine-tuning may restrict LMs’
capabilities. Wang et al. [136] propose a prompt-tuning approach using an MLM objective
for HTC. They experiment with soft and hard prompt strategies, with the former adding
virtual tokens to the input sentence for automatic prompt learning. To incorporate hierarchy,
the prompt introduces a virtual token for each hierarchy level. These tokens are initialized
using BERT word embeddings of the label names. A GAT is used to learn embeddings
reflecting the relation between labels, and these are used to initialize the virtual token
embeddings. The cross-entropy loss originally used in MLM is not suitable here, since mul-
tiple labels must be predicted. Following previous work, the authors use the zero-bounded
multilabel cross-entropy loss, which effectively adapts cross-entropy to a multilabel setting,
encouraging target labels to score higher than the other labels. Additionally, 15% of tokens
from the input text are masked and the standard MLM loss used in BERT is also adopted.
The authors report improved results over several baselines, including HGCLR, HiMATCH,
and hard and soft tuning using BERT without their hierarchy injection strategy.



Electronics 2024, 13, 1199 32 of 57

4.3.23. HierVerb

Ji et al. [137] describe a prompt-tuning approach for few-shot HTC. Similarly to
HPT [136], they exploit prompt-based learning with language models and integrate the
hierarchical information into the prompt verbalizer using a contrastive learning loss. The
prompt with the masked label information and the original text is encoded using BERT,
and then a multi-level verbalizer is used, where each level is responsible for learning a
representation for masked labels at different depth levels. Two loss terms are added, one
to better adapt the pre-trained LM to the hierarchical objective, and a contrastive one to
increase the similarity of the learned representation for intra-pair samples. The results
are compared with state-of-the-art models, like HGCLR, HiMatch, and HPT, showing
competitive performance in both few-shot and full-shot settings.

4.3.24. P-Tuning-v2

Chen et al. [138] investigate the usage of prefix tuning for HTC. As mentioned, this
technique only learns short vectors (soft prefix prompts, SPP) instead of fine-tuning the
entire LM, which has its weights frozen instead. In the paper, SPP vectors are appended to
the input representation of each layer, and several tuning strategies are employed. These
include a local tuning strategy where a separate model is trained for each level of the
hierarchy, a global approach, and a second global approach enhanced with contrastive
learning to improve the learned representations. In the local approach, the authors also
test different strategies to condition SPP vectors in adjacent hierarchy layers to reflect
the hierarchical nature of labels. They use BERT as the pre-trained language model and
experiment in multilabel settings with BCE loss. The results are compared among the tested
variants on three datasets.

4.4. Datasets Used in the HTC Literature

We conclude this section on the HTC literature by providing an overview of the most
commonly utilized datasets in the context of HTC, as inferred by analyzing recent methods
in the previous sections. Table 5 summarizes the datasets that are well-defined for HTC
tasks and are often encountered in the literature. Table 6 lists large collections of documents
from which HTC datasets are often derived, though often inconsistently across different
works.

Indeed, much of the HTC literature is spread across a wide variety of datasets, which
often collect data from the same source but utilize it in different ways. While what we
report in Table 6 are among the most prominent sources in terms of raw data, there are
others, such as data derived from DBpedia [212] and Wikipedia [213] dumps. Overall,
methods listed in Tables 1–4 span across more than 44 different datasets, many of which
are only tested on the specific method being proposed, at least recently. Therefore, HTC
suffers from a lack of established benchmarks, resulting in this scattering of methods over
a wide range of incomparable datasets.

There is also another source of inconsistency across results in the literature that should
be mentioned. Some of these datasets provide pre-defined splits, such as the very popular
RCV1 dataset (which is by far the most utilized dataset, followed by the WOS dataset).
However, when comparing results with methods, one should be mindful to check whether
the authors have made use of such splits; indeed, the most common split of the RCV1
dataset utilizes a very small portion of the overall data for training (around 3%). With this
in mind, methods that adopt larger training splits (which is indeed the case in some works)
should be compared to others with due precaution.



Electronics 2024, 13, 1199 33 of 57

Table 5. Commonly utilized datasets in the HTC literature.

Name Size Depth Labels
(Overall) Labels per Level

RCV1-v2 [214] 804,414 4 103 4–55–43–1
Web of Science (WOS-46,985) [215] 46,985 2 145 7–138
Blurb Genre Collection (BGC) [88] 91,894 4 146 7–46–77–16
20Newsgroup (20NG) [216] 18,846 2 20 6–20
Arxiv Academic Paper (AAPD) [171,217] 55,840 2 61 9–52
Enron [94,218] 1648 3 56 3–40–13
Patent/USPTO [76] 100,000 4 9162 9–128–661–8364

Table 6. Large collections from which HTC datasets are often derived.
Name Size Depth (Overall) Labels (Overall)

New York Times (NYT) [219] ∼ 1.8 M 10 2318
YELP [99,169] ∼ 7 M 2 539
Amazon [220] ∼ 35 M 3 531

5. Experiments and Analysis

This section presents the experimental part of this work: first, we describe our selection
of benchmark datasets, then we proceed to introduce the baseline methods we tested, and
finally, we discuss and compare their performance.

5.1. Datasets Used

In our experiments, we select three of the most popular datasets for HTC, namely,
the Web of Science [215], Blurb Genre Collection [88], and Reuters Corpus-V1 [214]. The
latter two are distributed with pre-defined training and test splits, allowing us to directly
compare our results with those of other works. To diversify the domains being tested, we
additionally test methods on two more datasets, the first being a collection of bug reports
crawled online, and the second a corpus of user reviews that we newly derive from the
Amazon corpus. Overall, these datasets are representative of five different domains of
applications of HTC methods (i.e., books, the scientific literature, news, IT tickets, and
reviews), hence providing us with results across a wide spectrum of diverse data. Statistics
for the five datasets are displayed in Table 7, along with an indication of whether they
respect the MLNP assumption. The specific preprocessing procedure for each method we
tested is discussed in the following sections, along with the experimental details.

Table 7. Statistics for datasets used in this work. ✓ and ✗ in the MNLP row stand for
mandatory and non-mandatory leaf prediction, respectively. Values for splits are indicated
as “n/a” if no standard split exists in the literature.

Bugs RCV1-v2 WOS BGC Amazon

Size 35,050 804,414 46,960 91,894 500,000
Depth 2 4 ** 2 4 2
Labels overall 102 103 * 145 146 30
Labels per level 17–85 4–55–43–1 7–138 7–46–77–16 5–25
Average # characters 2026 1378 1376 996 2194
Train 18,692 23,149 31,306 58,715 266,666
Validation 4674 n/a 6262 14,785 66,667
Test 11,684 781,265 15,654 18,394 166,667
MLNP ✓ ✗ ✓ ✗ ✓

* Overall, only 101 are available in the training split. ** Removing the unassigned categories.

5.1.1. Linux Bugs

The Linux Bugs dataset (which we will refer to simply as “Bugs”) was introduced
by Lyubinets et al. [221] and comprises bugs scraped from the Linux kernel bugtracker



Electronics 2024, 13, 1199 34 of 57

(https://bugzilla.kernel.org, accessed on 17 March 2024). We utilize the script provided by
the original authors to acquire a larger set of data. The documents are essentially support
tickets classified in terms of importance, related product, and specific components. The
“product” field acts as a parent label to the “component” sub-labels, from which we can
derive a hierarchy of labels. As the depth of the hierarchy is only two, it is a rather shallow
and wide structure. Furthermore, the dataset itself is strongly unbalanced; therefore, we
discard bug reports tagged with labels or sub-labels appearing less than 100 times. The
resulting dataset is still unbalanced, but this process helps to filter out lesser categories that
are barely represented.

In terms of textual content, this dataset is very noisy. Entries often contain grammatical
inconsistencies and technical jargon, as well as technical readings such as stack traces or
memory addresses. An example of a bug report from this dataset is given in Listing 1.

Listing 1. Linux bugs extracted from the Bugs dataset.
Description: ‘‘exact kernel version:linux-2.5.51 distribution:redhat 8.0 + linux2.5.51

hardware environment:intel stl2 mother boar d problem description: compile e100 as
kernel module, insmod e100 and start the network. then stop network and remove e100
together. then kernel crashes in random places. for example: use command : insmod e100
/etc/init.d/network start /etc/init.d/network stop; rmmod e100 then the kernel crashes.
eflags: 00010887 eip is at cascade + 0x25/0x60 eax: defd02b8 ebx: 00000001 ecx:
00000000 edx: c150a4c0 esi: c150acd4 edi: c150acd4 ebp: c150acd4 esp: c0559f1c ds: 0068
es: 0068 ss: 0068 process swapper (pid: 0, threadinfo=c0558000 task=c0497f60) [...]’’

Categories: ‘‘Drivers’’, ‘‘Networks’’

5.1.2. RCV1-v2

The Reuters Corpus Volume I (RCV1) dataset [214] is a human-labeled newswire
collection of Reuters News collected between 20 August 1996 and 19 August 1997. It
contains over 800,000 manually categorized international newswire stories in English. In
particular, we adopt the widely utilized corrected version, referred to as RCV1-v2. This
version contains several fixes for the categories assigned to each document, while 13 topic
codes are removed entirely. We follow the instructions from Lewis et al. [214] to generate
the labeled dataset: all articles published from 20 August 1996 to 31 August 1996 are used
as the training split, while all the remaining articles (up to 19 August 1997) are used as the
test set. As a result of this chronological split, we noticed that two of the topic codes are
only present in the testing set. We remove these codes, which leaves us with 101 topics
in both training and testing. In our dataset, the headline and article fields of each news
article are concatenated to generate the final document. The hierarchy among topic codes
is specified in the file rcv1.topics.hier.expanded, which can be downloaded from the
official RCV1-v2 repository. An example of an article in XML extracted from RCV1-v2 is
shown in Listing 2.

Listing 2. A news article extracted from the RCV1 dataset.
<newsitem itemid=‘‘2307’’ id=‘‘root’’ date=‘‘1996-08-20’’ xml:lang=‘‘en’’>

<title>UK: Oil prices slip as refiners shop for bargains.</title>
<headline>Oil prices slip as refiners shop for bargains.</headline>
<dateline>LONDON 1996-08-20</dateline>
<text>

<p>World oil prices slipped on Tuesday in a market where refiners stung by high
crude premiums and poor margins began to bargain for a cheaper barrel.</p>

<p>October futures for world benchmark Brent Blend crude from the North Sea closed
down 38 cents at $20.43 a barrel after failing to break through the day’s high
of $20.80.</p>

<p>&quot;There was a broad feeling in the market that Brent was overheated and had
to come down,&quot; a trader said.</p>

<p>On the unofficial Brent forward market, prompt differentials for Dated or
physical Brent shrank, suggesting cargoes would fetch lower premiums in the
weeks ahead. This could avert the risk of refineries running less crude through
their systems to pump up the price of products.</p>

[...]

https://bugzilla.kernel.org


Electronics 2024, 13, 1199 35 of 57

</text>
<copyright>(c) Reuters Limited 1996</copyright>
<metadata>

<codes class=‘‘bip:countries:1.0’’> [...] </codes>
<codes class=‘‘bip:topics:1.0’’>
<code code=‘‘M14’’> [...] </code>
<code code=‘‘M143’’> [...] </code>
<code code=‘‘MCAT’’> [...] </code>

</codes>
</metadata>

</newsitem>

5.1.3. Web of Science

The Web Of Science (WOS) dataset, first introduced by Kowsari et al. [61], contains
abstracts from papers published on the Web of Science (https://www.webofscience.com,
accessed on 17 March 2024) platform. We utilize the dataset in its complete version
(sometimes referred to as WOS-46985 (https://data.mendeley.com/datasets/9rw3vkcfy4
/6, accessed on 17 March 2024), which comprises 46,985 abstracts from published papers
in seven major scientific domains. The categories are further subdivided into 134 sub-
domains. Much like the Linux Bugs dataset, it is characterized by a shallow hierarchy and
an unnatural balancing—given by the fact that each example has exactly two labels [88].
An example of an abstract from the WOS dataset is shown in Listing 3.

Listing 3. Abstract extracted from the WOS dataset.
Abstract: ‘‘(T)his paper presents the concept of a software-defined radio with a flexible

RF front end. The design and architecture of this system, as well as possible
application examples will be explained. One specific scenario is the operation in
maritime frequency bands. A well-known service is the Automatic Identification System
(AIS), which has been captured by the DLR mission AISat, and will be chosen as a
maritime application example. The results of an embedded solution for AIS on the SDR
platform are presented in this paper. Since there is an increasing request for more
performance on maritime radio bands, services like AIS will be enhanced by the
International Association of Marine Aids to Navigation and Lighthouse Authorities
(IALA). The new VHF Data Exchange Service (VDES) shall implement a dedicated satellite
link. This paper describes that the SDR with a flexible RF front end can be used as a
technology demonstration platform for this upcoming data exchange service.’’

Categories: ‘‘ECE’’, ‘‘Distributed-computing’’

5.1.4. Blurb Genre Collection

The Blurb Genre Collection (BGC) (https://www.inf.uni-hamburg.de/en/inst/ab/
lt/resources/data/blurb-genre-collection.html, accessed on 17 March 2024) was first in-
troduced by Aly et al. [88] and is primarily comprised of so-called “blurbs” (i.e., short
advertising texts for books) in English, as well as other metadata such as author name,
publication date, and so on. The data are crawled from the Penguin Random House website
and preprocessed to remove uninformative categories and category combinations that
appear less than five times. As described by the authors, the procedure followed aims at
mimicking the properties of the RCV1 dataset, ultimately generating a forest-like hierarchy
structure. The label distribution is nonetheless unbalanced, with 146 overall labels and a
hierarchy of depth 4. An example of a book summary extracted from this dataset is shown
in Listing 4.

Listing 4. Book sample extracted from the BGC dataset.
<book date=‘‘2018-08-18’’ xml:lang=‘‘en’’>

<title>Creatures of the Night (Second Edition)</title>
<body>Two of literary comics modern masters present a pair of magical and disturbing

stories of strange creatures who are not quite what they seem! In The Price, a
mysterious feline engages in a nightly conflict with an unseen, vicious foe. The
Daughter of Owls recounts an eerie tale of a beautiful orphan girl who was found
clutching an owl pellet-and how those who would do her wrong would face bizarre,

https://www.webofscience.com
https://data.mendeley.com/datasets/9rw3vkcfy4/6
https://data.mendeley.com/datasets/9rw3vkcfy4/6
https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/blurb-genre-collection.html
https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/blurb-genre-collection.html


Electronics 2024, 13, 1199 36 of 57

unforeseen consequences. Neil Gaiman (The Sandman, American Gods) delivers his
award-winning magic and mystery, realized in Michael Zulli’s lavish paintings,
newly re-designed in a beautiful new edition!</body>

<copyright>(c) Penguin Random House</copyright>
<metadata>

<topics>
<d0>Fiction</d0>
<d1>Graphic Novels & Manga</d1>

</topics>
<author>Neil Gaiman</author>
<published>Nov 29, 2016 </published>
<page_num> 48 Pages</page_num>
<isbn>9781506700250</isbn>
<url> [...] </url>

</metadata>
</book>

5.1.5. Amazon 5 × 5

We synthesize a new dataset composed of user reviews labeled with the two-level
category of the reviewed product. The dataset is obtained from the 2018 Amazon dump
proposed in Ni et al. [222]. We extract product reviews for the following five categories:
“Arts, Crafts and Sewing”, “Electronics”, “Grocery and Gourmet Food”, “Musical Instru-
ments”, and “Video Games”. Then, we manually exactly five sub-categories for each
macro-category. In some cases, we map several sub-categories to the same macro-category
(e.g., “Needlework” and “Sewing” are related; hence, grouped in “Sewing”) and fix in-
consistencies as best we can (e.g., we list “Marshmallows” under the “Candy” category,
instead of under the “Cooking & Baking” one). Reviews are sampled in such a way that
exactly 100,000 reviews are extracted for each domain. The dataset is therefore balanced
concerning the five macro-categories. The second-level labels we obtain are also fairly bal-
anced, though an equal split for each one is not ensured. Labels and sub-labels form a tree
hierarchy, and there are exactly two labels for each sample. Reviews are the concatenation
of a summary and a longer description, although sometimes only one of these is available.
Before extraction, reviews are sorted by length to ensure the longer ones are included in
our dataset. A sample review extracted from this dataset is shown in Listing 5.

Listing 5. An example of user review in the Amazon dataset.
{

‘summary’: ‘‘Impressed for $10’’,
‘reviewText’: ‘‘I picked up an old set of VW recaro bucket seats (the old gray ones).

One of the cussions had a few holes in them (cigarette burn) so I decided I’d see
what I could do. I worked on the seat in pieces so I did it inside. It could be
done just as easily installed in the car. Simply use the color chart to mix a close
match to the interior. Clean the area you will be working with. If necessary
provide some backing such as a cotton ball stuffed down inside. [...] I applied the
fix to several holes about 5 h ago to writing this review and its already setting
up nicely. I’m going to clear the excess coloring tomorrow and reassemble the seat
and install them back in my car. Bottom line $10 and i could patch another 10 holes
with moderately professional results. Can’t beat it.’’,

‘category’: [‘‘Arts Crafts and Sewing’’, ‘‘Crafting’’]
}

5.2. Models Implemented

In this section, we provide some technical details on the methods we tested firsthand.
We select as candidates the methods described in Section 4.3, i.e., those providing results
on RCV1 and WOS and offering a publicly accessible code implementation. Among these,
we select HBGL and GACaps-HTC, the two methods reporting the highest macro F1 scores
on the RCV1 and WOS datasets, respectively, and test the authors’ implementation on
our datasets. Additionally, we select other HTC methods that are heavily referenced in
the literature, namely, MATCH, HiMatch, and HiAGM. As baselines for comparison, we



Electronics 2024, 13, 1199 37 of 57

also report results on popular flat-classification methods like SVM, BERT, and XML-CNN,
additionally testing the latter two with losses optimized for HTC tasks. Despite our best
efforts, we were unable to use the existing implementations of other methods that we
had initially selected. Firstly, several works have missing dependencies or files that are
unspecified in the provided code. Secondly, some works utilize outdated versions of
libraries that are no longer available or supported. Lastly, in some cases, there was a lack of
adequate instructions or support to extend the work on other datasets. We will briefly touch
on the issue of reproducibility in Section 6; as mentioned, to help with this problem, we
share publicly both our data splits (when legally possible) and code. In some cases, despite
managing to run the method’s implementation, we did not achieve good performance on
any of our datasets. A more detailed recollection of our experiments on other methods may
be found in the supplemental material.

The following paragraphs describe the hyperparameters, preprocessing operations,
and settings used with each method we were able to test, as well as a few baselines. For all
methods, we perform 3-fold cross-validation on the Bugs dataset to select a common set of
hyperparameters. Then, we use these to test each model on all five datasets. A supplemen-
tary material document is also provided to further detail the validation procedure.

5.2.1. HBGL

We use the public implementation of HBGL [180] and train the model for 960,000 steps,
saving the checkpoint with the highest macro F1 score on the validation split, as in the
original paper. All hyperparameters excluding the learning rate and batch size (which
are selected according to the validation procedure) are set to the same values used by
the authors and the number of input tokens to the BERT encoder is set to the maximum
number (512).

5.2.2. GACaps-HTC

We run the GACaps-HTC [191] implementation on our five datasets, training for a
maximum of 200 epochs with early stopping, utilizing the hyperparameters suggested by
the authors and tuning the learning rate and batch size. This method also includes an auto-
matic hyperparameter search that tunes parameters based on validation set performance. In
line with the authors, we use the “allenai/scibert_scivocab_uncase” pre-trained BERT
model to generate embeddings for the WOS dataset without fine-tuning and fine-tune
a BERT model for all other datasets starting from the “bert-base-uncased” dump from
HuggingFace. We train with a batch size set to 16 using the Adam optimizer.

5.2.3. MATCH

We test the proposal from Zhang et al. [165] on our datasets. Our datasets have no
metadata; therefore, we test the model as limited to using the normalization mechanism
for the hierarchy of labels. Additionally, we could not reproduce the joint embedding
pre-training on our datasets; hence, we replaced it with Word2Vec embeddings, which we
previously fine-tuned on our dataset for 20 epochs. Before training Word2Vec embeddings,
we preprocess the dataset by removing URLs, hexadecimal codes, and memory addresses
(only for the Bugs dataset) and make all words lowercase. The text is then tokenized with
NLTK’s word tokenizer, and punctuation marks are removed. The model uses a BCE loss
with regularization terms optimized using Adam.

5.2.4. HiAGM

We use the public implementation of HiAGM [97] and test its performance on our
datasets. The text is preprocessed with the same procedure described by its authors,
consisting of making all words lowercase and removing special characters, stopwords, and
punctuation marks. The Adam optimizer is used during training.



Electronics 2024, 13, 1199 38 of 57

5.2.5. BERT

We adopt the pre-trained “bert-base-cased” model from the HuggingFace
library [34,223]. BERT stacks several Transformer encoder blocks and we concatenate the
(un-pooled) “[CLS]” representation from the last three blocks to obtain a more meaningful
document representation, as in Marcuzzo et al. [101], Tanaka et al. [224]. As with MATCH,
we preprocess the dataset by removing URLs, hexadecimal codes for the Bugs dataset,
and lowercase words. For tokenization, we use BERT’s Tokenizer, which is derived from
WordPiece [26]. The BCE loss is adopted, and AdamW is utilized as an optimizer.

5.2.6. XML-CNN

We test a shallow CNN-based model from Liu et al. [225], Adhikari et al. [226]. Word
embeddings are initialized with pre-trained GloVe embeddings [22] based on results obtained
on the validation set. The text is preprocessed as was previously described for MATCH.
Additionally, we remove stopwords from all corpora, since we find this step improves metric
results on the validation set. We use the BCE loss with the AdamW optimizer.

5.2.7. CHAMP/MATCH Losses

We additionally test the BERT model and XML-CNN with the CHAMP and MATCH
loss proposed by Vaswani et al. [107] and Zhang et al. [165]. For CHAMP, we implemented
the “hard” version of their loss function. We test these approaches using the same opti-
mization method, as well as the same preprocessing and tokenization steps described for
BERT and XML-CNN, respectively.

5.2.8. SVM

As a traditional baseline, we test the performance of simple SVM-based approaches
with a one-vs-rest strategy. We test a standard flat approach that performs multiclass
classification on the most specific label for each example, as well as a naive multilabel
approach with no hierarchical information (to simulate an NMLNP). We apply the same
preprocessing described for XML-CNN and use a TF-IDF representation to generate word
feature vectors. As expected for this type of text representation, the removal of stopwords
improves the performance on all datasets. On the Bugs dataset, we perform a more
aggressive and targeted cleaning procedure, removing pieces of text that refer to memory
addresses and codes, such as to reduce the size of the generated vocabulary.

5.3. Results

In this section, we report and discuss the results obtained with each method on the
five selected datasets. As previously mentioned, RCV1-v2 and BGC have been shared with
pre-defined training and testing splits, allowing easy comparisons with other works. The
results reported in the literature on RCV1 are shown in Table 8 (only when using standard
splits), together with results on the widely popular WOS-46985. Only works reporting
F1 metrics are reported. The BGC dataset is relatively new and only a handful of works
have results on it. Conversely, the WOS dataset, as well as the Amazon and Bugs datasets
that we collected, do not have standardized splits. For this reason, we decided to share
our training and testing splits to allow for better reproducibility. We also report results
over these same datasets using a 3-fold cross-validation strategy with both standard and
hierarchical metrics (when possible). The latter can be found in Tables 9 and 10, while the
results over the individual splits are reported in Table 11.



Electronics 2024, 13, 1199 39 of 57

Table 8. Performance reported in the literature on RCV1-v2 and WOS datasets (best results
in bold).

Method RCV1-v2 * WOS **
micro-F1 macro-F1 micro-F1 macro-F1

HTrans [148] 0.805 0.585 - -
NeuralClassifier (RCNN) [149] 0.810 0.533 - -
HiLAP [99] 0.833 0.601 - -
HiAGM-TP [97] 0.840 0.634 0.858 0.803
RLHR [167] - - 0.785 0.792
HCSM [168] 0.858 0.609 0.921 0.807
HiMatch [124] 0.847 0.641 0.862 0.805
HIDDEN [169] 0.793 0.473 - -
HE-AGCRCNN [170] 0.778 0.513 - -
HVHMC [171] - - 0.743 -
SASF [126] - - 0.867 0.811
HTCInfoMax [177] 0.835 0.627 0.856 0.800
PAAM-HiA-T5 [178] 0.872 0.700 0.904 0.816
HPT [136] 0.873 0.695 0.872 0.819
HGCLR [91] 0.865 0.683 0.871 0.812
Seq2Tree [93] 0.869 0.700 0.872 0.825
HBGL [180] 0.872 0.711 0.874 0.820
P-tuning v2 (SPP-tuning) [138] - - 0.875 0.800
LD-GGNN [186] 0.842 0.641 0.851 0.805
LSE-HiAGM [123] 0.839 0.646 0.860 0.800
Seq2Label [121] 0.874 0.706 0.873 0.819
HTC-CLIP [190] - - 0.879 0.816
GACaps [191] 0.868 0.698 0.876 0.828
HiDEC [194] 0.855 0.651 - -
UMP-MG [129] - - 0.859 0.813
LED [196] 0.883 0.697 0.870 0.813
(HGCLR-based + aug) [198] 0.862 0.679 0.874 0.821
K-HTC [135] - - 0.873 0.817
HiTIN (BERT) [200] 0.867 0.699 0.872 0.816
HierVerb (few-shot) [137] 0.655 0.351 0.809 0.738
DLAC [202] - - 0.868 0.810
PeerHTC [130] - - 0.742 0.674
HJCL [206] 0.870 0.705 - -
* Refers to RCV1-V2 with split 20,834/2315/781,265 (train/validation/testing). ** Refers to WOS-46985.

Table 9. Performance metrics on the test set for each model on the Bugs, WOS, and Amazon
datasets, with best results outlined in bold. (CL/ML = CHAMP/MATCH loss). ↑ stands
for higher is better, while ↓ stand for lower is better.

Model Acc ↑ F1 ↑ h-F1 ↑ AHC ↓
Bugs

MATCH 0.3624 [±0.0491] 0.3635 [±0.0559] 0.3638 [±0.0560] 0.5501 [±0.0834]
HiAGM 0.4482 [±0.0069] 0.5218 [±0.0045] 0.5214 [±0.0046] 0.7672 [±0.0527]
BERT + CL 0.4822 [±0.0066] 0.4965 [±0.0078] 0.4968 [±0.0079] 0.4047 [±0.0182]
BERT + ML 0.5061 [±0.0099] 0.5165 [±0.0095] 0.5172 [±0.0096] 0.4634 [±0.0238]
XML-CNN + CL 0.2603 [±0.0037] 0.2515 [±0.0062] 0.2522 [±0.0247] 0.2443 [±0.0052]
XML-CNN + ML 0.2823 [±0.0110] 0.2767 [±0.0058] 0.2774 [±0.0057] 0.2885 [±0.0188]
HBGL 0.5763 [±0.0003] 0.5709 [±0.0032] 0.5710 [±0.0029] 0.6320 [±0.0037]
GACaps 0.4916 [±0.0052] 0.5430 [±0.0110] 0.5445 [±0.0110] 0.6476 [±0.0725]

BERT 0.5070 [±0.0113] 0.5204 [±0.0093] 0.5209 [±0.0091] 0.4606 [±0.0119]
XML-CNN 0.2800 [±0.0130] 0.2710 [±0.0163] 0.2716 [±0.0160] 0.3000 [±0.0239]
SVM (MultiL) 0.3029 [±0.0035] 0.4187 [±0.0044] 0.4207 [±0.0043] 0.5254 [±0.0086]
SVM (MultiC) 0.5496 [±0.0039] 0.4724 [±0.0061] - -



Electronics 2024, 13, 1199 40 of 57

Table 9. Cont.
Model Acc ↑ F1 ↑ h-F1 ↑ AHC ↓

WOS

MATCH 0.5932 [±0.0161] 0.6672 [±0.0145] 0.6674 [±0.0145] 0.3891 [±0.0114]
HiAGM 0.6513 [±0.0159] 0.7544 [±0.0065] 0.7541 [±0.0066] 0.4272 [±0.0356]
BERT + CL 0.7647 [±0.0064] 0.7928 [±0.0066] 0.7929 [±0.0066] 0.1941 [±0.0130]
BERT + ML 0.7718 [±0.0027] 0.7974 [±0.0030] 0.7974 [±0.0030] 0.2120 [±0.0104]
XML-CNN + CL 0.4488 [±0.0078] 0.5408 [±0.0095] 0.5410 [±0.0095] 0.1853 [±0.0091]
XML-CNN + ML 0.4759 [±0.0109] 0.5688 [±0.0057] 0.5691 [±0.0057] 0.2044 [±0.0097]
HBGL 0.8014 [±0.0002] 0.8221 [±0.0004] 0.8221 [±0.0004] 0.2140 [±0.0024]
GACaps 0.7376 [±0.0078] 0.8063 [±0.0050] 0.8067 [±0.0050] 0.2753 [±0.0136]

BERT 0.7712 [±0.0067] 0.7981 [±0.0059] 0.7981 [±0.0059] 0.2087 [±0.0069]
XML-CNN 0.4714 [±0.0115] 0.5628 [±0.0085] 0.5630 [±0.0085] 0.1978 [±0.0105]
SVM (MultiL) 0.5051 [±0.0026] 0.6611 [±0.0018] 0.6619 [±0.0018] 0.2172 [±0.0061]
SVM (MultiC) 0.7609 [±0.0033] 0.7397 [±0.0045] - -

Amazon

MATCH 0.8717 [±0.0087] 0.9039 [±0.0028] 0.9039 [±0.0028] 0.0801 [±0.0028]
HiAGM 0.8735 [±0.0044] 0.9029 [±0.0030] 0.9029 [±0.0030] 0.0858 [±0.0037]
BERT + CL 0.8912 [±0.0019] 0.9192 [±0.0015] 0.9192 [±0.0015] 0.0632 [±0.0016]
BERT + ML 0.8960 [±0.0021] 0.9214 [±0.0015] 0.9214 [±0.0015] 0.0658 [±0.0020]
XML-CNN + CL 0.8242 [±0.0038] 0.8849 [±0.0018] 0.8850 [±0.0018] 0.0709 [±0.0015]
XML-CNN + ML 0.8279 [±0.0036] 0.8860 [±0.0021] 0.8860 [±0.0021] 0.0782 [±0.0011]
HBGL 0.8405 [±0.0002] 0.8796 [±0.0012] 0.8796 [±0.0012] 0.1134 [±0.0000]
GACaps 0.8673 [±0.0019] 0.9058 [±0.0010] 0.9057 [±0.0011] 0.0701 [±0.0005]

BERT 0.8954 [±0.0020] 0.9212 [±0.0014] 0.9212 [±0.0014] 0.0661 [±0.0008]
XML-CNN 0.8290 [±0.0030] 0.8867 [±0.0016] 0.8867 [±0.0017] 0.0774 [±0.0020]
SVM (MultiL) 0.7340 [±0.0016] 0.8491 [±0.0010] 0.8492 [±0.0010] 0.0628 [±0.0010]
SVM (MultiC) 0.8666 [±0.0007] 0.8677 [±0.0007] - -

The standard deviation over the 2 repetitions of 3-fold cross-validation is reported in brackets.

Table 10. Performance metrics on the test set for the BGC and RCV1-v2 datasets, with best
results outlined in bold. ↑ stands for higher is better, while ↓ stand for lower is better.

Model Acc ↑ F1 ↑ h-F1 ↑ AHC ↓
RCV1-v2

MATCH 0.5149 [±0.0010] 0.5308 [±0.0056] 0.5309 [±0.0056] 0.3478 [±0.0005]
HiAGM 0.6035 [±0.0064] 0.6836 [±0.0075] 0.6830 [±0.0083] 0.3236 [±0.0001]
BERT + CL 0.6409 [±0.0004] 0.6612 [±0.0127] 0.6613 [±0.0125] 0.1929 [±0.0304]
BERT + ML 0.6383 [±0.0059] 0.6805 [±0.0073] 0.6806 [±0.0073] 0.2270 [±0.0076]
XML-CNN + CL 0.5449 [±0.0099] 0.4898 [±0.0058] 0.4905 [±0.0055] 0.1768 [±0.0121]
XML-CNN + ML 0.5460 [±0.0089] 0.4832 [±0.0161] 0.4840 [±0.0164] 0.1917 [±0.0156]
HBGL 0.6588 [±0.0015] 0.7284 [±0.0001] 0.7285 [±0.0002] 0.2312 [±0.0127]
GACaps 0.6390 [±0.0012] 0.7103 [±0.0060] 0.7090 [±0.0057] 0.2629 [±0.0118]

BERT 0.6391 [±0.0036] 0.6722 [±0.0305] 0.6723 [±0.0304] 0.1959 [±0.0480]
XML-CNN 0.5516 [±0.0023] 0.4923 [±0.0124] 0.4932 [±0.0127] 0.1815 [±0.0098]
SVM (MultiL) ** 0.4971 0.5456 0.5472 0.2340
SVM (MultiC) ** 0.7289 0.4416 - -

BGC

MATCH 0.3876 [±0.0009] 0.4800 [±0.0015] 0.4802 [±0.0012] 0.4793 [±0.0059]
HiAGM 0.4112 [±0.0055] 0.5483 [±0.0030] 0.5484 [±0.0024] 0.5483 [±0.0144]
BERT + CL 0.4674 [±0.0008] 0.6058 [±0.0156] 0.6060 [±0.0155] 0.3303 [±0.0017]
BERT + ML 0.4740 [±0.0004] 0.6116 [±0.0049] 0.6119 [±0.3450] 0.3450 [±0.0017]
XML-CNN + CL 0.3544 [±0.0012] 0.3870 [±0.0029] 0.3873 [±0.0028] 0.3054 [±0.0121]
XML-CNN + ML 0.3549 [±0.0018] 0.3798 [±0.0076] 0.3803 [±0.0077] 0.2875 [±0.0227]



Electronics 2024, 13, 1199 41 of 57

Table 10. Cont.
Model Acc ↑ F1 ↑ h-F1 ↑ AHC ↓
HBGL 0.5060 [±0.0006] 0.6782 [±0.0016] 0.6779 [±0.0015] 0.3540 [±0.0032]
GACaps 0.4527 [±0.0071] 0.6459 [±0.0059] 0.6446 [±0.0063] 0.4517 [±0.0150]

BERT 0.4711 [±0.0032] 0.6100 [±0.0119] 0.6102 [±0.0116] 0.3490 [±0.0334]
XML-CNN 0.3602 [±0.0028] 0.3996 [±0.0092] 0.4000 [±0.0091] 0.3096 [±0.0073]
SVM (MultiL) ** 0.3495 0.5129 0.5148 0.3985
SVM (MultiC) ** 0.6285 0.2792 - -

The standard deviation over 2 runs on the same standardized splits is reported in brackets.
** SVMs run on fixed splits have deterministic results if run for enough iterations.

Table 11. F1 score (macro) results on one split of each dataset (average of 2 runs). Best
results are outlined in bold.

Method RCV1-v2 WOS Amz BGC Bugs

MATCH 0.5308 0.6719 0.9048 0.4800 0.4064
HiAGM 0.6836 0.7484 0.9041 0.5483 0.5263
BERT + CL 0.6612 0.7958 0.9200 0.6058 0.5046
BERT + ML 0.6805 0.8007 0.9214 0.6116 0.5218
XML-CNN + CL 0.4898 0.5471 0.8856 0.3870 0.2517
XML-CNN + ML 0.4832 0.5645 0.8863 0.3798 0.2784
HBGL 0.7284 0.8221 0.8794 0.6781 0.5710
GACaps 0.7095 0.8064 0.9058 0.6464 0.5433

BERT 0.6722 0.7991 0.9206 0.6100 0.5235
XML-CNN 0.4923 0.5631 0.8855 0.3996 0.2802
SVM (MultiL) 0.5456 0.6610 0.8484 0.5129 0.4184
SVM (MultiC) 0.4416 0.7438 0.8676 0.2792 0.4700

5.3.1. Comparison

On the Linux Bugs datasets, three methods performed particularly well: HBGL,
GACaps, and HiAGM. In terms of accuracy, HBGL is the best method, with the simplified
SVM with multiclass objective coming second. However, the latter is much worse than
the hierarchical methods in terms of F1 score. This traditional, non-hierarchical approach
using TF-IDF embeddings and an SVM classifier is likely to be effective on the Linux Bugs
dataset because of how technical and noisy its language is: the heavier preprocessing
steps to produce the TF-IDF vocabulary can filter out some symbols and noisy pieces
of text that are not relevant to the classification. Conversely, for context-aware methods
that have been pre-trained on longer and less technical texts, such as BERT, this may
come as a disadvantage. Despite this, the latter model achieves good results, but it is
plausible to assume that it suffers from the lack of structure in the bodies of text within
the dataset. GACaps performed significantly worse than HBGL in terms of accuracy and
slightly worse in terms of F1 score but also improved over BERT and HiAGM with a score
in line with the BERT + ML model. HiAGM performed similarly to the BERT + ML model,
although its hierarchy-aware mechanism significantly favors the F1 score, indicating more
balanced results across different categories. MATCH, XML-CNN, and the two hierarchical
losses provided worse or inconsequential results. Overall, the performance comparison
seems to suggest that integrating hierarchical information is not straightforward but can be
advantageous (such as in the case of HBGL, GACaps, and HiAGM).

While HBGL and GACaps remained the two top-performing methods, the Web of
Science dataset largely favors the BERT-based approaches over HiAGM. The improvement
provided by the MATCH loss is negligible, while the CHAMP loss seems to provide worse
results (as was the case for the previous dataset). In general, then, the good results can be
attributed to the semantic interpretation capabilities of BERT, rather than the hierarchical
information that the former loss could provide. In this case, the top three methods also
surpassed the accuracy of traditional approaches based on SVMs, most likely because the



Electronics 2024, 13, 1199 42 of 57

text is much more structured and less noisy. HiAGM still provided decent results, though
HBGL scores ∼ 9% higher on both metrics.

The Amazon 5 × 5 dataset synthesized for this work proved to be a much easier
task for all the models, which may be attributed to the fact that the hierarchy is very
well-structured and the fact that the samples have been devised to be very balanced.
Notably, most methods on other datasets would often misclassify the entirety of some
low-frequency classes during testing. This happened on all datasets except for Amazon
5 × 5, which, in that respect, is much “easier” because there are no real low-frequency
classes. Interestingly, all neural approaches except HBGL and XML-CNN (which scored
lower) show comparable performance, with BERT + ML achieving the highest scores. BERT
performed very well, with a very minor improvement when adding MATCH’s loss to its
optimization. BERT’s context understanding capabilities can likely be fully exploited when
training on this balanced dataset with long pieces of text. Indeed, this is the dataset with
the longest average example length. Considering that HBGL and GACaps surpassed the
other methods on most datasets, we can conclude that their hierarchy injection strategy is
particularly beneficial in datasets with a deeper and more imbalanced hierarchy.

Among those discussed so far, the RCV1-v2 corpus is the first to have a deeper and
more complex hierarchy. HBGL performed best in terms of F1 metrics, followed by GACaps
and HiAGM, further validating the injection of hierarchical information in HTC scenarios,
as opposed to flat classification. However, the best accuracy was achieved by the multiclass
SVM, though it should be taken with a grain of salt because of how strong the flattening
assumptions are on the relatively complex hierarchy. Indeed, this is reflected in its much
lower F1 score, resulting from the limited ability to correctly predict minority classes. All
the BERT variants performed closely on this dataset, with the MATCH loss strategy giving
slightly better metrics.

Lastly, the Blurb Genre Collection also proved quite difficult to categorize. Again,
HBGL and GACaps obtained the best F1 score, followed by BERT-based models. Accuracy
was yet again dominated by the multiclass SVM approach, though with a much worse
F1 score—a symptom of severe imbalance, like in the previous dataset. Finally, HiAGM
performs significantly worse than the best models and even lags behind BERT-based
approaches on this dataset.

Overall, HBGL emerged as the most promising method, outperforming the rest in
terms of F1 score and accuracy across the majority of datasets. GACaps and BERT + ML
also exhibited good performance, with the former outperforming the latter in most cases,
but with some instances where results were close. The hierarchy-aware regularization
strategies referred to as CHAMP and MATCH did not appear to consistently influence
results. At times, they do provide a marginal boost in the precision or recall over the
flattened counterpart, but the advantage of using them is not evident when compared
to BERT’s base model. (Full results that include precision and recall, as well as their
hierarchical counterparts, are available as Supplementary Materials). The CNN-based
model (XML-CNN) scored much lower than BERT across all datasets, and our experimental
approach that integrated the aforementioned regularization strategies within its framework
did not provide performance boosts.

Unfortunately, the evaluation based on hierarchical F1 score did not provide any
further insight into the benefits of the MATCH/CHAMP regularization. Concerning the
AHC, the XML-CNN had generally lower (better) results. However, we noticed that this
outcome is associated with the model’s relatively high precision and low recall, indicating a
tendency to predict only a few labels accurately. The AHC appeared to favor this behavior,
since it is negatively impacted by false positives and not by false negatives. In a model
with high precision and low recall, false positives tend to be rare. This was also observed
in several SVM runs that resulted in low AHC. As a consequence, this metric should only
be considered jointly with other performance indicators, where it can be used as a measure
of the “magnitude” of the misclassifications made by the models. Among the models with
less imbalance between precision and recall, HBGL generally made less severe mistakes



Electronics 2024, 13, 1199 43 of 57

than GACaps and HiAGM on all datasets, excluding Amazon. Indeed, on the Amazon
dataset, GACaps and HiAGM outperformed HBGL across all metrics, AHC included.

Table 11 contains the results on one split of each dataset to enable easier comparisons
with existing and future works that measure performance on the same data. Briefly, HBGL
and GACaps showed the best results in terms of macro F1 score, as expected.

5.3.2. Inference Time

In Table 12, we report the time required during inference for each model using a single
example (i.e., batch size set to 1). Tests were carried out on an NVIDIA RTX 2080Ti GPU
for all models that allow it. SVM-based models were run on a CPU on a separate machine
running an Intel i7-8700. The machines had 64 and 48 GB of RAM, respectively.

The results in the table follow an interesting trend. The fastest method is MATCH,
followed closely by the SVM-based and XML-CNN approaches. HiAGM is slightly slower,
though not by a large magnitude. As expected from large neural models, HBGL and
GACaps have the longest inference time; both methods use a BERT model to produce
contextualized embeddings, resulting in a longer inference time than the flat BERT model.
Both these methods are more than two orders of magnitude slower than HiAGM.

Given these results and the difference in performance metrics, a real-time system
would likely decide between the fast yet still reliable results of HiAGM, the slower BERT-
based model, and the best-performing but slowest HBGL. The choice comes down to the
speed requirements of the real-time system, but we can consider BERT (and variants) to
be a good compromise between performance and speed. Moreover, if the specific system
has to deal with well-structured (syntactically and semantically) documents with simpler
hierarchies, models like BERT are likely to be the better choice. Conversely, the hierarchical
injection strategy adopted by HBGL appears to significantly boost performance when
dealing with more complex hierarchies and noisy input, albeit with a noticeable increase in
inference time.

Table 12. Average of inference times on the Bugs dataset, averaged over all runs. Model
variants are also averaged, as their inference time is comparable.

Method Time (ms)

MATCH 8.55× 10−3

HiAGM 2.13× 10−1

SVM 2.68× 10−2

BERT 1.13× 101

XML-CNN 1.09× 10−2

HBGL 7.38× 101

GACaps-HTC 2.67× 101

5.4. Discussion

In the last few sections, we outlined the best-performing methods, those with faster
inference time, and potential trade-offs. In this section, we summarize our views on the
experimental part of this survey.

Overall, global attention-based hierarchical models like HBGL and GACaps showcased
the best performance, even on the most difficult datasets. Both build upon the Transformer-
based BERT, fine-tuning the pre-trained LM to learn contextualized representations and
adding hierarchical constraints to make use of the hierarchical knowledge. The most notable
downside of these approaches is their computational cost: training these models is by far
the most expensive process among the tested methods, with inference time following a
similar trend. Hence, their usage on real-time systems could be problematic, depending
on the amount of data that have to be processed simultaneously. Both HBGL and GACaps
were straightforward to implement on our datasets and performed in line with what was
advertised in the respective research articles. Fine-tuning BERT models also proved to be a
valid choice in terms of performance and ease of use, particularly in datasets with simple



Electronics 2024, 13, 1199 44 of 57

hierarchies and more structured texts. Traditional, SVM-based approaches applied naively
did not perform well on datasets with complex and deep hierarchies, where proper HTC
methods have a significant advantage. However, though not generally the best choice,
they can be used to build more refined hierarchical approaches, such as local per-level
classifiers. There are many references in the literature on such approaches, yet we did not
find a widespread and well-established implementation to use as a reference. Still, for
systems that have to deal with noisy text, they are valuable assets, as well as being generally
easy to apply. Similar considerations can be made for the CNN-based model we tested.

HiAGM, the reference baseline for many of the works we analyzed, performs well,
especially considering its slimmer nature and the faster training time when compared to
HBGL or BERT. In terms of usability, it was relatively straightforward to adapt, though
some changes had to be made for it to apply to different hierarchies than those devised in
the original work.

Things were more complex for MATCH, as much of the training process was deeply
embedded in the provided implementation and had to be adapted to our datasets. This was
the case for many other methods, and, unfortunately, we were unable to test them because of
inherent technical issues within them, which are summarized in the Supplementary Materials.

Hierarchical metrics can be thought of as corrected variants of the original ones,
accounting for the hierarchy and disregarding consistency errors that can be easily rectified
by considering the hierarchy tree. As such, they are useful for quantifying the “irreparable”
mistakes made by methods. However, in our measurements, these did not significantly
differ from the standard performance metrics. We do acknowledge, though, that these
metrics can be valuable in settings with deeper hierarchies. Concerning AHC, this metric
indicates how far off the predictions made by the models are in terms of distance in the
hierarchy tree. Our tests revealed that, among others, HBGL performed better than GACaps
in this regard. However, this indicator must be considered carefully along with precision
and recall, as it is sensitive to the imbalance between these metrics. Still, the idea of
penalizing “better mistakes” differently is interesting and warrants further investigation in
the future.

6. Future Work and Research Directions

Several current challenges are being tackled by current HTC research, providing
interesting research directions to explore. In this section, we briefly outline them.

First, a considerable number of works on HTC have recently been taking into consid-
eration the semantics of labels to improve classification performance [110,123,124,171,179].
Some of them devise a way to obtain label embeddings and then use this information to
produce label-aware document embeddings. This is different from standard classification
approaches where document features are used to compute per-class probabilities, but an
interesting direction being explored is the combination of the two. Some proposals even
use contextualized LMs to obtain embeddings for few-word labels. Despite this approach
producing good results in [124], the usage of contextualized models to produce embeddings
of small fragments of text without enough “context” is not completely justified according,
to the previous literature [1], or at least it does not produce a proper semantic embedding.
In a similar vein, some methods attempt to compensate for the lack of external metadata de-
scribing the label semantics by computing latent representation using auto-encoders [179]
and GCNs [123,170,171].

Second, some methods are focused on reducing the number of trainable parameters,
thereby decreasing the demand for computational resources. Techniques like knowledge
distillation [167] and prompt-tuning [136–138] are gaining traction in HTC, as we have
highlighted in previous sections. Furthermore, notable advancements have recently been
achieved in neural architecture search, a technique that automates the design of efficient
neural networks to solve a variety of tasks. Although yet to be specifically applied to
HTC, it is a promising research direction, considering its recent successes in general NLP
and TC problems [227–229]. This also ties in with the enormous impact foundation LLMs



Electronics 2024, 13, 1199 45 of 57

have had on NLP research. Researchers have been able to utilize their few- and zero-
shot capabilities to obtain outstanding results on a wide range of NLP tasks with little
to no training data. However, such models still struggle in certain scenarios, such as
HTC, because of the often inherently long-tailed distribution of labels in such tasks [230]
(a characteristic that is very common in real-world scenarios, such as legal document con-
cept labeling). At the same time, tuning the parameters of these models is extremely costly
because of the sheer amount of parameters they are composed of [38]. Works such as the one
by Bhambhoria et al. [48] propose a solution to these limitations by enhancing entailment-
contradiction predictors with LLMs, which allows them to effectively tackle long-tailed
distributions without performing resource-intensive parameter updates in very large LLMs.

Another worthwhile topic is that of reproducibility, benchmarks, and metrics. This
is often a subject of debate in many sub-domains of machine learning, and rightfully so.
First, HTC lacks a proper set of benchmarks to allow for simpler comparison of methods
and establishment of the state of the art. The wider TC branch of NLP, for instance, has
multiple well-established benchmarks, such as GLUE [231] and SuperGLUE [232]. As we
outlined in Section 4.4, there is currently a wide range of datasets being utilized without
much consistency. Even the most popular dataset (RCV1) is sometimes used inconsistently
(not all the literature utilizes the same split size). Overall, this makes reproducibility and
comparability across methods much more difficult than they should be.

While we showcased the excellent efforts by many authors in the creation of hierarchi-
cal metrics [15,17,18,105], we also hinted at their flaws, as well as their lack of widespread
adoption. Therefore, this is also still an open area of research. Lastly, as we showcased
in this work, many proposed methods do not provide enough instructions to make their
methods reproducible. Of the methods in Tables 1, 2–4, only about half provide a code
implementation, and many of those still end up not being usable on our datasets because of
a lack of instructions, missing dependencies, or excessive hardship in adapting it to other
data. At the very least, a well-written set of instructions would be sufficient to provide
enough information to any practitioner with the intent of reproducing a method.

Lastly, a topic that is drawing more and more attention across all fields of AI is that of
explainability. Authors are exploring explainability in the broader NLP area by investigating
LMs with tools such as Language Interpretability Tool [233], Errudite [234], and iSEA [235].
This type of information could be utilized and refined to understand how an HTC method
chooses its path through the hierarchy and how it behaves when adjusting the input with
small perturbations. Indeed, exploring the behavior of the model on different branches of
the taxonomy could reveal interesting insights into the overall decision process.

7. Conclusions

In this article, we provide an overview of HTC approaches and the required back-
ground to fully grasp them, as well as an exploration of recent proposals in the field and
the broader NLP domain. We describe common frameworks utilized for HTC, as well as
their strengths and weaknesses. We also present commonly utilized evaluation metrics,
including those that are specifically designed to take into account the label taxonomy in
their calculation. We then collect several works and proposals from recent years and per-
form a more in-depth study on a selection of them, restricting ourselves to those methods
that provide results on the most common datasets. Moreover, we provide an overview
of commonly utilized datasets in HTC research. On the experimental side, we find that
most of the methods analyzed do not provide an implementation, and, unfortunately,
even many of those that do are not easily adjustable to different datasets, vastly limiting
the practical value of these works. We measured the performance of those methods we
managed to reproduce using both traditional and hierarchical metrics and compared them
with a set of baselines. Overall, our results suggest that integrating hierarchical information
within the classification in HTC datasets can be beneficial, significantly surpassing flat
classification with LMs on all but one dataset. While pre-trained LMs remain competitive
on datasets with shallow or simple hierarchies, their combination with global hierarchical



Electronics 2024, 13, 1199 46 of 57

approaches displays a clear superiority, as proven by the two most recent methods we
tested. Finally, the code from our experiments is released, and our datasets are made
available to researchers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/electronics13071199/s1. Reference [236] is cited in the supple-
mentary materials.

Author Contributions: Conceptualization, A.Z. and M.M.; Methodology, A.Z. and M.M.; Software,
A.Z. and M.M.; Validation, L.G., M.R., A.Z. and M.M.; Formal analysis, M.M.; Investigation, A.Z.
and M.M.; Resources, A.Z.; Data curation, A.Z.; Writing—original draft preparation, A.Z. and M.M.;
Writing—Review and editing, A.Z., M.M. and M.R.; Visualization, A.Z. and M.M.; Supervision, L.G.,
A.G. and A.A.; Project administration, A.G. and A.A.; Funding acquisition, A.A. All authors have
read and agreed to the published version of the manuscript.

Funding: This study was carried out within the “Interconnected Nord-Est Innovation Ecosystem
(iNEST)” project and received funding from the European Union Next-GenerationEU—National Re-
covery and Resilience Plan (NRRP)—MISSION 4 COMPONENT 2, INVESTIMENT N. ECS00000043
—CUP N. H43C22000540006. This manuscript reflects only the authors’ views and opinions; neither
the European Union nor the European Commission can be considered responsible for them. This
paper was funded by Veneto Agricoltura within the scope of the project “Guaranteeing the continuity
of the agrifood chain: the digitization of wholesale markets”.

Data Availability Statement: All the code produced can be found here: https://gitlab.com/
distration/dsi-nlp-publib/-/tree/main/htc-survey-24 (accessed on 6 February 2024). Dataset splits
for the publicly available datasets are available on Zenodo: https://doi.org/10.5281/zenodo.7319519
(accessed on 17 March 2024).

Acknowledgments: The authors would like to thank NIST for allowing us to utilize the RCV1 dataset
in our experiments.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

TC Text Classification
NLP Natural Language Processing
HTC Hierarchical Text Classification
HMC Hierarchical Multilabel Classification
BoW Bag of Words
TF-IDF Term Frequency - Inverse Document Frequency
RNN Recurrent Neural Network
CNN Convolutional Neural Network
BERT Bidirectional Encoder Representations from Transformers
GPT Generative Pre-trained Transformer
MLM Masked Language Modeling
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
MHA Multi-head Attention
CN Capsule Network
DAG Directed Acyclic Graph
(N)MLNP (Non-)Mandatory Leaf Node Prediction
LCA Lowest Common Ancestor
NDCG Normalized Discounted Cumulative Gain
RCV1 Reuters Corpus-V1
WOS Web Of Science
BGC Blurb Genre Collection

https://www.mdpi.com/article/10.3390/electronics13071199/s1
https://www.mdpi.com/article/10.3390/electronics13071199/s1
https://gitlab.com/distration/dsi-nlp-publib/-/tree/main/htc-survey-24
https://gitlab.com/distration/dsi-nlp-publib/-/tree/main/htc-survey-24
https://doi.org/10.5281/zenodo.7319519


Electronics 2024, 13, 1199 47 of 57

20NG 20 NewsGroups
AAPD ArXiv Academic Paper dataset
BCE Binary Cross Entropy
KG Knowledge Graph

References
1. Gasparetto, A.; Marcuzzo, M.; Zangari, A.; Albarelli, A. A Survey on Text Classification Algorithms: From Text to Predictions.

Information 2022, 13, 83. [CrossRef]
2. Li, Q.; Peng, H.; Li, J.; Xia, C.; Yang, R.; Sun, L.; Yu, P.S.; He, L. A Survey on Text Classification: From Traditional to Deep Learning.

ACM Trans. Intell. Syst. Technol. 2022, 13, 1–41. [CrossRef]
3. Sebastiani, F. Machine Learning in Automated Text Categorization. ACM Comput. Surv. 2002, 34, 1–47. [CrossRef]
4. Vens, C.; Struyf, J.; Schietgat, L.; Džeroski, S.; Blockeel, H. Decision trees for hierarchical multi-label classification. Mach. Learn.

2008, 73, 185. [CrossRef]
5. Nguyen, T.T.; Schlegel, V.; Ramesh Kashyap, A.; Winkler, S. A Two-Stage Decoder for Efficient ICD Coding. In Proceedings

of the Findings of the Association for Computational Linguistics: ACL 2023, Toronto, ON, Canada, 9–14 July 2023; Rogers, A.,
Boyd-Graber, J., Okazaki, N., Eds.; pp. 4658–4665. [CrossRef]

6. Tsai, S.C.; Huang, C.W.; Chen, Y.N. Modeling Diagnostic Label Correlation for Automatic ICD Coding. In Proceedings of the 2021
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Online, 6–11 June 2021; pp. 4043–4052. [CrossRef]

7. Caled, D.; Won, M.; Martins, B.; Silva, M.J. A Hierarchical Label Network for Multi-label EuroVoc Classification of Legislative
Contents. In Digital Libraries for Open Knowledge, Proceedings of the International Conference on Theory and Practice of Digital Libraries,
Oslo, Norway, 9–12 September; Doucet, A., Isaac, A., Golub, K., Aalberg, T., Jatowt, A., Eds.; Springer: Cham, Switzerland, 2019; pp.
238–252. [CrossRef]

8. Zhu, H.; He, C.; Fang, Y.; Ge, B.; Xing, M.; Xiao, W. Patent Automatic Classification Based on Symmetric Hierarchical Convolution
Neural Network. Symmetry 2020, 12, 186. [CrossRef]

9. Wahba, Y.; Madhavji, N.H.; Steinbacher, J. A Hybrid Continual Learning Approach for Efficient Hierarchical Classification of
IT Support Tickets in the Presence of Class Overlap. In Proceedings of the 2023 IEEE International Conference on Industrial
Technology (ICIT), Orlando, FL, USA, 4–6 April 2023; pp. 1–6. [CrossRef]

10. Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: New York, NY, USA,
2008.

11. Minaee, S.; Kalchbrenner, N.; Cambria, E.; Nikzad, N.; Chenaghlu, M.; Gao, J. Deep Learning–Based Text Classification: A
Comprehensive Review. Acm Comput. Surv. 2021, 54, 1–40. [CrossRef]

12. Kowsari, K.; Jafari Meimandi, K.; Heidarysafa, M.; Mendu, S.; Barnes, L.; Brown, D. Text Classification Algorithms: A Survey.
Information 2019, 10, 150. [CrossRef]

13. Gasparetto, A.; Zangari, A.; Marcuzzo, M.; Albarelli, A. A survey on text classification: Practical perspectives on the Italian
language. PLoS ONE 2022, 17, 1–46. [CrossRef]

14. Koller, D.; Sahami, M. Hierarchically Classifying Documents Using Very Few Words. In Proceedings of the Fourteenth
International Conference on Machine Learning, ICML ’97, San Francisco, CA, USA, 8–12 July 1997; pp. 170–178.

15. Sun, A.; Lim, E.P. Hierarchical Text Classification and Evaluation. In Proceedings of the 2001 IEEE International Conference on
Data Mining, ICDM ’01, San Jose, CA, USA, 29 November–2 December 2001; pp. 521–528.

16. Sun, A.; Lim, E.P.; Ng, W.K. Hierarchical Text Classification Methods and Their Specification. In Cooperative Internet Computing;
Springer: Boston, MA, USA, 2003; Chapter 14, pp. 236–256. [CrossRef]

17. Silla, C.N.; Freitas, A.A. A survey of hierarchical classification across different application domains. Data Min. Knowl. Discov.
2011, 22, 31–72. [CrossRef]

18. Stein, R.A.; Jaques, P.A.; Valiati, J.F. An analysis of hierarchical text classification using word embeddings. Inf. Sci. 2019,
471, 216–232. [CrossRef]

19. Defiyanti, S.; Winarko, E.; Priyanta, S. A Survey of Hierarchical Classification Algorithms with Big-Bang Approach. In
Proceedings of the 2019 5th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia 30–31 July 2019;
Volume 1, pp. 1–6. [CrossRef]

20. Zangari, A.; Marcuzzo, M.; Schiavinato, M.; Albarelli, A.; Gasparetto, A.; Rizzo, M. [Dataset] Hierarchical Text Classification
Corpora (v.1). 2022. Available online: https://zenodo.org/records/7319519 (accessed on 21 March 2024).

21. Jones, K.S. A statistical interpretation of term specificity and its application in retrieval. J. Doc. 1972, 28, 11–21. [CrossRef]
22. Pennington, J.; Socher, R.; Manning, C. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational
Linguistics: Toronto, ON, Canada, 2014; pp. 1532–1543. [CrossRef]

23. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, Long Beach, CA, USA, 4–9
December 2017; Curran Associates Inc.: Brooklyn, NY, USA, 2017; pp. 6000–6010.

http://doi.org/10.3390/info13020083
http://dx.doi.org/10.1145/3495162
http://dx.doi.org/10.1145/505282.505283
http://dx.doi.org/10.1007/s10994-008-5077-3
http://dx.doi.org/10.18653/v1/2023.findings-acl.285
http://dx.doi.org/10.18653/v1/2021.naacl-main.318
http://dx.doi.org/10.1007/978-3-030-30760-8_21
http://dx.doi.org/10.3390/sym12020186
http://dx.doi.org/10.1109/ICIT58465.2023.10143149
http://dx.doi.org/10.1145/3439726
http://dx.doi.org/10.3390/info10040150
http://dx.doi.org/10.1371/journal.pone.0270904
http://dx.doi.org/10.1007/978-1-4615-0435-1_14
http://dx.doi.org/10.1007/s10618-010-0175-9
http://dx.doi.org/10.1016/j.ins.2018.09.001
http://dx.doi.org/10.1109/ICST47872.2019.9166313
https://zenodo.org/records/7319519
http://dx.doi.org/10.1108/eb026526
http://dx.doi.org/10.3115/v1/D14-1162


Electronics 2024, 13, 1199 48 of 57

24. Mielke, S.J.; Alyafeai, Z.; Salesky, E.; Raffel, C.; Dey, M.; Gallé, M.; Raja, A.; Si, C.; Lee, W.Y.; Sagot, B.; et al. Between
words and characters: A Brief History of Open-Vocabulary Modeling and Tokenization in NLP. arXiv 2021, arXiv:2112.10508.
https://doi.org/10.48550/arXiv.2112.10508.

25. Sennrich, R.; Haddow, B.; Birch, A. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; Volume 1, pp. 1715–1725.
[CrossRef]

26. Schuster, M.; Nakajima, K. Japanese and Korean voice search. In Proceedings of the 2012 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 5149–5152. [CrossRef]

27. Kudo, T.; Richardson, J. SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural
Text Processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, Brussels, Belgium, 31 October–4 November 2018; pp. 66–71. [CrossRef]

28. Graves, A. Generating Sequences With Recurrent Neural Networks. arXiv 2013, arXiv:1308.0850. https://doi.org/10.48550
/arXiv.1308.0850.

29. Salesky, E.; Etter, D.; Post, M. Robust Open-Vocabulary Translation from Visual Text Representations. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, Punta Cana, Dominican Republic, 7–11 November 2021; pp.
7235–7252. [CrossRef]

30. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. In Proceedings of the
1st International Conference on Learning Representations, ICLR, Scottsdale, AZ, USA, 2–4 May 2013. [CrossRef]

31. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and their
Compositionality. In Proceedings of the Advances in Neural Information Processing Systems 26, NIPS’13, Lake Tahoe, Nevada,
USA, 5–10 December 2013; Curran Associates, Inc.: Brooklyn, NY, USA, 2013; Volume 26, pp. 3111–3119.

32. Jurafsky, D.; Martin, J. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition, 3rd ed.; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 2020; pp. 30–35.

33. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep Contextualized Word Representations.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, New Orleans, LA, USA, 1–6 June 2018; Volume 1, pp. 2227–2237. [CrossRef]

34. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Minneapolis, MN, USA, 2 June 2019; Volume 1 (Long and Short Papers), pp. 4171–4186.
[CrossRef]

35. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692. https://doi.org/10.48550/arXiv.1907.11692.

36. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. 2018.
Available online: https://www.mikecaptain.com/resources/pdf/GPT-1.pdf (accessed on 21 March 2024).

37. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language Models are Unsupervised Multitask Learners. OpenAI
Blog 2019, 1, 9.

38. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language Models are Few-Shot Learners. In Proceedings of the Advances in Neural Information Processing Systems, Online,
6–12 December 2020; Curran Associates, Inc.: Brooklyn, NY, USA, 2020; Volume 33, pp. 1877–1901.

39. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2015,
arXiv:1409.0473, https://doi.org/10.48550/arXiv.1409.0473.

40. Luong, T.; Pham, H.; Manning, C.D. Effective Approaches to Attention-based Neural Machine Translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; Association for
Computational Linguistics: Kerrville, TX, USA, 2015; pp. 1412–1421. [CrossRef]

41. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation. In Parallel Distributed
Processing: Explorations in the Microstructure of Cognition; MIT Press: Cambridge, MA, USA, 1986; Volume 1: Foundations,
Chapter 11, pp. 318–362.

42. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Proceedings of the 27th International
Conference on Neural Information Processing Systems—Volume 2, NIPS’14, Cambridge, MA, USA, 8–13 December 2014; pp.
3104–3112.

43. Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T.B.; Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; Amodei, D. Scaling Laws
for Neural Language Models. arXiv 2020, arXiv:2001.08361. https://doi.org/10.48550/arXiv.2001.08361.

44. Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al.
LLaMA: Open and Efficient Foundation Language Models. arXiv 2023, arXiv:2302.13971. https://doi.org/10.48550/arXiv.2302.1
3971.

45. Lepikhin, D.; Lee, H.; Xu, Y.; Chen, D.; Firat, O.; Huang, Y.; Krikun, M.; Shazeer, N.; Chen, Z. GShard: Scaling Giant Models with
Conditional Computation and Automatic Sharding. In Proceedings of the International Conference on Learning Representations
(ICLR 2021), Vienna, Austria, 4 May 2021. [CrossRef]

https://doi.org/10.48550/arXiv.2112.10508
http://dx.doi.org/10.18653/v1/P16-1162
http://dx.doi.org/10.1109/ICASSP.2012.6289079
http://dx.doi.org/10.18653/v1/D18-2012
https://doi.org/10.48550/arXiv.1308.0850
https://doi.org/10.48550/arXiv.1308.0850
http://dx.doi.org/10.18653/v1/2021.emnlp-main.576
http://dx.doi.org/10.48550/arXiv.1301.3781
http://dx.doi.org/10.18653/v1/N18-1202
http://dx.doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/arXiv.1907.11692
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
https://doi.org/10.48550/arXiv.1409.0473
http://dx.doi.org/10.18653/v1/D15-1166
https://doi.org/10.48550/arXiv.2001.08361
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
http://dx.doi.org/10.48550/arXiv.2006.16668


Electronics 2024, 13, 1199 49 of 57

46. Fedus, W.; Zoph, B.; Shazeer, N. Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. J.
Mach. Learn. Res. 2022, 23, 1–39. [CrossRef]

47. OpenAI; Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; et al.
GPT-4 Technical Report. arXiv 2023, arXiv:2303.08774. https://doi.org/10.48550/arXiv.2303.08774.

48. Bhambhoria, R.; Chen, L.; Zhu, X. A Simple and Effective Framework for Strict Zero-Shot Hierarchical Classification. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), ACL 2023,
Toronto, ON, Canada, 9–14 July 2023; Rogers, A., Boyd-Graber, J.L., Okazaki, N., Eds.; Association for Computational Linguistics:
Toronto, ON, Canada, 2023; pp. 1782–1792. [CrossRef]

49. Safavian, S.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man, Cybern. 1991, 21, 660–674.
[CrossRef]

50. Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition,
Montreal, QB, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [CrossRef]

51. Cortes, C.; Vapnik, V.N. Support-Vector Networks. Mach. Learning 1995, 20, 273–297. [CrossRef]
52. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. In Proceedings of the Fifth Annual

Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; Association for Computing Machinery:
New York, NY, USA, 1992; pp. 144–152. [CrossRef]

53. Xu, S.; Li, Y.; Wang, Z. Bayesian Multinomial Naïve Bayes Classifier to Text Classification. In Proceedings of the Advanced
Multimedia and Ubiquitous Engineering, Seoul, Republic of Korea, 22–24 May 2017; Springer: Singapore, 2017; pp. 347–352.
[CrossRef]

54. van den Bosch, A. Hidden Markov Models. In Encyclopedia of Machine Learning and Data Mining; Chapter Hidden Markov Models;
Springer: Boston, MA, USA, 2017; pp. 609–611. [CrossRef]

55. Zhang, Y.; Wallace, B.C. A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence
Classification. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (IJCNLP), Taipei,
Taiwan, 27 November–1 December 2017; Volume 1, pp. 253–263.

56. Gasparetto, A.; Ressi, D.; Bergamasco, F.; Pistellato, M.; Cosmo, L.; Boschetti, M.; Ursella, E.; Albarelli, A. Cross-Dataset Data
Augmentation for Convolutional Neural Networks Training. In Proceedings of the 2018 24th International Conference on Pattern
Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 910–915. [CrossRef]

57. Gasparetto, A.; Minello, G.; Torsello, A. Non-parametric Spectral Model for Shape Retrieval. In Proceedings of the 2015
International Conference on 3D Vision, Lyon, France, 19–22 October 2015; pp. 344–352. [CrossRef]

58. Kim, Y. Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics: Kerrville,
TX, USA, 2014; pp. 1746–1751. [CrossRef]

59. Liu, P.; Qiu, X.; Huang, X. Recurrent Neural Network for Text Classification with Multi-Task Learning. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI’16, New York, NY, USA, 9–15 July 2016; AAAI Press:
Washington, DC, USA, 2016; pp. 2873–2879.

60. Gasparetto, A.; Cosmo, L.; Rodolà, E.; Bronstein, M.; Torsello, A. Spatial Maps: From Low Rank Spectral to Sparse Spatial
Functional Representations. In Proceedings of the 2017 International Conference on 3D Vision (3DV), Qingdao, China, 10–12
October 2017; pp. 477–485. [CrossRef]

61. Kowsari, K.; Brown, D.E.; Heidarysafa, M.; Jafari Meimandi, K.; Gerber, M.S.; Barnes, L.E. HDLTex: Hierarchical Deep Learning
for Text Classification. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications
(ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 364–371. [CrossRef]

62. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the 30th
International Conference on Machine Learning, Atlanta, GA, USA, 17–19 June 2013; Dasgupta, S., McAllester, D., Eds.; Volume 28,
pp. 1310–1318.

63. Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
64. Cho, K.; van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder–Decoder

Approaches. In Proceedings of the SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha,
Qatar, 25 October 2014; pp. 103–111. [CrossRef]

65. Elman, J.L. Finding Structure in Time. Cogn. Sci. 1990, 14, 179–211. [CrossRef]
66. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations

using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics: Toronto,
ON, Canada, 2014; pp. 1724–1734. [CrossRef]

67. Kramer, M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 1991, 37, 233–243.
[CrossRef]

68. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to
Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

69. Deng, L. The mnist database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 2012,
29, 141–142. [CrossRef]

http://dx.doi.org/10.48550/ARXIV.2101.03961
https://doi.org/10.48550/arXiv.2303.08774
http://dx.doi.org/10.18653/V1/2023.ACL-SHORT.152
http://dx.doi.org/10.1109/21.97458
http://dx.doi.org/10.1109/ICDAR.1995.598994
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1145/130385.130401
http://dx.doi.org/10.1007/978-981-10-5041-1_57
http://dx.doi.org/10.1007/978-1-4899-7687-1_124
http://dx.doi.org/10.1109/ICPR.2018.8545812
http://dx.doi.org/10.1109/3DV.2015.46
http://dx.doi.org/10.3115/v1/D14-1181
http://dx.doi.org/10.1109/3DV.2017.00061
http://dx.doi.org/10.1109/ICMLA.2017.0-134
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.3115/v1/W14-4012
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.3115/v1/D14-1179
http://dx.doi.org/10.1002/aic.690370209
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1109/MSP.2012.2211477


Electronics 2024, 13, 1199 50 of 57

70. Lea, C.; Flynn, M.D.; Vidal, R.; Reiter, A.; Hager, G.D. Temporal Convolutional Networks for Action Segmentation and Detection.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 1003–1012. [CrossRef]

71. Yan, J.; Mu, L.; Wang, L.; Ranjan, R.; Zomaya, A.Y. Temporal Convolutional Networks for the Advance Prediction of ENSO. Sci.
Rep. 2020, 10, 8055. [CrossRef] [PubMed]

72. de Vries, W.; van Cranenburgh, A.; Nissim, M. What’s so special about BERT’s layers? A closer look at the NLP pipeline in
monolingual and multilingual models. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP
2020, Online, 16–20 November 2020; pp. 4339–4350. [CrossRef]

73. Jawahar, G.; Sagot, B.; Seddah, D. What Does BERT Learn about the Structure of Language? In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, Florence, Italy, 29–31 July 2019; pp. 3651–3657. [CrossRef]

74. Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; Hovy, E. Hierarchical Attention Networks for Document Classification. In
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, San Diego, CA, USA, 12–17 June 2016; Knight, K., Nenkova, A., Rambow, O., Eds.; pp. 1480–1489.
[CrossRef]

75. Huang, Y.; Chen, J.; Zheng, S.; Xue, Y.; Hu, X. Hierarchical multi-attention networks for document classification. Int. J. Mach.
Learn. Cybern. 2021, 12, 1639–1647. [CrossRef]

76. Huang, W.; Chen, E.; Liu, Q.; Chen, Y.; Huang, Z.; Liu, Y.; Zhao, Z.; Zhang, D.; Wang, S. Hierarchical Multi-label Text Classification:
An Attention-based Recurrent Network Approach. In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, CIKM 2019, Beijing, China, 3–7 November 2019; Zhu, W., Tao, D., Cheng, X., Cui, P., Rundensteiner,
E.A., Carmel, D., He, Q., Yu, J.X., Eds.; ACM: New York, NY, USA, 2019; pp. 1051–1060. [CrossRef]

77. González, J.Á.; Segarra, E.; García-Granada, F.; Sanchis, E.; Hurtado, L.F. Attentional Extractive Summarization. Appl. Sci. 2023,
13, 1458. [CrossRef]

78. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and
applications. AI Open 2020, 1, 57–81. [CrossRef]

79. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural Message Passing for Quantum Chemistry. In Proceedings of
the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Precup, D., Teh, Y.W., Eds.; 2017;
Volume 70, pp. 1263–1272.

80. Yao, L.; Mao, C.; Luo, Y. Graph Convolutional Networks for Text Classification. Proc. AAAI Conf. Artif. Intell. 2019, 33, 7370–7377.
[CrossRef]

81. Shuman, D.I.; Narang, S.K.; Frossard, P.; Ortega, A.; Vandergheynst, P. The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 2013, 30, 83–98.
[CrossRef]

82. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural
Netw. Learn. Syst. 2021, 32, 4–24. [CrossRef]

83. Li, Q.; Han, Z.; Wu, X.M. Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning. In Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence
Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18, New
Orleans, LA, USA, 2–7 February 2018; pp. 3538–3545.

84. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

85. Hinton, G.E.; Krizhevsky, A.; Wang, S.D. Transforming Auto-Encoders. In Proceedings of the Artificial Neural Networks and
Machine Learning—ICANN 2011, Espoo, Finland, 14–17 June 2011; Honkela, T., Duch, W., Girolami, M., Kaski, S., Eds.; pp. 44–51.
[CrossRef]

86. Xi, E.; Bing, S.; Jin, Y. Capsule Network Performance on Complex Data. arXiv 2017, arXiv:1712.03480. https://doi.org/10.48550
/ARXIV.1712.03480.

87. Wang, X.; Zhao, L.; Liu, B.; Chen, T.; Zhang, F.; Wang, D. Concept-Based Label Embedding via Dynamic Routing for Hierarchical
Text Classification. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, 1–6
August 2021; Zong, C., Xia, F., Li, W., Navigli, R., Eds.; Association for Computational Linguistics: Kerrville, TX, USA, 2021; pp.
5010–5019. [CrossRef]

88. Aly, R.; Remus, S.; Biemann, C. Hierarchical Multi-label Classification of Text with Capsule Networks. In Proceedings of the 57th
Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, 28 July–2 August 2019; Alva-Manchego,
F., Choi, E., Khashabi, D., Eds.; Volume 2: Student Research Workshop; Association for Computational Linguistics: Kerrville, TX,
USA, 2019; pp. 323–330. [CrossRef]

89. Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic Routing between Capsules. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, Red Hook, NY, USA, 4–9 December 2017; pp. 3859–3869.

90. Hinton, G.E.; Sabour, S.; Frosst, N. Matrix capsules with EM routing. In Proceedings of the International Conference on Learning
Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

http://dx.doi.org/10.1109/CVPR.2017.113
http://dx.doi.org/10.1038/s41598-020-65070-5
http://www.ncbi.nlm.nih.gov/pubmed/32415130
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.389
http://dx.doi.org/10.18653/v1/P19-1356
http://dx.doi.org/10.18653/v1/N16-1174
http://dx.doi.org/10.1007/s13042-020-01260-x
http://dx.doi.org/10.1145/3357384.3357885
http://dx.doi.org/10.3390/app13031458
http://dx.doi.org/10.1016/j.aiopen.2021.01.001
http://dx.doi.org/10.1609/aaai.v33i01.33017370
http://dx.doi.org/10.1109/MSP.2012.2235192
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://dx.doi.org/10.1007/978-3-642-21735-7_6
https://doi.org/10.48550/ARXIV.1712.03480
https://doi.org/10.48550/ARXIV.1712.03480
http://dx.doi.org/10.18653/v1/2021.acl-long.388
http://dx.doi.org/10.18653/v1/p19-2045


Electronics 2024, 13, 1199 51 of 57

91. Wang, Z.; Wang, P.; Huang, L.; Sun, X.; Wang, H. Incorporating Hierarchy into Text Encoder: A Contrastive Learning Approach
for Hierarchical Text Classification. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Dublin, Ireland, 22–27 May 2022; pp. 7109–7119. [CrossRef]

92. Peng, H.; Li, J.; He, Y.; Liu, Y.; Bao, M.; Wang, L.; Song, Y.; Yang, Q. Large-Scale Hierarchical Text Classification with Recursively
Regularized Deep Graph-CNN. In Proceedings of the 2018 World Wide Web Conference, WWW ’18, Lyon, France, 23–27 April
2018; pp. 1063–1072. [CrossRef]

93. Yu, C.; Shen, Y.; Mao, Y. Constrained Sequence-to-Tree Generation for Hierarchical Text Classification. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’22, New York, NY, USA,
11–15 July 2022; pp. 1865–1869. [CrossRef]

94. Zhang, X.; Xu, J.; Soh, C.; Chen, L. LA-HCN: Label-based Attention for Hierarchical Multi-label Text Classification Neural
Network. Expert Syst. Appl. 2022, 187, 115922. [CrossRef]

95. Punera, K.; Ghosh, J. Enhanced Hierarchical Classification via Isotonic Smoothing. In Proceedings of the 17th International
Conference on World Wide Web, WWW ’08, New York, NY, USA, 26–30 October 2008; pp. 151–160. [CrossRef]

96. Cerri, R.; Barros, R.C.; de Carvalho, A.C.P.L.F. Hierarchical multi-label classification for protein function prediction: A local
approach based on neural networks. In Proceedings of the 2011 11th International Conference on Intelligent Systems Design and
Applications, Cordoba, Spain, 22–24 November 2011; pp. 337–343. [CrossRef]

97. Zhou, J.; Ma, C.; Long, D.; Xu, G.; Ding, N.; Zhang, H.; Xie, P.; Liu, G. Hierarchy-Aware Global Model for Hierarchical Text
Classification. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online,
5–10 July 2020; Jurafsky, D., Chai, J., Schluter, N., Tetreault, J.R., Eds.; Association for Computational Linguistics: Kerrville, TX,
USA, 2020; pp. 1106–1117. [CrossRef]

98. Wehrmann, J.; Cerri, R.; Barros, R. Hierarchical Multi-Label Classification Networks. In Proceedings of the 35th International
Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; Dy, J., Krause, A., Eds.; Volume 80, pp. 5075–5084.

99. Mao, Y.; Tian, J.; Han, J.; Ren, X. Hierarchical Text Classification with Reinforced Label Assignment. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, 3–7 November 2019; Inui, K., Jiang, J., Ng, V., Wan, X., Eds.;
Association for Computational Linguistics: Kerrville, TX, USA, 2019; pp. 445–455. [CrossRef]

100. Freitas, A.; de Carvalho, A. A Tutorial on Hierarchical Classification with Applications in Bioinformatics. In Research and Trends
in Data Mining Technologies and Applications; IGI Global: Hershey, PA, USA, 2007. [CrossRef]

101. Marcuzzo, M.; Zangari, A.; Schiavinato, M.; Giudice, L.; Gasparetto, A.; Albarelli, A. A multi-level approach for hierarchical
Ticket Classification. In Proceedings of the Eighth Workshop on Noisy User-Generated Text (W-NUT 2022), Gyeongju, Republic
of Korea, 12–17 October 2022; pp. 201–214.

102. Ceci, M.; Malerba, D. Classifying web documents in a hierarchy of categories: A comprehensive study. J. Intell. Inf. Syst. 2007,
28, 37–78. [CrossRef]

103. Sun, A.; Lim, E.P.; Ng, W.K.; Srivastava, J. Blocking reduction strategies in hierarchical text classification. IEEE Trans. Knowl. Data
Eng. 2004, 16, 1305–1308. [CrossRef]

104. Kiritchenko, S.; Matwin, S.; Nock, R.; Famili, A.F. Learning and Evaluation in the Presence of Class Hierarchies: Application to
Text Categorization. In Proceedings of the Advances in Artificial Intelligence, Hobart, Australia, 4–8 December 2006; Lamontagne,
L., Marchand, M., Eds.; pp. 395–406.

105. Kosmopoulos, A.; Partalas, I.; Gaussier, E.; Paliouras, G.; Androutsopoulos, I. Evaluation measures for hierarchical classification:
A unified view and novel approaches. Data Min. Knowl. Discov. 2015, 29, 820–865. [CrossRef]

106. Pistellato, M.; Cosmo, L.; Bergamasco, F.; Gasparetto, A.; Albarelli, A. Adaptive Albedo Compensation for Accurate Phase-Shift
Coding. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August
2018; pp. 2450–2455. [CrossRef]

107. Vaswani, A.; Aggarwal, G.; Netrapalli, P.; Hegde, N.G. All Mistakes Are Not Equal: Comprehensive Hierarchy Aware Multi-label
Predictions (CHAMP). arXiv 2022, arXiv:2206.08653. https://doi.org/10.48550/ARXIV.2206.08653.

108. Aho, A.V.; Hopcroft, J.E.; Ullman, J.D. On Finding Lowest Common Ancestors in Trees. SIAM J. Comput. 1976, 5, 115–132.
[CrossRef]

109. Sainte Fare Garnot, V.; Landrieu, L. Leveraging Class Hierarchies with Metric-Guided Prototype Learning. In Proceedings of the
32th British Machine Vision Conference, Online, 22–25 November 2021.

110. Chen, B.; Huang, X.; Xiao, L.; Cai, Z.; Jing, L. Hyperbolic Interaction Model for Hierarchical Multi-Label Classification. Proc.
AAAI Conf. Artif. Intell. 2020, 34, 7496–7503. [CrossRef]

111. Gong, J.; Ma, H.; Teng, Z.; Teng, Q.; Zhang, H.; Du, L.; Chen, S.; Bhuiyan, M.Z.A.; Li, J.; Liu, M. Hierarchical Graph Transformer-
Based Deep Learning Model for Large-Scale Multi-Label Text Classification. IEEE Access 2020, 8, 30885–30896. [CrossRef]

112. Marcuzzo, M.; Zangari, A.; Albarelli, A.; Gasparetto, A. Recommendation Systems: An Insight Into Current Development and
Future Research Challenges. IEEE Access 2022, 10, 86578–86623. [CrossRef]

http://dx.doi.org/10.18653/v1/2022.acl-long.491
http://dx.doi.org/10.1145/3178876.3186005
http://dx.doi.org/10.1145/3477495.3531765
http://dx.doi.org/10.1016/j.eswa.2021.115922
http://dx.doi.org/10.1145/1367497.1367518
http://dx.doi.org/10.1109/ISDA.2011.6121678
http://dx.doi.org/10.18653/v1/2020.acl-main.104
http://dx.doi.org/10.18653/v1/D19-1042
http://dx.doi.org/10.4018/978-1-59904-271-8.ch007
http://dx.doi.org/10.1007/s10844-006-0003-2
http://dx.doi.org/10.1109/TKDE.2004.50
http://dx.doi.org/10.1007/s10618-014-0382-x
http://dx.doi.org/10.1109/ICPR.2018.8545465
https://doi.org/10.48550/ARXIV.2206.08653
http://dx.doi.org/10.1137/0205011
http://dx.doi.org/10.1609/aaai.v34i05.6247
http://dx.doi.org/10.1109/ACCESS.2020.2972751
http://dx.doi.org/10.1109/ACCESS.2022.3194536


Electronics 2024, 13, 1199 52 of 57

113. Ma, Y.; Zhao, J.; Jin, B. A Hierarchical Fine-Tuning Approach Based on Joint Embedding of Words and Parent Categories for
Hierarchical Multi-label Text Classification. In Proceedings of the Artificial Neural Networks and Machine Learning - ICANN
2020—29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, 15–18 September 2020; Farkas, I.,
Masulli, P., Wermter, S., Eds.; Proceedings, Part II; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
2020; Volume 12397, pp. 746–757. [CrossRef]

114. Dong, G.; Zhang, W.; Yadav, R.; Mu, X.; Zhou, Z. OWGC-HMC: An Online Web Genre Classification Model Based on Hierarchical
Multilabel Classification. Secur. Commun. Netw. 2022, 2022, 7549880. [CrossRef]

115. Yu, Y.; Sun, Z.; Sun, C.; Liu, W. Hierarchical Multilabel Text Classification via Multitask Learning. In Proceedings of the 33rd
IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2021, Washington, DC, USA, 1–3 November 2021; IEEE:
New York, NY, USA, 2021; pp. 1138–1143. [CrossRef]

116. Zhang, M.L.; Zhou, Z.H. A Review on Multi-Label Learning Algorithms. IEEE Trans. Knowl. Data Eng. 2014, 26, 1819–1837.
[CrossRef]

117. Yang, Z.; Liu, G. Hierarchical Sequence-to-Sequence Model for Multi-Label Text Classification. IEEE Access 2019, 7, 153012–153020.
[CrossRef]

118. Zhao, W.; Gao, H.; Chen, S.; Wang, N. Generative Multi-Task Learning for Text Classification. IEEE Access 2020, 8, 86380–86387.
[CrossRef]

119. Rojas, K.R.; Bustamante, G.; Oncevay, A.; Cabezudo, M.A.S. Efficient Strategies for Hierarchical Text Classification: External
Knowledge and Auxiliary Tasks. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
ACL 2020, Online, 5–10 July 2020; Jurafsky, D., Chai, J.,Schluter, N., Tetreault, J.R., Eds.; Association for Computational Linguistics:
Kerrville, TX, USA, 2020; pp. 2252–2257. [CrossRef]

120. Risch, J.; Garda, S.; Krestel, R. Hierarchical Document Classification as a Sequence Generation Task. In Proceedings of the
ACM/IEEE Joint Conference on Digital Libraries in 2020, JCDL ’20, New York, NY, USA, 2020; pp. 147–155. [CrossRef]

121. Yan, J.; Li, P.; Chen, H.; Zheng, J.; Ma, Q. Does the Order Matter? A Random Generative Way to Learn Label Hierarchy for
Hierarchical Text Classification. IEEE/ACM Trans. Audio Speech Lang. Process. 2024, 32, 276–285. [CrossRef]

122. Kwon, J.; Kamigaito, H.; Song, Y.I.; Okumura, M. Hierarchical Label Generation for Text Classification. In Proceedings of
the Findings of the Association for Computational Linguistics: EACL 2023, Dubrovnik, Croatia, 2–6 May 2023; Vlachos, A.,
Augenstein, I., Eds.; pp. 625–632. [CrossRef]

123. Liu, H.; Huang, X.; Liu, X. Improve label embedding quality through global sensitive GAT for hierarchical text classification.
Expert Syst. Appl. 2024, 238, 122267. [CrossRef]

124. Chen, H.; Ma, Q.; Lin, Z.; Yan, J. Hierarchy-aware Label Semantics Matching Network for Hierarchical Text Classification.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing, ACL/IJCNLP 2021, Virtual Event, 1–6 August 2021; Zong, C., Xia, F., Li, W., Navigli,
R., Eds.; Association for Computational Linguistics: Kerrville, TX, USA, 2021; Volume 1: Long Papers, pp. 4370–4379. [CrossRef]

125. Pal, A.; Selvakumar, M.; Sankarasubbu, M. MAGNET: Multi-Label Text Classification using Attention-based Graph Neural
Network. In Proceedings of the 12th International Conference on Agents and Artificial Intelligence—Volume 2: ICAART,
INSTICC, Valletta, Malta 22–24 February 2020; SciTePress: Setubal, Portugal, 2020; pp. 494–505. [CrossRef]

126. Zhao, R.; Wei, X.; Ding, C.; Chen, Y. Hierarchical Multi-label Text Classification: Self-adaption Semantic Awareness Network
Integrating Text Topic and Label Level Information. In Proceedings of the Knowledge Science, Engineering and Management,
Hangzhou, China, 28–30 August 2020; Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, S.Y., Eds.; pp. 406–418. [CrossRef]

127. Chen, J.; Zhao, S.; Lu, F.; Liu, F.; Zhang, Y. Research on patent classification based on hierarchical label semantics. In Proceedings
of the 2022 3rd International Conference on Education, Knowledge and Information Management (ICEKIM), Harbin, China,
21–23 January 2022; pp. 1025–1032. [CrossRef]

128. Yao, Z.; Chai, H.; Cui, J.; Tang, S.; Liao, Q. HITSZQ at SemEval-2023 Task 10: Category-aware Sexism Detection Model with
Self-training Strategy. In Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023), Toronto,
Canada, 13–14 July 2023; Ojha, A.K., Doğruöz, A.S., Da San Martino, G., Tayyar Madabushi, H., Kumar, R., Sartori, E., Eds.; pp.
934–940. [CrossRef]

129. Ning, B.; Zhao, D.; Zhang, X.; Wang, C.; Song, S. UMP-MG: A Uni-directed Message-Passing Multi-label Generation Model for
Hierarchical Text Classification. Data Sci. Eng. 2023, 8, 112–123. [CrossRef]

130. Song, J.; Wang, F.; Yang, Y. Peer-Label Assisted Hierarchical Text Classification. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Toronto, Canada, 9–14 July 2023; Rogers, A., Boyd-Graber, J.,
Okazaki, N., Eds.; pp. 3747–3758. [CrossRef]

131. Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z. DBpedia: A Nucleus for a Web of Open Data. In The Semantic
Web. ISWC ASWC 2007 2007. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4825, pp.
722–735. [CrossRef]

132. Speer, R.; Chin, J.; Havasi, C. ConceptNet 5.5: An Open Multilingual Graph of General Knowledge. Proc. AAAI Conf. Artif. Intell.
2017, 31, 1. [CrossRef]

133. Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating Embeddings for Modeling Multi-relational Data.
In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; Burges,
C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2013; Volume 26.

http://dx.doi.org/10.1007/978-3-030-61616-8_60
http://dx.doi.org/10.1155/2022/7549880
http://dx.doi.org/10.1109/ICTAI52525.2021.00180
http://dx.doi.org/10.1109/TKDE.2013.39
http://dx.doi.org/10.1109/ACCESS.2019.2948855
http://dx.doi.org/10.1109/ACCESS.2020.2991337
http://dx.doi.org/10.18653/v1/2020.acl-main.205
http://dx.doi.org/10.1145/3383583.3398538
http://dx.doi.org/10.1109/TASLP.2023.3329374
http://dx.doi.org/10.18653/v1/2023.findings-eacl.46
http://dx.doi.org/10.1016/j.eswa.2023.122267
http://dx.doi.org/10.18653/v1/2021.acl-long.337
http://dx.doi.org/10.5220/0008940304940505
http://dx.doi.org/10.1007/978-3-030-82147-0_33
http://dx.doi.org/10.1109/ICEKIM55072.2022.00223
http://dx.doi.org/10.18653/v1/2023.semeval-1.129
http://dx.doi.org/10.1007/s41019-023-00210-1
http://dx.doi.org/10.18653/v1/2023.acl-long.207
http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://dx.doi.org/10.1609/aaai.v31i1.11164


Electronics 2024, 13, 1199 53 of 57

134. Wang, Z.; Zhang, J.; Feng, J.; Chen, Z. Knowledge graph embedding by translating on hyperplanes. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, AAAI’14, Quebec, QC, Canada, 27–31 July 2024; AAAI Press: Washington,
DC, USA, 2014; pp. 1112–1119.

135. Liu, Y.; Zhang, K.; Huang, Z.; Wang, K.; Zhang, Y.; Liu, Q.; Chen, E. Enhancing Hierarchical Text Classification through
Knowledge Graph Integration. In Proceedings of the Findings of the Association for Computational Linguistics: ACL 2023,
Toronto, ON, Canada, 9–14 July 2023; Rogers, A., Boyd-Graber, J., Okazaki, N., Eds.; pp. 5797–5810. [CrossRef]

136. Wang, Z.; Wang, P.; Liu, T.; Lin, B.; Cao, Y.; Sui, Z.; Wang, H. HPT: Hierarchy-aware Prompt Tuning for Hierarchical Text
Classification. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, United
Arab Emirates, 7–11 December 2022; Goldberg, Y., Kozareva, Z., Zhang, Y., Eds.; pp. 3740–3751. [CrossRef]

137. Ji, K.; Lian, Y.; Gao, J.; Wang, B. Hierarchical Verbalizer for Few-Shot Hierarchical Text Classification. In Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics, Toronto, ON, Canada, 9–14 July 2023; Rogers, A., Boyd-Graber,
J., Okazaki, N., Eds.; Volume 1: Long Papers, pp. 2918–2933. [CrossRef]

138. Chen, L.; Chou, H.; Zhu, X. Developing Prefix-Tuning Models for Hierarchical Text Classification. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing: Industry Track, Abu Dhabi, United Arab Emirates, 7–11
December 2022; Li, Y., Lazaridou, A., Eds.; pp. 390–397. [CrossRef]

139. da Silva, L.V.M.; Cerri, R. Feature Selection for Hierarchical Multi-label Classification. In Proceedings of the Advances in
Intelligent Data Analysis XIX, Porto, Portugal, 26–28 April 2021; Abreu, P.H., Rodrigues, P.P., Fernández, A., Gama, J., Eds.; pp.
196–208. [CrossRef]

140. Stepišnik, T.; Kocev, D. Hyperbolic Embeddings for Hierarchical Multi-label Classification. In Proceedings of the Foundations of
Intelligent Systems, Graz, Austria, 23–25 September 2020; Helic, D., Leitner, G., Stettinger, M., Felfernig, A., Raś, Z.W., Eds.; pp.
66–76. [CrossRef]

141. Cerri, R.; Basgalupp, M.P.; Barros, R.C.; de Carvalho, A.C. Inducing Hierarchical Multi-label Classification rules with Genetic
Algorithms. Appl. Soft Comput. 2019, 77, 584–604. [CrossRef]

142. Romero, M.; Finke, J.; Rocha, C. A top-down supervised learning approach to hierarchical multi-label classification in networks.
Appl. Netw. Sci. 2022, 7, 8. [CrossRef]

143. Liu, J.; Xia, C.; Yan, H.; Xie, Z.; Sun, J. Hierarchical Comprehensive Context Modeling for Chinese Text Classification. IEEE Access
2019, 7, 154546–154559. [CrossRef]

144. Gargiulo, F.; Silvestri, S.; Ciampi, M.; Pietro, G.D. Deep neural network for hierarchical extreme multi-label text classification.
Appl. Soft Comput. 2019, 79, 125–138. [CrossRef]

145. Masoudian, S.; Derhami, V.; Zarifzadeh, S. Hierarchical Persian Text Categorization in Absence of Labeled Data. In Proceedings
of the 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, 30 April–2 May 2019; pp. 1951–1955. [CrossRef]

146. Li, X.; Arora, K.; Alaniazar, S. Mixed-Model Text Classification Framework Considering the Practical Constraints. In Proceedings
of the 2019 Second International Conference on Artificial Intelligence For Industries (AI4I 2019), Laguna Hills, CA, USA, 25–27
September 2019; IEEE: New York, NY, USA, 2019; pp. 67–70. [CrossRef]

147. Meng, Y.; Shen, J.; Zhang, C.; Han, J. Weakly-Supervised Hierarchical Text Classification. In Proceedings of the The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu,
HI, USA, 27 January–1 February 2019; AAAI Press: Washington, DC, USA, 2019; pp. 6826–6833. [CrossRef]

148. Banerjee, S.; Akkaya, C.; Perez-Sorrosal, F.; Tsioutsiouliklis, K. Hierarchical Transfer Learning for Multi-label Text Classification.
In Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, 28 July–2
August 2019; Korhonen, A., Traum, D.R., Màrquez, L., Eds.; Association for Computational Linguistics: Kerrville, TX, USA, 2019;
Volume 1, pp. 6295–6300. [CrossRef]

149. Liu, L.; Mu, F.; Li, P.; Mu, X.; Tang, J.; Ai, X.; Fu, R.; Wang, L.; Zhou, X. NeuralClassifier: An Open-source Neural Hierarchical
Multi-label Text Classification Toolkit. In Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, 28 July–2 August 2019; Costa-jussà, M.R., Alfonseca, E., Eds.; Association for Computational Linguistics:
Kerrville, TX, USA, 2019; Volume 3: System Demonstrations, pp. 87–92. [CrossRef]

150. Prabowo, F.A.; Ibrohim, M.O.; Budi, I. Hierarchical Multi-label Classification to Identify Hate Speech and Abusive Language on
Indonesian Twitter. In Proceedings of the 2019 6th International Conference on Information Technology, Computer and Electrical
Engineering (ICITACEE), Semarang, Indonesia, 26–27 September 2019; pp. 1–5. [CrossRef]

151. Xiao, H.; Liu, X.; Song, Y. Efficient Path Prediction for Semi-Supervised and Weakly Supervised Hierarchical Text Classification.
In Proceedings of the The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, 13–17 May 2019; Liu, L., White,
R.W., Mantrach, A., Silvestri, F., McAuley, J.J., Baeza-Yates, R., Zia, L., Eds.; ACM: New York, NY, USA, 2019; pp. 3370–3376.
[CrossRef]

152. Ciapetti, A.; Florio, R.D.; Lomasto, L.; Miscione, G.; Ruggiero, G.; Toti, D. NETHIC: A System for Automatic Text Classification
using Neural Networks and Hierarchical Taxonomies. In Proceedings of the 21st International Conference on Enterprise
Information Systems, ICEIS 2019, Crete, Greece, 3–5 May 2019; Filipe, J., Smialek, M., Brodsky, A., Hammoudi, S., Eds.; SciTePress:
Setubal, Portugal, 2019; Volume 1, pp. 296–306. [CrossRef]

http://dx.doi.org/10.18653/v1/2023.findings-acl.358
http://dx.doi.org/10.18653/v1/2022.emnlp-main.246
http://dx.doi.org/10.18653/v1/2023.acl-long.164
http://dx.doi.org/10.18653/v1/2022.emnlp-industry.39
http://dx.doi.org/10.1007/978-3-030-74251-5_16
http://dx.doi.org/10.1007/978-3-030-59491-6_7
http://dx.doi.org/10.1016/j.asoc.2019.01.017
http://dx.doi.org/10.1007/s41109-022-00445-3
http://dx.doi.org/10.1109/ACCESS.2019.2949175
http://dx.doi.org/10.1016/j.asoc.2019.03.041
http://dx.doi.org/10.1109/IranianCEE.2019.8786690
http://dx.doi.org/10.1109/AI4I46381.2019.00024
http://dx.doi.org/10.1609/aaai.v33i01.33016826
http://dx.doi.org/10.18653/v1/p19-1633
http://dx.doi.org/10.18653/v1/p19-3015
http://dx.doi.org/10.1109/ICITACEE.2019.8904425
http://dx.doi.org/10.1145/3308558.3313658
http://dx.doi.org/10.5220/0007709702960306


Electronics 2024, 13, 1199 54 of 57

153. Lomasto, L.; Di Florio, R.; Ciapetti, A.; Miscione, G.; Ruggiero, G.; Toti, D. An Automatic Text Classification Method Based on
Hierarchical Taxonomies, Neural Networks and Document Embedding: The NETHIC Tool. In Proceedings of the Enterprise
Information Systems, Virtual Event, 5–7 May 2020; Filipe, J., Śmiałek, M., Brodsky, A., Hammoudi, S., Eds.; pp. 57–77. [CrossRef]

154. Xu, J.; Du, Q. Learning neural networks for text classification by exploiting label relations. Multimed. Tools Appl. 2020,
79, 22551–22567. [CrossRef]

155. Nakano, F.K.; Cerri, R.; Vens, C. Active learning for hierarchical multi-label classification. Data Min. Knowl. Discov. 2020,
34, 1496–1530. [CrossRef]

156. Addi, H.A.; Ezzahir, R.; Mahmoudi, A. Three-Level Binary Tree Structure for Sentiment Classification in Arabic Text. In
Proceedings of the 3rd International Conference on Networking, Information Systems & Security, NISS2020, New York, NY, USA,
31 March–2 April 2020; pp. 1–8. [CrossRef]

157. Jiang, H.; Miao, Z.; Lin, Y.; Wang, C.; Ni, M.; Gao, J.; Lu, J.; Shi, G. Financial News Annotation by Weakly-Supervised Hierarchical
Multi-label Learning. In Proceedings of the Second Workshop on Financial Technology and Natural Language Processing, Kyoto,
Japan, 11–12 July 2020; pp. 1–7.

158. Giunchiglia, E.; Lukasiewicz, T. Coherent Hierarchical Multi-Label Classification Networks. In Proceedings of the Advances in
Neural Information Processing Systems, Virtual Event, 6–12 December 2020; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.,
Lin, H., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2020; Volume 33, pp. 9662–9673.

159. Krendzelak, M.; Jakab, F. Hierarchical Text Classification Using CNNS with Local Approaches. Comput. Inform. 2020, 39, 907–924.
[CrossRef]

160. Liang, X.; Cheng, D.; Yang, F.; Luo, Y.; Qian, W.; Zhou, A. F-HMTC: Detecting Financial Events for Investment Decisions Based
on Neural Hierarchical Multi-Label Text Classification. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI, Yokohama, Japan, 7–15 January 2020; Bessiere, C., Ed.; pp. 4490–4496. [CrossRef]

161. Li, R.A.; Hajjar, I.; Goldstein, F.; Choi, J.D. Analysis of Hierarchical Multi-Content Text Classification Model on B-SHARP Dataset
for Early Detection of Alzheimer’s Disease. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, AACL/IJCNLP 2020,
Suzhou, China, 4–7 December 2020; Wong, K., Knight, K., Wu, H., Eds.; Association for Computational Linguistics: Kerrville, TX,
USA, 2020; pp. 358–365.

162. Xun, G.; Jha, K.; Sun, J.; Zhang, A. Correlation Networks for Extreme Multi-Label Text Classification. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’20, New York, NY, USA, 6–10 July 2020;
pp. 1074–1082. [CrossRef]

163. Masmoudi, A.; Bellaaj, H.; Drira, K.; Jmaiel, M. A co-training-based approach for the hierarchical multi-label classification of
research papers. Expert Syst. 2021, 38, e12613. [CrossRef]

164. Dong, H.; Wang, W.; Huang, K.; Coenen, F. Automated Social Text Annotation With Joint Multilabel Attention Networks. IEEE
Trans. Neural Netw. Learn. Syst. 2021, 32, 2224–2238. [CrossRef]

165. Zhang, Y.; Shen, Z.; Dong, Y.; Wang, K.; Han, J. MATCH: Metadata-Aware Text Classification in A Large Hierarchy. In Proceedings
of the Web Conference 2021, WWW ’21, New York, NY, USA, 19–23 April 2021; pp. 3246–3257. [CrossRef]

166. Ye, C.; Zhang, L.; He, Y.; Zhou, D.; Wu, J. Beyond Text: Incorporating Metadata and Label Structure for Multi-Label Document
Classification using Heterogeneous Graphs. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, Punta Cana, Dominican Republic, 7–11 November 2021; pp. 3162–3171. [CrossRef]

167. Liu, H.; Zhang, D.; Yin, B.; Zhu, X. Improving Pretrained Models for Zero-shot Multi-label Text Classification through Reinforced
Label Hierarchy Reasoning. In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Online, 6–11 June 2021; pp. 1051–1062. [CrossRef]

168. Wang, B.; Hu, X.; Li, P.; Yu, P.S. Cognitive structure learning model for hierarchical multi-label text classification. Knowl. Based
Syst. 2021, 218, 106876. [CrossRef]

169. Chatterjee, S.; Maheshwari, A.; Ramakrishnan, G.; Jagarlapudi, S.N. Joint Learning of Hyperbolic Label Embeddings for
Hierarchical Multi-label Classification. In Proceedings of the 16th Conference of the European Chapter of the Association for
Computational Linguistics: Main Volume, Online, 21–23 April 2021; pp. 2829–2841. [CrossRef]

170. Peng, H.; Li, J.; Wang, S.; Wang, L.; Gong, Q.; Yang, R.; Li, B.; Yu, P.S.; He, L. Hierarchical Taxonomy-Aware and Attentional Graph
Capsule RCNNs for Large-Scale Multi-Label Text Classification. IEEE Trans. Knowl. Data Eng. 2021, 33, 2505–2519. [CrossRef]

171. Xu, L.; Teng, S.; Zhao, R.; Guo, J.; Xiao, C.; Jiang, D.; Ren, B. Hierarchical Multi-label Text Classification with Horizontal and
Vertical Category Correlations. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event/Punta Cana, Dominican Republic, 7–11 November 2021; Moens, M., Huang, X., Specia, L., Yih, S.W.,
Eds.; Association for Computational Linguistics: Kerrville, TX, USA, 2021; pp. 2459–2468. [CrossRef]

172. Falis, M.; Dong, H.; Birch, A.; Alex, B. CoPHE: A Count-Preserving Hierarchical Evaluation Metric in Large-Scale Multi-Label
Text Classification. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP
2021, Punta Cana, Dominican Republic, 7–11 November 2021; Moens, M., Huang, X., Specia, L., Yih, S.W., Eds.; Association for
Computational Linguistics: Kerrville, TX, USA, 2021; pp. 907–912. [CrossRef]

173. Aljedani, N.; Alotaibi, R.; Taileb, M. HMATC: Hierarchical multi-label Arabic text classification model using machine learning.
Egypt Inform. J. 2021, 22, 225–237. [CrossRef]

http://dx.doi.org/10.1007/978-3-030-40783-4_4
http://dx.doi.org/10.1007/s11042-020-09063-6
http://dx.doi.org/10.1007/s10618-020-00704-w
http://dx.doi.org/10.1145/3386723.3387844
http://dx.doi.org/10.31577/cai_2020_5_907
http://dx.doi.org/10.24963/ijcai.2020/619
http://dx.doi.org/10.1145/3394486.3403151
http://dx.doi.org/10.1111/exsy.12613
http://dx.doi.org/10.1109/TNNLS.2020.3002798
http://dx.doi.org/10.1145/3442381.3449979
http://dx.doi.org/10.18653/v1/2021.emnlp-main.253
http://dx.doi.org/10.18653/v1/2021.naacl-main.83
http://dx.doi.org/10.1016/j.knosys.2021.106876
http://dx.doi.org/10.18653/v1/2021.eacl-main.247
http://dx.doi.org/10.1109/TKDE.2019.2959991
http://dx.doi.org/10.18653/v1/2021.emnlp-main.190
http://dx.doi.org/10.18653/v1/2021.emnlp-main.69
http://dx.doi.org/10.1016/j.eij.2020.08.004


Electronics 2024, 13, 1199 55 of 57

174. Yang, Y.; Wang, H.; Zhu, J.; Shi, W.; Guo, W.; Zhang, J. Effective Seed-Guided Topic Labeling for Dataless Hierarchical Short Text
Classification. In Proceedings of the Web Engineering—21st International Conference, ICWE 2021, Biarritz, France, 18–21 May
2021; Brambilla, M., Chbeir, R., Frasincar, F., Manolescu, I., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2021; Volume 12706, pp. 271–285. [CrossRef]

175. Pujari, S.C.; Friedrich, A.; Strötgen, J. A Multi-task Approach to Neural Multi-label Hierarchical Patent Classification Using
Transformers. In Proceedings of the Advances in Information Retrieval, Virtual Event, 28 March–1 April 2021; Hiemstra, D.,
Moens, M.F., Mothe, J., Perego, R., Potthast, M., Sebastiani, F., Eds.; pp. 513–528.

176. Shen, J.; Qiu, W.; Meng, Y.; Shang, J.; Ren, X.; Han, J. TaxoClass: Hierarchical Multi-Label Text Classification Using Only Class
Names. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2021, Online, 6–11 June 2021; Toutanova, K., Rumshisky, A., Zettlemoyer, L.,
Hakkani-Tür, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., Zhou, Y., Eds.; Association for Computational Linguistics:
Kerrville, TX, USA, 2021; pp. 4239–4249. [CrossRef]

177. Deng, Z.; Peng, H.; He, D.; Li, J.; Yu, P.S. HTCInfoMax: A Global Model for Hierarchical Text Classification via Information
Maximization. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, 6–11 June 2021; Toutanova, K., Rumshisky, A., Zettle-
moyer, L., Hakkani-Tür, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., Zhou, Y., Eds.; Association for Computational
Linguistics: Kerrville, TX, USA, 2021; pp. 3259–3265. [CrossRef]

178. Huang, W.; Liu, C.; Xiao, B.; Zhao, Y.; Pan, Z.; Zhang, Z.; Yang, X.; Liu, G. Exploring Label Hierarchy in a Generative Way for
Hierarchical Text Classification. In Proceedings of the 29th International Conference on Computational Linguistics, Gyeongju,
Republic of Korea, 12–17 October 2022; pp. 1116–1127.

179. Ma, Y.; Liu, X.; Zhao, L.; Liang, Y.; Zhang, P.; Jin, B. Hybrid embedding-based text representation for hierarchical multi-label text
classification. Expert Syst. Appl. 2022, 187, 115905. [CrossRef]

180. Jiang, T.; Wang, D.; Sun, L.; Chen, Z.; Zhuang, F.; Yang, Q. Exploiting Global and Local Hierarchies for Hierarchical Text
Classification. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, United
Arab Emirates, 7–11 December 2022; Goldberg, Y., Kozareva, Z., Zhang, Y., Eds.; pp. 4030–4039. [CrossRef]

181. Song, Y.; Yan, Z.; Qin, Y.; Zhao, D.; Ye, X.; Chai, Y.; Ouyang, Y. Hierarchical Multi-label Text Classification based on a Matrix
Factorization and Recursive-Attention Approach. In Proceedings of the 2022 7th International Conference on Big Data Analytics
(ICBDA), Guangzhou, China, 4–6 March 2022; pp. 170–176. [CrossRef]

182. Xu, Z.; Zhang, B.; Li, D.; Yue, X. Hierarchical multilabel classification by exploiting label correlations. Int. J. Mach. Learn. Cybern.
2022, 13, 115–131. [CrossRef]

183. Mezza, S.; Wobcke, W.; Blair, A. A Multi-Dimensional, Cross-Domain and Hierarchy-Aware Neural Architecture for ISO-Standard
Dialogue Act Tagging. In Proceedings of the 29th International Conference on Computational Linguistics, Gyeongju, Republic of
Korea, 12–17 October 2022; Calzolari, N., Huang, C.R., Kim, H., Pustejovsky, J., Wanner, L., Choi, K.S., Ryu, P.M., Chen, H.H.,
Donatelli, L., Ji, H., et al., Eds.; pp. 542–552.

184. Sadat, M.; Caragea, C. Hierarchical Multi-Label Classification of Scientific Documents. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, 7–11 December 2022; Goldberg, Y.,
Kozareva, Z., Zhang, Y., Eds.; pp. 8923–8937. [CrossRef]

185. Wang, Y.; Song, H.; Huo, P.; Xu, T.; Yang, J.; Chen, Y.; Zhao, T. Exploiting Dynamic and Fine-grained Semantic Scope for Extreme
Multi-label Text Classification. In Proceedings of the Natural Language Processing and Chinese Computing, Guilin, China, 24–25
September 2022; Lu, W., Huang, S., Hong, Y., Zhou, X., Eds.; pp. 85–97.

186. Zheng, S.; Zhou, J.; Meng, K.; Liu, G. Label-Dividing Gated Graph Neural Network for Hierarchical Text Classification. In
Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; pp. 1–08.
[CrossRef]

187. Mallikarjuna, K.; Pasari, S.; Tiwari, K. Hierarchical Classification using Neighbourhood Exploration for Sparse Text Tweets. In
Proceedings of the 2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Virtual
Event, 27–28 January 2022; pp. 31–34. [CrossRef]

188. Wunderlich, D.; Bernau, D.; Aldà, F.; Parra-Arnau, J.; Strufe, T. On the Privacy & Utility Trade-Off in Differentially Private
Hierarchical Text Classification. Appl. Sci. 2022, 12, 11177.

189. Liu, L.; Perez-Concha, O.; Nguyen, A.; Bennett, V.; Jorm, L. Automated ICD coding using extreme multi-label long text
transformer-based models. Artif. Intell. Med. 2023, 144, 102662. [CrossRef]

190. Agrawal, N.; Kumar, S.; Bhatt, P.; Agarwal, T. Hierarchical Text Classification Using Contrastive Learning Informed Path Guided
Hierarchy. In Proceedings of the 26th European Conference on Artificial Intelligence, Krakow, Poland, 30 September–4 October
2023; IOS Press: Amsterdam, The Netherlands 2023; pp. 19–26. [CrossRef]

191. Bang, J.; Park, J.; Park, J. GACaps-HTC: Graph attention capsule network for hierarchical text classification. Appl. Intell. 2023,
53, 20577–20594. [CrossRef]

192. Wang, X.; Guo, L. Multi-Label Classification of Chinese Rural Poverty Governance Texts Based on XLNet and Bi-LSTM Fused
Hierarchical Attention Mechanism. Appl. Sci. 2023, 13, 7377. [CrossRef]

193. Hunter, S.B.; Mathews, F.; Weeds, J. Using hierarchical text classification to investigate the utility of machine learning in
automating online analyses of wildlife exploitation. Ecol. Inform. 2023, 75, 102076. [CrossRef]

http://dx.doi.org/10.1007/978-3-030-74296-6_21
http://dx.doi.org/10.18653/v1/2021.naacl-main.335
http://dx.doi.org/10.18653/v1/2021.naacl-main.260
http://dx.doi.org/10.1016/j.eswa.2021.115905
http://dx.doi.org/10.18653/v1/2022.emnlp-main.268
http://dx.doi.org/10.1109/ICBDA55095.2022.9760305
http://dx.doi.org/10.1007/s13042-021-01371-z
http://dx.doi.org/10.18653/v1/2022.emnlp-main.610
http://dx.doi.org/10.1109/IJCNN55064.2022.9892563
http://dx.doi.org/10.1109/Confluence52989.2022.9734161
http://dx.doi.org/10.1016/j.artmed.2023.102662
http://dx.doi.org/10.3233/FAIA230249
http://dx.doi.org/10.1007/s10489-023-04585-6
http://dx.doi.org/10.3390/app13137377
http://dx.doi.org/10.1016/j.ecoinf.2023.102076


Electronics 2024, 13, 1199 56 of 57

194. Im, S.; Kim, G.; Oh, H.S.; Jo, S.; Kim, D.H. Hierarchical Text Classification as Sub-hierarchy Sequence Generation. Proc. AAAI
Conf. Artif. Intell. 2023, 37, 12933–12941. [CrossRef]

195. Bongiovanni, L.; Bruno, L.; Dominici, F.; Rizzo, G. Zero-Shot Taxonomy Mapping for Document Classification. In Proceedings of
the 38th ACM/SIGAPP Symposium on Applied Computing, SAC ’23, New York, NY, USA, 27 March–2 April 2023; pp. 911–918.
[CrossRef]

196. Ma, K.; Huang, Z.; Deng, X.; Guo, J.; Qiu, W. LED: Label Correlation Enhanced Decoder for Multi-Label Text Classification. In
Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [CrossRef]

197. Li, F.; Chen, Z.; Wang, Y. HLC-KEPLM: Hierarchical Label Classification Based on Knowledge-Enhanced Pretrained Language
Model for Chinese Telecom. In Proceedings of the 2023 4th International Conference on Intelligent Computing and Human-
Computer Interaction (ICHCI), Guangzhou, China, 4–6 August 2023; pp. 262–266. [CrossRef]

198. Wang, Y.; Qiao, D.; Li, J.; Chang, J.; Zhang, Q.; Liu, Z.; Zhang, G.; Zhang, M. Towards Better Hierarchical Text Classification
with Data Generation. In Proceedings of the Findings of the Association for Computational Linguistics: ACL 2023, Toronto, ON,
Canada, 10–12 July 2023; Rogers, A., Boyd-Graber, J., Okazaki, N., Eds.; pp. 7722–7739. [CrossRef]

199. Chen, C.Y.; Hung, T.M.; Hsu, Y.L.; Ku, L.W. Label-Aware Hyperbolic Embeddings for Fine-grained Emotion Classification. In
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, Toronto, ON, Canada, 9–14 July 2023;
Rogers, A., Boyd-Graber, J., Okazaki, N., Eds.; Volume 1: Long Papers, pp. 10947–10958. [CrossRef]

200. Zhu, H.; Zhang, C.; Huang, J.; Wu, J.; Xu, K. HiTIN: Hierarchy-aware Tree Isomorphism Network for Hierarchical Text
Classification. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, Toronto, ON, Canada,
9–14 July 2023; Rogers, A., Boyd-Graber, J., Okazaki, N., Eds.; Volume 1: Long Papers, pp. 7809–7821. [CrossRef]

201. Zhao, F.; Wu, Z.; He, L.; Dai, X.Y. Label-Correction Capsule Network for Hierarchical Text Classification. IEEE/ACM Trans. Audio
Speech Lang. Process. 2023, 31, 2158–2168. [CrossRef]

202. Yu-Kun, C.; Zi-Yue, W.; Yi-jia, T.; Cheng-Kun, J. Hierarchical Label Text Classification Method with Deep-Level Label-Assisted
Classification. In Proceedings of the 2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS), Xiangtan,
China, 12–14 May 2023; pp. 1467–1474. [CrossRef]

203. Li, H.; Yan, H.; Li, Y.; Qian, L.; He, Y.; Gui, L. Distinguishability Calibration to In-Context Learning. In Proceedings of the Findings
of the Association for Computational Linguistics: EACL 2023, Dubrovnik, Croatia, 2–6 May 2023; Vlachos, A., Augenstein, I.,
Eds.; pp. 1385–1397. [CrossRef]

204. Fan, Q.; Qiu, C. Hierarchical Multi-label Text Classification Method Based On Multi-level Decoupling. In Proceedings of the 2023
3rd International Conference on Neural Networks, Information and Communication Engineering (NNICE), Guangzhou, China,
24–26 February 2023; pp. 453–457. [CrossRef]

205. Cheng, Q.; Lin, Y. Multilevel Classification of Users’ Needs in Chinese Online Medical and Health Communities: Model
Development and Evaluation Based on Graph Convolutional Network. JMIR Form Res. 2023, 7, e42297. [CrossRef]

206. Yu, S.C.L.; He, J.; Basulto, V.; Pan, J. Instances and Labels: Hierarchy-aware Joint Supervised Contrastive Learning for Hierarchical
Multi-Label Text Classification. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2023,
Singapore, 6–10 December 2023; Bouamor, H., Pino, J., Bali, K., Eds.; pp. 8858–8875. [CrossRef]

207. Chen, A.; Dhingra, B. Hierarchical Multi-Instance Multi-Label Learning for Detecting Propaganda Techniques. In Proceedings of
the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023), Toronto, ON, Canada, 13 July 2023; Can, B., Mozes,
M., Cahyawijaya, S., Saphra, N., Kassner, N., Ravfogel, S., Ravichander, A., Zhao, C., Augenstein, I., Rogers, A., et al., Eds.; pp.
155–163. [CrossRef]

208. Ying, C.; Cai, T.; Luo, S.; Zheng, S.; Ke, G.; He, D.; Shen, Y.; Liu, T.Y. Do Transformers Really Perform Badly for Graph
Representation? In Proceedings of the Advances in Neural Information Processing Systems, Virtual Event, 6–14 December 2021;
Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W., Eds.; Curran Associates, Inc.: Long Beach, CA, USA, 2021;
Volume 34, pp. 28877–28888.

209. Wang, D.; Cui, P.; Zhu, W. Structural Deep Network Embedding. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, New York, NY, USA, 13–17 August 2016; pp. 1225–1234.
[CrossRef]

210. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, Red Hook, NY, USA, 4–9 December 2017; pp. 1025–1035.

211. Su, J.; Zhu, M.; Murtadha, A.; Pan, S.; Wen, B.; Liu, Y. ZLPR: A Novel Loss for Multi-label Classification. arXiv 2022,
arXiv:2208.02955.

212. DBpedia. Available online: https://www.dbpedia.org/ (accessed on 15 November 2022).
213. Wikimedia Downloads. Available online: https://www.wikimedia.org (accessed on 15 November 2022).
214. Lewis, D.D.; Yang, Y.; Rose, T.G.; Li, F. RCV1: A New Benchmark Collection for Text Categorization Research. J. Mach. Learn. Res.

2004, 5, 361–397.
215. Kowsari, K.; Brown, D.; Heidarysafa, M.; Jafari Meimandi, K.; Gerber, M.; Barnes, L. Web of Science Dataset. 2018. Available

online: https://data.mendeley.com/datasets/9rw3vkcfy4/6 (accessed on 21 March 2024).
216. Lang, K. NewsWeeder: Learning to Filter Netnews. In Proceedings of the Machine Learning 1995, Tahoe, CA, USA, 9–12 July

1995; Prieditis, A., Russell, S., Eds.; Morgan Kaufmann: San Francisco, CA, USA, 1995; pp. 331–339. [CrossRef]

http://dx.doi.org/10.1609/aaai.v37i11.26520
http://dx.doi.org/10.1145/3555776.3577653
http://dx.doi.org/10.1109/ICASSP49357.2023.10096210
http://dx.doi.org/10.1109/ICHCI58871.2023.10277772
http://dx.doi.org/10.18653/v1/2023.findings-acl.489
http://dx.doi.org/10.18653/v1/2023.acl-long.613
http://dx.doi.org/10.18653/v1/2023.acl-long.432
http://dx.doi.org/10.1109/TASLP.2023.3282099
http://dx.doi.org/10.1109/DDCLS58216.2023.10166293
http://dx.doi.org/10.18653/v1/2023.findings-eacl.102
http://dx.doi.org/10.1109/NNICE58320.2023.10105736
http://dx.doi.org/10.2196/42297
http://dx.doi.org/10.18653/v1/2023.findings-emnlp.594
http://dx.doi.org/10.18653/v1/2023.repl4nlp-1.13
http://dx.doi.org/10.1145/2939672.2939753
https://www.dbpedia.org/
https://www.wikimedia.org
https://data.mendeley.com/datasets/9rw3vkcfy4/6
http://dx.doi.org/10.1016/B978-1-55860-377-6.50048-7


Electronics 2024, 13, 1199 57 of 57

217. Yang, P.; Sun, X.; Li, W.; Ma, S.; Wu, W.; Wang, H. SGM: Sequence Generation Model for Multi-label Classification. In Proceedings
of the 27th International Conference on Computational Linguistics, Santa Fe, NM, USA, 20–26 August 2018; pp. 3915–3926.

218. Klimt, B.; Yang, Y. The Enron Corpus: A New Dataset for Email Classification Research. In Proceedings of the 15th European
Conference on Machine Learning, ECML’04, Berlin/Heidelberg, 20–24 September 2004; pp. 217–226. [CrossRef]

219. Sandhaus, E. The New York Times Annotated Corpus LDC2008T19; Linguistic Data Consortium: Philadelphia, PA, USA, 2008.
[CrossRef]

220. McAuley, J.; Leskovec, J. Hidden Factors and Hidden Topics: Understanding Rating Dimensions with Review Text. In
Proceedings of the 7th ACM Conference on Recommender Systems, RecSys’13, New York, NY, USA, 12–16 October 2013; pp.
165–172. [CrossRef]

221. Lyubinets, V.; Boiko, T.; Nicholas, D. Automated Labeling of Bugs and Tickets Using Attention-Based Mechanisms in Recurrent
Neural Networks. In Proceedings of the 2018 IEEE Second International Conference on Data Stream Mining & Processing
(DSMP), Lviv, Ukraine, 21–25 August 2018; pp. 271–275. [CrossRef]

222. Ni, J.; Li, J.; McAuley, J. Justifying Recommendations using Distantly-Labeled Reviews and Fine-Grained Aspects. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 188–197. [CrossRef]

223. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers:
State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Online, 16–20 November 2020; Association for Computational Linguistics: Kerrville, TX,
USA, 2020; pp. 38–45. [CrossRef]

224. Tanaka, H.; Shinnou, H.; Cao, R.; Bai, J.; Ma, W. Document Classification by Word Embeddings of BERT. In Proceedings of the
16th International Conference of the Pacific Association for Computational Linguistics, PACLING 2019, Hanoi, Vietnam, 11–13
October 2019; Nguyen, L.M., Phan, X.H., Hasida, K., Tojo, S., Eds.; pp. 145–154. [CrossRef]

225. Liu, J.; Chang, W.C.; Wu, Y.; Yang, Y. Deep Learning for Extreme Multi-Label Text Classification. In Proceedings of the SIGIR ’17
40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Japan, 7–11 August
2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 115–124. [CrossRef]

226. Adhikari, A.; Ram, A.; Tang, R.; Lin, J. DocBERT: BERT for Document Classification. arXiv 2019, arXiv:1904.08398. https:
//doi.org/10.48550/arXiv.1904.08398.

227. Jiang, Y.; Hu, C.; Xiao, T.; Zhang, C.; Zhu, J. Improved Differentiable Architecture Search for Language Modeling and Named
Entity Recognition. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; Inui,
K., Jiang, J., Ng, V., Wan, X., Eds.; pp. 3585–3590. [CrossRef]

228. Wang, Y.; Yang, Y.; Chen, Y.; Bai, J.; Zhang, C.; Su, G.; Kou, X.; Tong, Y.; Yang, M.; Zhou, L. TextNAS: A Neural Architecture Search
Space Tailored for Text Representation. Proc. AAAI Conf. Artif. Intell. 2020, 34, 9242–9249. [CrossRef]

229. Chen, K.C.; Li, C.T.; Lee, K.J. DDNAS: Discretized Differentiable Neural Architecture Search for Text Classification. ACM Trans.
Intell. Syst. Technol. 2023, 14, 1–22. [CrossRef]

230. Samuel, D.; Atzmon, Y.; Chechik, G. From generalized zero-shot learning to long-tail with class descriptors. In Proceedings of the
2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2021; pp. 286–295.
[CrossRef]

231. Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, Brussels, Belgium, 1 November 2018; pp. 353–355. [CrossRef]

232. Wang, A.; Pruksachatkun, Y.; Nangia, N.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S.R. SuperGLUE: A Stickier
Benchmark for General-Purpose Language Understanding Systems. In Proceedings of the 33rd International Conference on
Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Curran Associates Inc.: Red Hook, NY,
USA, 2019; pp. 3266–3280.

233. Tenney, I.; Wexler, J.; Bastings, J.; Bolukbasi, T.; Coenen, A.; Gehrmann, S.; Jiang, E.; Pushkarna, M.; Radebaugh, C.; Reif, E.; et al.
The Language Interpretability Tool: Extensible, Interactive Visualizations and Analysis for NLP Models. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Online, 16–20 November 2020;
pp. 107–118. [CrossRef]

234. Wu, T.; Ribeiro, M.T.; Heer, J.; Weld, D. Errudite: Scalable, Reproducible, and Testable Error Analysis. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 747–763. [CrossRef]

235. Yuan, J.; Vig, J.; Rajani, N. ISEA: An Interactive Pipeline for Semantic Error Analysis of NLP Models. In Proceedings of the IUI ’22
27th International Conference on Intelligent User Interfaces, New York, NY, USA, 22–25 March 2022; pp. 878–888. [CrossRef]

236. Scikit-learn.org. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html (accessed
on 17 March 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-540-30115-8_22
http://dx.doi.org/10.35111/77ba-9x74
http://dx.doi.org/10.1145/2507157.2507163
http://dx.doi.org/10.1109/DSMP.2018.8478511
http://dx.doi.org/10.18653/v1/D19-1018
http://dx.doi.org/10.18653/v1/2020.emnlp-demos.6
http://dx.doi.org/10.1007/978-981-15-6168-9_13
http://dx.doi.org/10.1145/3077136.3080834
https://doi.org/10.48550/arXiv.1904.08398
https://doi.org/10.48550/arXiv.1904.08398
http://dx.doi.org/10.18653/v1/D19-1367
http://dx.doi.org/10.1609/aaai.v34i05.6462
http://dx.doi.org/10.1145/3610299
http://dx.doi.org/10.1109/WACV48630.2021.00033
http://dx.doi.org/10.18653/v1/W18-5446
http://dx.doi.org/10.18653/v1/2020.emnlp-demos.15
http://dx.doi.org/10.18653/v1/P19-1073
http://dx.doi.org/10.1145/3490099.3511146
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

	Introduction
	What Is Hierarchical Text Classification?
	Related Work
	Contributions
	Structure of the Article

	NLP Background
	Text Representation and Classification
	Text Segmentation
	Weighted Word Counts
	Word Embeddings
	Contextualized Language Models
	Classification

	Notable Neural Architectures
	Recurrent Neural Networks
	Convolutional Neural Networks
	Transformer Networks and the Attention Mechanism
	Graph Neural Networks
	Capsule Networks


	Hierarchical Text Classification
	Types of Hierarchical Classification
	Flattened Classifiers
	Local Classifiers
	Global Classifiers
	Training and Testing Local Classifiers

	Non-Mandatory Leaf Node Prediction and Blocking
	Flattened Classifiers
	Local Classifiers
	Global Classifiers

	Evaluation Measures
	Standard Metrics
	Hierarchical Metrics
	Other Metrics


	Hierarchical Text Classification Methods
	Overview of Approaches
	Recent Proposals
	Analyzed Methods
	HTrans
	HiLAP
	MATCH
	HiAGM
	RLHR
	HiMatch
	HE-AGCRCNN
	CLED
	ICD-Reranking
	HGCLR
	HIDDEN
	CHAMP
	HE-HMTC
	HTCInfoMax
	GACaps-HTC
	HiDEC
	K-HTC
	HiTin
	PeerHTC
	HJCL
	HBGL
	HPT
	HierVerb
	P-Tuning-v2

	Datasets Used in the HTC Literature

	Experiments and Analysis
	Datasets Used
	Linux Bugs
	RCV1-v2
	Web of Science
	Blurb Genre Collection
	Amazon 5  5

	Models Implemented
	HBGL
	GACaps-HTC
	MATCH
	HiAGM
	BERT
	XML-CNN
	CHAMP/MATCH Losses
	SVM

	Results
	Comparison
	Inference Time

	Discussion

	Future Work and Research Directions
	Conclusions
	References 

