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Abstract: This paper proposes an online monitoring and defect identification method for XLPE power
cables using harmonic visualization of grounding currents. Four typical defects, including thermal
aging, water ingress and dampness, insulation scratch, and excessive bending, were experimentally
conducted. The AC grounding currents of the cable specimens with different defects were measured
during operation. By using the chaotic synchronization system, the harmonic distortion was trans-
formed into a 2D scatter diagram with distinctive characteristics. The relationship between the defect
type and the diagram features was obtained. A YOLOv5 (you only look once v5) target recognition
model was then established based on the dynamic harmonics scatter diagrams for cable defect classi-
fication and identification. The results indicated that the overall shape, distribution range, density
degree, and typical lines formed by scatter aggregation can reflect the defect type effectively. The
proposed method greatly reduces the difficulty of data analysis and enables rapid defect identification
of XLPE power cables, which is useful for improving the reliability of the power system.

Keywords: XLPE power cable; defect identification; grounding current; harmonics visualization;
chaotic synchronization system; YOLOv5

1. Introduction

XLPE power cables have been extensively used for power transmission over the past
30 years due to their excellent electrical performance, ease of installation, and low mainte-
nance requirements. This has largely ensured the power demand for industrial production
and daily life. With the upgrading of cable manufacturing technology, the introduction of
new materials, improvements in conductor technology [1], and advancements in insulation
techniques have significantly enhanced the conductivity and insulation performance of
power cables. The emergence of high-voltage direct current (HVDC) transmission technol-
ogy is driving power cables toward higher voltage levels and energy transmission efficiency.
Typically, an XLPE power cable has a service life of around 30 years when operating in
normal environments [2–4]. As operating time increases, a lot of cables are approaching
their design life. The deterioration of cables is accelerated due to the electrical–mechanical
environment and latent defects. This gradual exposure of problems poses threats to the
safe and reliable operation of the power system. On the one hand, in order to design power
cables with better performance, longer lifespan, and more stable operation, scholars have
conducted research into new insulation materials and material modification methods [5–7].
On the other hand, for cables in use, the timely, accurate, and effective detection of the
cable condition is the top priority in the regular maintenance of power cables.

With the development of smart grids and digital technology, monitoring the condition
of cables in operation can no longer rely solely on periodic offline tests. Online monitoring
methods can enable the acquisition of cable conditions during on-site operation. Common
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methods for power cables include DC superposition, dielectric loss tangent, partial dis-
charge (PD), distributed temperature measurement, magnetic field detection, etc. [8–12].
Among these methods, partial discharge detection is the most widely recognized due to its
accurate and reliable results. The condition of power cables can be evaluated on the basis
of partial discharge pattern recognition. Nevertheless, the detection process is not only
time-consuming but also highly technical [13–15]. The DC superposition method measures
insulation resistance by overlaying low-voltage direct currents on AC high voltage, which
is close to the offline result. However, this simple progress can be easily disturbed by the
electromagnetic environment, which means the precision requirement can hardly be met
during early degradation [16,17]. Distributed optical fiber sensing technology determines
abnormal areas by continuously monitoring the temperature at various locations of the ca-
ble but cannot achieve defect identification [18,19]. Sun et al. [20] proposed a novel method
that measures a cable’s external magnetic field through a group of magnetic field sensor
arrays. Whether the cable is in a fault state can be judged based on the amplitude and phase
of the obtained current signal. Based on low-frequency signal injection, Zhu et al. [21]
calculated the leakage current dielectric loss angle of a cable specimen and consequently
evaluated the cable’s insulation. These two methods often have limitations because of
the single evaluation parameters. The existing problems make it difficult to popularize
the methods mentioned above. The need for large-scale detection remains a challenge to
be solved.

In order to further improve detection accuracy and enhance universality, it is necessary
to develop an effective and practical method to ensure the reliability of the power cable
system. The harmonic detection method is a newly emerging research perspective [22–24].
Most scholars conduct time-frequency analysis on the current signal of power equipment
to obtain harmonic information reflecting equipment condition. Hu et al. [25] studied the
harmonic currents in distribution cable accessories under damp conditions and found that
the grounding current distortion caused by water immersion is higher compared with water
droplets and water film, and the defect type can be judged by the proportion of harmonic
components. For thermally aged XLPE and PVC/B samples, Kemari et al. [26] used the
discrete wavelet transform (DWT) method along with standard deviation-multiresolution
analysis (STD-MRA) to determine the degradation level of both materials. However, both
the mains harmonics and harmonics caused by cable degradation are mainly distributed
between the 2nd and 50th. Due to the similarity and overlap of the harmonic frequency
ranges, the influence of the mains harmonics cannot be ignored. Moreover, the equipment
required for harmonic detection is costly and difficult to operate, and the data analysis
method is complicated. Due to the many and trivial characteristics of harmonic information,
a simple, fast, and effective automated method has not yet been developed. The detection
result largely depends on the professional analysis and empirical judgment of technicians,
which makes harmonic detection methods difficult to be widely applied. Therefore, devel-
oping a simpler and faster data analysis method and improving automatable capability is
the way to break through the bottleneck of harmonic detection.

In this paper, the harmonic distortion of cable grounding currents caused by defect or
degradation was transformed into a 2D visual diagram to assess cable condition and identify
defect type. Cable specimens with different typical defects were separately prepared, and an
experimental setup was built to obtain a grounding current under the operating condition.
The dynamic harmonics scatter diagrams (visualized harmonics) were formed through
the chaotic synchronization system. The correlation between the diagram features and
the cable defect type was further established. Combining an advanced image recognition
algorithm, a YOLOv5 target recognition model was constructed to realize the real-time
condition evaluation and defect identification of power cables. The application of the
chaotic synchronization system and the image recognition algorithm reduces the difficulty
of data analysis, presents harmonic information in a more focused and distinguishable
way, and improves the automation of the harmonic detection method. The research work



Electronics 2024, 13, 1159 3 of 16

will provide a reference for the online condition evaluation of XLPE power cables and
contribute to maintaining the security and stability of power systems.

2. Grounding Current Test of Power Cable
2.1. Test Specimen

The experiment selects a YJLV 8.7/15 kV-1×70 mm2 distribution cable as the specimen.
Except for the cable specimens of normal state, the specimens with four typical defect types,
thermal aging, water ingress and dampness, insulation scratch, and excessive bending,
were prepared. The cable specimens with typical defects are shown in Figure 1.

Figure 1. Cable specimens with typical defects: (a) thermal aging; (b) water ingress and dampness;
(c) insulation scratch; (d) excessive bending.

(1) Thermal Aging (Type I): A constant temperature aging chamber was employed
to reproduce the thermal aging process. Due to the limitation of the chamber size, the
specimen was 400 mm in length. The outer sheath, along with the copper shielding, was
peeled off to evenly heat the cable insulation. Conductive silver paint was applied evenly
over a length of 50 mm in the middle of the specimen, around which the copper foil was
wrapped as the test electrode. According to IEC 60811, the aging temperature was set to
90 ◦C, and the testing time was taken in equal proportion series, that is, 12 days (mild),
24 days (moderate), and 48 days (severe). The specimen is shown in Figure 1a.

(2) Water Ingress and Dampness (Type II): Long-term operation in underground humid
environments often results in cable faults caused by water ingress. The cable specimen
was 1 m in length. The outer sheath with a length of 700 mm was peeled off in the middle
position to expose the copper shielding. Then, 150 mm of the outer sheath was stripped
from one end of the specimen, where the grounding wire was led out as the test electrode.
A 700 mm long heat shrink tube was wrapped over the cable specimen. The tube was
filled with tap water, and both ends were shrunk and coated with glass glue, as shown
in Figure 1b. To simulate different dampness levels (mild, moderate, and severe), the
grounding current was tested after 5, 10, and 15 days, respectively.

(3) Insulation Scratch (Type III): Insulation scratches often occur during the production
of cable joints due to excessive cutting. The cable specimen was 1 m long. The outer
sheath, copper shielding, and insulation shielding layer of the middle section were peeled
off in sequence. A piece of insulation was finally peeled off to simulate the insulation
scratch, as shown in Figure 1c. To simulate different scratch levels, three scratch sizes were
set, that is, 40 mm × 2 mm × 1 mm (mild), 40 mm × 4 mm × 1 mm (moderate), and
40 mm × 6 mm × 2 mm (severe).

(4) Excessive Bending (Type IV): Power cables may experience irreversible distortion
and damage due to prolonged or frequent bending during storage and transportation.
Excessive bending damage was simulated by bending and fixing the specimen. The outer
diameter (D) of the cable specimen was 30 mm. According to GB 50168-2018 [27], the
minimum allowable bending radius (Rmin) during installation is 600 mm (20D). To simulate
different bending degrees (mild, moderate, and severe), the bending radius was separately
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set to 600 mm, 400 mm, and 200 mm, corresponding to specimen lengths of 2 m, 1.6 m, and
1.2 m. Cable specimens were fixed on a wooden board by cable clamps and socket head
screws, as shown in Figure 1d.

2.2. Experimental Setup

Figure 2 shows the experimental setup. The power system, consisting of a voltage
regulator (TDGC2-3, CHNT, Wenzhou, China) and a testing transformer (TDM 11,000 kVA),
can generate AC high voltage ranging from 0 to 50 kV. A voltage divider (RCF-50 kV)
is connected to the secondary side of the transformer through the protective resistor. A
portion of the voltage measured by tapping is displayed on the oscilloscope (MSO5104,
RIGOL, Suzhou, China). The use of a voltage divider protects the oscilloscope from the
influence of overvoltage [28]. The voltage applied to the cable specimen can be calculated
according to the voltage division factor. The high-voltage terminal also connects to the
specimen copper core through the protective resistor, and the copper foil testing electrode
is grounded through a sampling resistor. The protective resistor has a resistance of 1 MΩ,
which prevents the impact of overcurrent resulting from a short circuit. The sampling
resistor, which is adjustable and non-inductive, has a resistance of 10 kΩ. The sampling
resistor converts the current signal to a voltage signal. The voltage values at both ends
are collected via a high-speed data acquisition card (PCI-1712) and stored in a PC with a
sampling frequency of 20 kHz. The grounding current signal can eventually be obtained in
the computer. According to the actual operation of the cable specimen, 8.7 kV is selected
as the applied voltage. In each test, the supply voltage applied to the cable specimen is
controlled consistently to the greatest extent, and it is ensured that the supply voltage
presents an almost ideal sinusoidal waveform without any obvious harmonics. A total of
480 groups of grounding current data were collected, including 120 groups for each defect
type (40 groups for each level).

Figure 2. Experimental setup of AC grounding current test.

2.3. Experimental Results

As shown in Figure 3, the grounding current is approximately sinusoidal under normal
conditions, with a peak value of about 690 µA. However, cable degradation causes great
harmonic distortion to appear in the grounding current. The test results of cable specimens
with four typical defects are shown in Figure 4. Apparently, there is a significant harmonic
distortion in the grounding current when defects exist. The presence of cable defects
leads to partial discharges within the cable insulation. As the partial discharge develops,
the insulation gradually degrades. Changes in the performance parameters of the cable
and the generation of harmonics in the voltage and current signals are the macroscopic
manifestations of cable degradation. In addition, the distortion form differs depending on
the defect types, which means the harmonic content of each order varies greatly.
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Figure 3. The grounding current of the cable specimen of normal state.

Figure 4. The grounding currents of cable specimens with typical defects (moderate level): (a) thermal
aging; (b) water ingress and dampness; (c) insulation scratch; (d) excessive bending.

These differences indicate that the harmonic distortion in the grounding current
contains important information reflecting the cable condition. In order to present these
differences in a concrete way, we attempt to transform the distortion in the linear signal into
a more intuitive, stretched, and plump 2D picture. On this basis, the defect identification of
problem cables can be achieved.

3. Harmonics Visualization Based on Chaotic System
3.1. Chaotic Synchronization System

The chaotic system was first proposed by American mathematician Edward Norton
Lorenz in the 1960s. It is widely used in fields such as mathematics, physics, biology,
meteorology, and geography. The chaotic system is a nonlinear dynamic system with
uncertainty and complexity. The signal generated by chaos exhibits seemingly random,
aperiodic, and disorderly motion due to the presence of the strange attractor (chaotic
butterfly). The purpose of studying chaotic systems is to reveal the inherent laws and
deterministic mechanisms behind such phenomena [29,30].

The chaotic synchronization system consists of a master system and a slave system.
A backend controller is installed on the slave system to track the main system. The two
systems are bidirectional coupled and mutually adjustable. When their signals are different,
dynamic deviations form between trajectories [31]. In this study, the grounding current of
the normal state cable is taken as the master system, while those of cables with defects are
taken as the slave system. The dynamic deviations generated during the tracking process
can reflect the harmonic differences between different cable defects.
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The master and slave systems can be expressed as two nonlinear functions:

Master System


.
u1 = G1(u1, u2, u3, . . . , un).
u2 = G2(u1, u2, u3, . . . , un)

...
.
un = Gn(u1, u2, u3, . . . , un)

(1)

Slave System


.
v1 = G1(v1, v2, v3, . . . , vn).
v2 = G2(v1, v2, v3, . . . , vn)

...
.
vn = Gn(v1, v2, v3, . . . , vn)

(2)

The sequence deviation and the dynamic deviation equation between the two systems
can be obtained as (3) and (4). 

e1 = u1 − v1
e2 = u2 − v2

...
en = un − vn

(3)


.
e1 = G1(u1, u2, u3, . . . , un)− G1(v1, v2, v3, . . . , vn).
e2 = G2(u1, u2, u3, . . . , un)− G2(v1, v2, v3, . . . , vn)

...
.
en = Gn(u1, u2, u3, . . . , un)− Gn(v1, v2, v3, . . . , vn)

(4)

n represents the number of equations in chaotic systems, which can be determined based
on the system characteristics [32]. The trajectory deviates when a strange attractor exists.
To ensure the existence of the strange attractor, we select the Lorenz chaotic synchroniza-
tion system proposed by American mathematician Edward Lorenz [33]. The number of
equations n of the Lorenz system is three, involving three system parameters α, β, and γ.
The master and slave systems of the chaotic system can be expressed as (5) and (6).

Master System


.
u1 = α(u2 − u1).
u2 = βu1 − u1u3 − u2.
u3 = u1u2 − γu3

(5)

Slave System


.
v1 = α(v2 − v1).
v2 = βv1 − v1v3 − v2.
v3 = v1v2 − γv3

(6)

Assuming that the signal sequence of the main system is x, the signal sequence of
the slave system is y, and the sequence data amount is m, parameters can be defined as
u1 = (x[1], x[2], . . . , x[m − 2]), u2 = (x[2], x[3], . . . , x[m − 1]), u3 = (x[3], x[4], . . . , x[m]),
v1 = (y[1], y[2], . . . , y[m − 2]), v2 = (y[2], y[3], . . . , y[m − 1]), v3 = (y[3], y[4], . . . , y[m]).
The dynamic deviation equation can be calculated from (4)–(6) as a matrix. .

e1.
e2.
e3

 =

−α α 0
β −1 0
0 0 −γ

 e1
e2
e3

+

 0
−u1u3 + v1v3
u1u2 − v1v2

 (7)

To ensure the existence of the strange attractor, the system parameters are set based on
the experience of Edward Lorentz as α = 10, β = 28, and γ = 3/8. The dynamic deviation
scatter diagram is drawn with

.
e1 as the abscissa and

.
e2 as the ordinate. In this way, the

differences between the master and slave system signals are presented more intuitively
and prominently.
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3.2. Dynamic Harmonics Scatter Diagram

This study imports the grounding current signals of the normal state and the defective
cable into the master and slave systems. Five cycles of the same phase are intercepted
from the signals as the input. The dynamic deviation scatter diagram obtained through the
chaotic synchronization system is the 2D spatialization of the harmonic components, which
are named the dynamic harmonics scatter diagrams. When the cable is in the normal state,
the input signals of the master and slave systems are highly consistent. Since the dynamic
deviation of the trajectory originates from the difference between the input signals of the
master and slave systems, in this case, all the scatter points will be tightly concentrated
around the origin in the center of the diagram. At the same coordinate scale as the defective
cables, the scatter points approximately form a small patch, as shown in Figure 5. The
diagram results of the cable specimens with typical defects are shown in Figure 6. The
scattering range of the harmonics scatter diagram for the normal cable is much smaller
than that for the defective cables by at least an order of magnitude in both the horizontal
and vertical directions.

Figure 5. The dynamic harmonics scatter diagram of the normal cable.

Figure 6. Cont.



Electronics 2024, 13, 1159 8 of 16

Figure 6. Dynamic harmonics scatter diagrams of cable specimens with typical defects: (a) thermal
aging; (b) water ingress and dampness; (c) insulation scratch; (d) excessive bending. Each includes
three sub-graphs of defect level: mild, moderate, and severe.
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It can be observed that the dynamic harmonics scatter diagram basically presents
a bilateral, symmetrical shape. The diagrams of the same cable defect have common
features, but the distribution pattern of specimens with different defects varies greatly.
It preliminarily indicates that the dynamic harmonics scatter diagrams can serve as the
evaluation basis of cable defect identification.

As shown in Figure 6a, the scatters of thermal aging specimens are more widely
distributed compared with other cable conditions. The interval length covered by e1 ranges
from 700 to 900, while that covered by e2 ranges from 5 × 105 to 6.5 × 105. The overall
shape of the diagram is approximately a flat ellipse. As the thermal aging deepens, the
lines formed by scatter point aggregation become clearer.

As shown in Figure 6b, the scatter diagram of the water ingress specimen shows a
rounded top and a wide bottom. As the dampness deepens, the distribution of scatter
points undergoes a process from dense to dispersed to dense. When the dampness is mild
or severe, the scatter point distribution appears as dense around and sparse in the middle.

As shown in Figure 6c, for the insulation scratch specimens, the scatter points in the
upper part are sparsely distributed, while those in the lower part are densely distributed.
There are two elliptical lines formed by scatter point aggregation, one large and one small,
with the top tangent. The interval length covered by e1 remains stable at around 600.
As the scratch worsens, the longitudinal distribution of scatter points first gathers and
then disperses.

As shown in Figure 6d, the bending degree has little effect on the overall shape of
the scatter diagrams. The dynamic harmonics scatter diagram of the excessive bending
specimen always exhibits a round top, a wide middle, and a narrow bottom. The interval
length covered by e1 ranges from 450 to 550, while that covered by e2 ranges from 3.5 × 105

to 4.5 × 105. As the bending degree increases, the distribution area of scatter points shows
a decreasing trend.

The least degraded cable of the water ingress defect seems to have the smallest
dispersion, while for the cable of the excessive bending defect, the dispersion drops as the
degradation deepens. There seem to be significant differences in the dispersion trends of
different defects with the deepening of degradation. We tentatively believe this is related to
the differences in inherent mechanisms and changes in performance parameters during the
degradation process of different cable defects. Although a clear relationship between the
degradation degree of each defect and the characteristics of the harmonics scatter diagrams
has not yet been established, common characteristics of the same defect type, as well as
significant differences between different defect types, have been identified. This can be
used as a valid basis for the determination of cable defects.

Harmonics visualization was performed on the 480 groups of collected data through
the chaotic synchronization system. These 480 dynamic harmonics scatter diagrams ob-
tained will further serve as the model basis for cable condition evaluation and defect identi-
fication.

4. Defect Identification Model Based on YOLOv5
4.1. YOLOv5 Detection Algorithm

YOLO (you only look once) is a real-time target detection algorithm proposed by
Joseph Redmon et al. in 2015. This is a one-stage detection method based on convolutional
neural networks. Unlike traditional two-stage methods, such as R-CNN (regions with
CNN features) and Fast R-CNN, YOLO adopts a single forward propagation approach,
which completes the detection in a shorter time and achieves real-time performance [34,35].
Therefore, combining the YOLO algorithm with the chaotic system can achieve real-time
monitoring and defect detection of dynamic harmonics scatter diagrams of cable ground-
ing currents.

With continuous algorithm upgrading, the problems of category imbalance and data
augmentation in the YOLO algorithm have been effectively solved. YOLOv5 is the lat-
est version of the YOLO detection algorithm, which includes four models: YOLOv5s,
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YOLOv5m, YOLOv5l, and YOLOv5x [36]. The simplified network structure of YOLOv5 is
shown in Figure 7, consisting of four parts: Input, Backbone, Neck, and Prediction.

Figure 7. YOLOv5 network main structure.

(1) Input: Mosaic data augmentation, adaptive anchor box calculation, and adaptive
image scaling are completed in this section. Mosaic data augmentation increases the
diversity of training data by randomly stitching four different images, especially for images
with foreground and background. Adaptive anchor box calculation automatically calculates
suitable anchor boxes based on the task and dataset. The prediction bounding boxes and
the iteration of network parameters depend on the initial anchor box. The input images of
different sizes are uniformly scaled to the standard size through adaptive image scaling.

(2) Backbone: The Backbone network mainly comprises modules such as Focus,
CBL, CSP1, SPP, etc. [37]. The internal logic of each module is clearly displayed in red
dashed boxes in Figure 7. The CBL module consists of a convolutional layer (Conv), batch
normalization (BN), and a Leaky ReLU activation function and is named with the first
letters of each part. CSP means cross stage partial, which promotes information flow
and enhances feature propagation through cross-stage connections. The SPP module,
short for spatial pyramid pooling, uses maximum pooling for multi-scale feature fusion.
Additionally, Concat is a concatenation operation through which tensor concatenation
can be realized between different layers. Firstly, the Focus module slices the input image
and generates new feature maps. This process preserves fine features while reducing
computational complexity. Each CBL module contains a convolutional kernel with a size
of 3 × 3 and a stride of 2 for down-sampling. The CSP module consists of two parallel
branches, with the backbone branch performing initial feature extraction and the cross-
stage branch connecting features of different stages to capture contextual information. The
combination of CBL and CSP enables comprehensive feature extraction. The SPP module
adopts a maximum pooling approach and concatenates feature maps of different scales.

(3) Neck: Referring to the PANet (pyramid attention network) architecture, this section
adopts a structure of FPN+PAN. The FPN (feature pyramid network) structure transmits
high-level feature information through up-sampling, while the PAN (pathway activation
network) structure conveys strong localization features in the opposite direction. This
pyramid structure achieves feature fusion at different levels. In addition, the convolution
process in the Neck network combines CSP2 and CBL modules to enhance the ability of
feature fusion.
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(4) Prediction: For the feature maps of three different sizes obtained after feature
fusion, processes such as the bounding box loss function (CIOU_loss) and non-maximum
suppression are employed to ultimately complete the target recognition.

According to the complexity of the dynamic harmonics scatter diagrams, this study
uses the YOLOv5m model to identify the cable defect type. Four anchor boxes are auto-
matically defined. In the Backbone network, after multiple convolution operations, feature
maps of three sizes, 20 × 20, 40 × 40, and 80 × 80, are extracted. Through the FPN+PAN
structure, the Neck section performs two fusions of deep and shallow information through
up-sampling and Concat operations. Finally, feature maps of three different sizes maxi-
mizing feature representation are output. As shown in Figure 8, the testing process can be
summarized into five basic steps [36]:

(1) Through adaptive image scaling, the dynamic scatter diagrams to be tested are unified
into a fixed size of 640 × 640 and input into the YOLOv5 target recognition model.

(2) Divide the input diagram into multiple fixed-size grids and predict multiple bounding
boxes. Record the position and size information of each box and calculate the category
probability.

(3) It should be noted that the threshold judgment here is a filtering process rather than
an optimization problem. Determine whether each predicted box meets the threshold
according to their confidence scores and filter out the low-score boxes that do not
meet the requirement. Through this process, the predicted bounding boxes that meet
the specified threshold are retained, while those low-scoring boxes are eliminated.

(4) For the retained boxes, non-maximum suppression (NMS) is used to remove high-
overlap bounding boxes and retain the target box with the highest confidence.

(5) Output the category probability along with the target box confidence and obtain the
test result.

Figure 8. YOLOv5 test flowchart.
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4.2. Testing Result and Comparison

The YOLOv5 target recognition model in this study is based on the harmonic visual-
ization diagrams of grounding currents. In general cases, the problem of classification and
identification of the cable state has to take the type of normal state into account. However,
the method proposed in this paper has some particularities. On the one hand, from a
process perspective, the comparison between the defective state and the normal state was
completed in the synchronous tracking process of the chaotic system. It can be said that the
dynamic harmonics scatter diagram obtained is the embodiment of the difference between
the defective state and the normal state. This process is largely equivalent to completing
the distinction between the normal cable and the degraded cable at this stage. On the other
hand, from a results perspective, the dynamic harmonics scatter diagrams of the good cable
and the degraded cable have a huge and essential difference. At the same coordinate scale,
in the harmonics scatter diagram of a normal cable, almost all the scatter points are tightly
concentrated around the origin to form a patch, whereas, in those of cables with different
defects, the scatter points form a dispersed and differentiated pattern through aggregation.
When the cable is in a normal state, there is no need for defect identification. When the
cable is defective, there is also no possibility of misidentifying it as a good cable. Therefore,
only the four cable defect types, thermal aging, water ingress and dampness, insulation
scratch, and excessive bending, are included in this recognition model. Table 1 shows the
testing environment. The training set contains 300 samples of dynamic harmonics scatter
diagrams, including 75 samples for each defect type (25 samples for each level). There
are 180 samples of dynamics harmonics scatter diagrams in the test set, with 45 for each
defect type (15 for each level). As shown in Table 2, the identification accuracy is 96.67%,
which verifies the effectiveness of the defect identification method based on harmonic
visualization through the chaotic system. Among the four defect types, the identification
accuracy of water ingress and dampness is obviously lower. The reason is that the diagrams
of the medium level differ significantly from the other two, and the features are not evident.
Further improvement is still needed.

Table 1. Test environment.

Category Version

Operating system Windows 11 (64-bit)
CPU Intel Core i7-12700H
GPU NVIDIA GeForce RTX 3070
RAM 32 GB

Software Python 3.10

Table 2. Identification results of cable defects.

Defect Type Test Quantity Accurate Quantity Identification Accuracy/%

Thermal aging 45 44

96.67%
Water ingress and dampness 45 41

Insulation scratch 45 44
Excessive bending 45 45

The cable defect identification performance of harmonics visualization plus YOLOv5
and traditional multi-feature extraction plus back propagation neural network (BPNN)
is compared under the same data source. As shown in Table 3, the method proposed
in this paper only requires one harmonics visualization operation through the chaotic
synchronization system before YOLOv5. The image feature extraction relies on convolution
operations in Backbone, and the fusion of deep and shallow features is completed in Neck.
However, the entire process of the traditional feature extraction method includes five major
steps: harmonics separation, multi-feature extraction (minimum-redundancy-maximum-
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relevance, mRMR), feature selection (principal component analysis, PCA), feature fusion,
and BPNN. The pre-processing work before model training and testing is cumbersome
and professional. The overall testing time of the proposed method is also superior to that
of the traditional feature extraction method. The identification accuracy of harmonics
visualization plus YOLOv5 is 96.67%, which is slightly higher than 95.56% for multi-feature
extraction plus BPNN. In conclusion, the harmonics visualization plus YOLOv5 method
has improved in terms of workload, detection time, and identification accuracy.

Table 3. Comparison with traditional feature extraction method.

Method Harmonics Visualization +
YOLOv5 Multi-Feature Extraction + BPNN

Model
Establishment

Procedure

Chaotic
Synchronization

System
YOLOv5 Harmonics

Separation
Multi-Feature

Extraction
mRMR Feature

Selection
PCA Feature

Fusion BPNN

Test Time/s 1.23 0.33 0.42 0.51 / 0.75 0.86

Identification
Accuracy/% 96.67% 95.56%

5. Conclusions

This study conducted a grounding current test, took grounding current signals of cable
specimens with four typical defects as the information source, transformed the harmonic
distortion into 2D visualized images through the chaotic synchronization system, and
established an intelligent target recognition model based on the YOLOv5 algorithm to
identify cable defects. The main conclusions are as follows.

(1) Cable defects reduce the insulation performance, induce the appearance of harmonic
distortion within grounding currents, and increase signal amplitude to various degrees.

(2) The dynamic harmonics scatter diagram (visualized harmonics) basically presents a
bilateral symmetrical shape. The diagrams of the same cable defect have common
features, but the distribution pattern of different defects varies greatly. Representative
features include overall shape, distribution range, density degree, and typical lines
formed by scatter aggregation.

(3) Among the four defect types, the harmonics scatter diagram of thermal aging has the
widest scatter distribution, presenting an overall elliptical shape. The representative
feature of insulation scratch is that two elliptical lines formed by clustered scatter
points, one large and one small, touch at the top. Excessive bending exhibits the most
consistent scatter shape across different degradation degrees, with a round top, wide
middle, and narrow bottom. The image features of water ingress and dampness are
less obvious compared with the other three defect types.

(4) A YOLOv5 target recognition model based on the dynamic harmonics scatter diagrams
is proposed, through which the identification of four typical cable defects, thermal
aging, water ingress and dampness, insulation scratch, and excessive bending, is
achieved. This approach is verified to be more accurate, less time-consuming, and
requires less workload compared with the traditional feature extraction method.

(5) The proposed method effectively retains the information contained in the grounding
current distortion of defective cables. The use of the chaotic synchronization system
reduces the difficulty of data analysis and presents harmonic information in a more
focused and distinguishable way. Fewer steps will reduce the complexity, professional
difficulty, and required time of cable defect detection while ensuring good detection
accuracy. It provides a new technical means for online monitoring of power cables
and can further ensure the safe operation of cable lines.

(6) The core of the method proposed is to transform the harmonic distortion of signals
into visualized images. It is not limited to analyzing cable grounding currents but
can be used as a distortion analysis tool for various signals (voltage, current, etc.).
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Through adaptive adjustments, this method can be potentially extended to the state
assessment of other electrical equipment or even other issues in the power system.

(7) In this study, the grounding current measurements on normal and defective cables
were not performed simultaneously due to limitations in sample size and test site.
We ensured the waveform quality of the supply voltage (an almost ideal sinusoidal
waveform without any obvious harmonics) during each test to largely exclude the
influence of main harmonics on the test results. However, in real power grids, main
harmonics are always present, uncontrollable, and may be different at different times.
An instantaneous grounding current test with a good cable is necessary so that the
influence of the mains harmonics would be excluded during the tracking process to
make the proposed techniques desirable for continuous cable monitoring.

(8) At present, the proposed method is still in the laboratory research stage. Factors in
practical applications, such as cable laying conditions and the testing environment,
have not been fully considered. In addition, this method can effectively identify the
types of cable defects, but a clear relationship between the degradation degree of
each defect and the characteristics of harmonics scatter diagrams has not yet been
established. Developing a high-precision supporting sensor based on the actual
situation and optimizing the analysis technique to assess the degradation degree of
power cables will be the focus of our future work.

Author Contributions: Conceptualization, Y.L. and B.D.; methodology, Y.L. and M.W.; software, M.W.
and Y.X.; validation, M.W.; formal analysis, Y.L. and M.W.; investigation, M.W. and Y.X.; resources, Y.L.
and Y.H.; data curation, M.W. and Y.X.; writing—original draft preparation, M.W.; writing—review
and editing, Y.L.; visualization, M.W.; supervision, Y.L., T.H. and B.D.; project administration, Y.L.
and Y.H.; funding acquisition, Y.L., T.H. and Y.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research is funded by the Science and Technology Project of State Grid Corpora-
tion of China “Research on Multi-dimensional Perception and Emergency Repair Technology of
AC Submarine Cable Operating State in Complex Offshore Environment”, grant number 5108-
202218280A-2-362-XG.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy reasons.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Fetisov, S.; Zubko, V.; Steiner, C.; Nosov, A.; Zanegin, S.; Vysotky, V. Review of the design, production and tests of compact AC

HTS power cables. Prog. Supercond. Cryog. 2021, 22, 31–39.
2. Winkelmann, E.; Shevchenko, I.; Steiner, C.; Kleiner, C.; Kaltenborn, U.; Birkholz, P.; Schwarz, H.; Steiner, T. Monitoring of Partial

Discharges in HVDC Power Cables. IEEE Electr. Insul. Mag. 2022, 38, 7–18. [CrossRef]
3. Chang, C.K.; Lai, C.S.; Wu, R.N. Decision Tree Rules for Insulation Condition Assessment of Pre-molded Power Cable Joints with

Artificial Defects. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1636–1644. [CrossRef]
4. Chojnacki, A.L. Analysis of Seasonality and Causes of Equipment and Facility Failures in Electric Power Distribution Networks.

Prz. Elektrotechniczny 2023, 99, 157–163. [CrossRef]
5. Zhu, L.; Li, Z.; Hou, K. Effect of radical scavenger on electrical tree in cross-linked polyethylene with large harmonic superimposed

DC voltage. High Volt. 2023, 8, 739–748. [CrossRef]
6. Du, B.X.; Han, C.; Li, Z.; Li, J. Effect of graphene oxide particles on space charge accumulation in LDPE/GO nanocomposites.

IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1479–1486. [CrossRef]
7. Li, Z.L.; Du, B.X.; Yang, Z.R.; Han, C.L. Temperature dependent trap level characteristics of graphene/LDPE nanocomposites.

IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 137–144. [CrossRef]
8. Marzinotto, M.; Mazzanti, G. The Feasibility of Cable Sheath Fault Detection by Monitoring Sheath-to-ground Currents at the

Ends of Cross-bonding Sections. IEEE Trans. Ind. Appl. 2015, 51, 5376–5384. [CrossRef]
9. Haikali, E.N.N.; Nyamupangedengu, C. Measured and simulated time-evolution PD characteristics of typical installation defects

in MV XLPE cable terminations. SAIEE Afr. Res. J. 2019, 110, 136–144. [CrossRef]

https://doi.org/10.1109/MEI.2022.9648269
https://doi.org/10.1109/TDEI.2019.008208
https://doi.org/10.15199/48.2023.01.30
https://doi.org/10.1049/hve2.12302
https://doi.org/10.1109/TDEI.2018.006874
https://doi.org/10.1109/TDEI.2017.006850
https://doi.org/10.1109/TIA.2015.2409802
https://doi.org/10.23919/SAIEE.2019.8732785


Electronics 2024, 13, 1159 15 of 16

10. Li, Z.; Qian, Y.; Wang, H.; Zhou, X.L.; Sheng, G.H.; Jiang, X.C. A Novel Image-orientation Feature Extraction Method for Partial
Discharges. IET Gener. Transm. Distrib. 2022, 16, 1139–1150. [CrossRef]

11. Li, L.; Yong, J. A new method for on-line cable tanδ monitoring. In Proceedings of the International Conference on Harmonics
and Quality of Power (ICHQP), Ljubljana, Slovenia, 13–16 May 2018; pp. 1–6.

12. Jiang, J.; Ge, Z.D.; Zhao, M.X.; Yu, M.; Chen, X.W.; Chen, M.; Li, J.S. A Capacitive Strip Sensor for Detecting Partial Discharge in
110-kV XLPE Cable Joints. IEEE Sens. J. 2018, 18, 7122–7129. [CrossRef]

13. Borghetto, J.; Pirovano, G.; Tornelli, C.; Contin, A. Off-Line and Laboratory On-Line PD Tests on Thermally Aged MV Cable
Joints. In Proceedings of the 2019 IEEE Electrical Insulation Conference (EIC), Calgary, AB, Canada, 16–19 June 2019; pp. 418–422.

14. Rosle, N.; Muhamad, N.A.; Rohani, M.N.K.H.; Jamil, M.K.M. Partial Discharges Classification Methods in XLPE Cable: A Review.
IEEE Access 2021, 9, 133258–133273. [CrossRef]

15. Montanari, G.C.; Ghosh, R. An Innovative Approach to Partial Discharge Measurement and Analysis in DC Insulation Systems
During Voltage Transient and in Steady State. High Volt. 2021, 6, 565–575. [CrossRef]

16. Wang, X.; Jiang, Q.X.; Wu, C.; Liu, S.; Wu, K. Study on Space Charge Characteristics in XLPE Under DC Voltage Superimposed by
Impulse Voltage. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 184–192. [CrossRef]

17. Sternes, H.H.; Aakervik, J.; Hvidsten, S. Water Treeing in XLPE Insulation at a Combined DC and High Frequency AC Stress. In
Proceedings of the 2013 IEEE Electrical Insulation Conference (EIC), Ottawa, ON, Canada, 2–5 June 2013; pp. 494–498.

18. Rui, Y.; Hird, R.; Yin, M.; Soga, K. Detecting Changes in Sediment Overburden Using Distributed Temperature Sensing: An
Experimental and Numerical Study. Mar. Geophys. Res. 2019, 40, 261–277. [CrossRef]

19. Xu, K.; Wang, W.; Yuan, C. A Fault Location Analysis of Optical Fiber Communication Links in High Altitude Areas. Electronics
2023, 12, 3728. [CrossRef]

20. Sun, X.; Li, W.K.; Hou, Y.H.; Pong, P.W.T. Underground Power Cable Detection and Inspection Technology Based on Magnetic
Field Sensing at Ground Surface Level. IEEE Trans. Magn. 2014, 50, 1–5. [CrossRef]

21. Zhu, G.; Zhou, K.; Lu, L.; Li, Y.; Xi, H.; Zeng, Q. Online Monitoring of Power Cables Tangent Delta Based on Low-Frequency
Signal Injection Method. IEEE Trans. Instrum. Meas. 2021, 70, 1–8. [CrossRef]

22. Waluyo; Fauziah, D.; Khaidir, I.M. The Evaluation of Daily Comparative Leakage Currents on Porcelain and Silicone Rubber
Insulators Under Natural Environmental Conditions. IEEE Access 2021, 9, 27451–27466. [CrossRef]

23. Zhou, T.; Zhu, X.Z.; Yang, H.F.; Yan, X.Y.; Jin, X.J.; Wan, Q.Z. Identification of XLPE cable insulation defects based on deep
learning. Glob. Energy Interconnect.-China 2023, 6, 36–49. [CrossRef]

24. Liu, Y.; Wang, H.; Zhang, H.; Du, B.X. Thermal Aging Evaluation of XLPE Power Cable by Using Multidimensional Characteristic
Analysis of Leakage Current. Polymers 2022, 14, 3147. [CrossRef] [PubMed]

25. Hu, R.; Sun, W.X.; Lu, X.; Tang, F.; Xu, Z.F.; Tian, J.; Zhang, D.N.; Li, G.C. Effect of Interface Defects on the Harmonic Currents in
Distribution Cable Accessories under Damp Conditions. Coatings 2023, 13, 1430. [CrossRef]

26. Kemari, Y.; Mekhaldi, A.; Teguar, M. Experimental Investigation and Signal Processing Techniques for Degradation Assessment
of XLPE and PVC/B Materials under Thermal Aging. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2559–2569. [CrossRef]

27. GB 50168-2018; Standard for Construction and Acceptance of Cable Line Electric Equipment Installation Engineering. China
Planning Press: Beijing, China, 2018.

28. Deb, S.; Das, S.; Pradhan, A.K.; Banik, A.; Chatterjee, B.; Dalai, S. Estimation of Contamination Level of Overhead Insulators
Based on Surface Leakage Current Employing Detrended Fluctuation Analysis. IEEE Trans. Industr. Electro. 2020, 67, 5729–5736.
[CrossRef]

29. Yau, H.T.; Wang, M.H. Chaotic Eye-based Fault Forecasting Method for Wind Power Systems. IET Renew. Power Gener. 2015,
9, 593–599. [CrossRef]

30. Wang, M.H.; Lu, S.D.; Liao, R.M. Fault Diagnosis for Power Cables Based on Convolutional Neural Network With Chaotic System
and Discrete Wavelet Transform. IEEE Trans. Power Deliv. 2022, 37, 582–590. [CrossRef]

31. Chen, C.; Zhu, D.; Wang, L.; Zeng, L. One-Dimensional Quadratic Chaotic System and Splicing Model for Image Encryption.
Electronics 2023, 12, 1325. [CrossRef]

32. Ding, D.; Wang, W.; Yang, C.; Kleiner, Z.; Hu, Y.; Wang, J.; Wang, M.; Niu, Y.; Zhu, H. An n-dimensional modulo chaotic system
with expected Lyapunov exponents and its application in image encryption. Chaos Solitons Fractals 2023, 174, 113841. [CrossRef]

33. Zhang, J.; Zhu, X.; Yin, B.; Zeng, L. A new fifth-dimensional Lorentz hyper-chaotic system and its dynamic analysis, synchroniza-
tion and circuit experiment. Mod. Phys. Lett. B 2022, 36, 2250080. [CrossRef]

34. Zhang, T.; Zhang, Y.N.; Xin, W.; Liao, J.S.; Xie, Q.F. A Light-Weight Network for Small Insulator and Defect Detection Using UAV
Imaging Based on Improved YOLOv5. Sensors 2023, 23, 5249. [CrossRef]

35. Huang, Y.; Jiang, L.; Han, T.; Xu, S.; Liu, Y.; Fu, J. High-Accuracy Insulator Defect Detection for Overhead Transmission Lines
Based on Improved YOLOv5. Appl. Sci. 2022, 12, 12682. [CrossRef]

https://doi.org/10.1049/gtd2.12356
https://doi.org/10.1109/JSEN.2018.2854271
https://doi.org/10.1109/ACCESS.2021.3115519
https://doi.org/10.1049/hve2.12131
https://doi.org/10.1109/TDEI.2022.3222123
https://doi.org/10.1007/s11001-018-9365-4
https://doi.org/10.3390/electronics12173728
https://doi.org/10.1109/TMAG.2013.2297195
https://doi.org/10.1109/TIM.2021.3069020
https://doi.org/10.1109/ACCESS.2021.3057626
https://doi.org/10.1016/j.gloei.2023.02.004
https://doi.org/10.3390/polym14153147
https://www.ncbi.nlm.nih.gov/pubmed/35956661
https://doi.org/10.3390/coatings13081430
https://doi.org/10.1109/TDEI.2017.006399
https://doi.org/10.1109/TIE.2019.2934008
https://doi.org/10.1049/iet-rpg.2014.0269
https://doi.org/10.1109/TPWRD.2021.3065342
https://doi.org/10.3390/electronics12061325
https://doi.org/10.1016/j.chaos.2023.113841
https://doi.org/10.1142/S0217984922500804
https://doi.org/10.3390/s23115249
https://doi.org/10.3390/app122412682


Electronics 2024, 13, 1159 16 of 16

36. Lu, Y.; Qiu, Z.; Liao, C.; Zhou, Z.; Li, T.; Wu, Z. A GIS Partial Discharge Defect Identification Method Based on YOLOv5. Appl. Sci.
2022, 12, 8360. [CrossRef]

37. Yuan, S.; Du, Y.; Yin, B.; Liu, M.; Yue, F.; Li, B.; Zhang, H. YOLOv5-Ytiny: A Miniature Aggregate Detection and Classification
Model. Electronics 2022, 11, 1743. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app12168360
https://doi.org/10.3390/electronics11111743

	Introduction 
	Grounding Current Test of Power Cable 
	Test Specimen 
	Experimental Setup 
	Experimental Results 

	Harmonics Visualization Based on Chaotic System 
	Chaotic Synchronization System 
	Dynamic Harmonics Scatter Diagram 

	Defect Identification Model Based on YOLOv5 
	YOLOv5 Detection Algorithm 
	Testing Result and Comparison 

	Conclusions 
	References

