
Citation: Hirsch, T.; Hofer, B.

Reducing the Length of Dynamic and

Relevant Slices by Pruning Boolean

Expressions. Electronics 2024, 13, 1146.

https://doi.org/10.3390/

electronics13061146

Academic Editor: Josep Silva

Received: 15 February 2024

Revised: 13 March 2024

Accepted: 17 March 2024

Published: 20 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Reducing the Length of Dynamic and Relevant Slices by
Pruning Boolean Expressions
Thomas Hirsch † and Birgit Hofer *,†

Institute of Software Technology, Graz University of Technology, 8010 Graz, Austria; thirsch@ist.tugraz.at
* Correspondence: bhofer@ist.tugraz.at
† These authors contributed equally to this work.

Abstract: Dynamic and relevant (backward) slicing helps programmers in the debugging process by
reducing the number of statements in an execution trace. In this paper, we propose an approach called
pruned slicing, which can further reduce the size of slices by reasoning over Boolean expressions.
It adds only those parts of a Boolean expression that are responsible for the evaluation outcome
of the Boolean expression to the set of relevant variables. We empirically evaluate our approach
and compare it to dynamic and relevant slicing using three small benchmarks: the traffic collision
avoidance system (TCAS), the Refactory dataset, and QuixBugs. Pruned slicing reduces the size of the
TCAS slices on average by 10.2%, but it does not reduce the slice sizes of the Refactory and QuixBugs
programs. The times required for computing pruned dynamic and relevant slices are comparable
to the computation times of non-pruned dynamic and relevant slices. Thus, pruned slicing is an
extension of dynamic and relevant slicing that can reduce the size of slices while having a negligible
computational overhead.

Keywords: dynamic slicing; relevant slicing; short-circuit evaluation; software fault localization;
software debugging

1. Introduction

Backward slicing is a source code analysis technique that identifies all statements
that contribute to the value of a certain variable at a point of interest [1]. Since slicing
reduces the number of statements, it is particularly useful in fault localization [2]. Software
developers spend half of their total work time on testing and debugging [3]. On average, a
programmer needs 3.0 h to reproduce a bug, 4.4 h to localize the faulty line(s), and 2.1 h to
write a fix [4]. Therefore, decreasing the time required to localize a bug decreases the total
debugging time and saves resources and money.

The smaller a slice is, the easier it is for a programmer to locate the faulty source
code line(s). Dynamic slices [5] contain those statements that influence the value of a
certain variable for a particular execution of the program. They compute the same result
as the original program for the variable of interest, but they are usually smaller than their
static counterparts. Since developers often reproduce a bug before they begin with the
fault-localization process, the input for the execution of the program is usually available,
and therefore dynamic slicing can be used instead of static slicing.

One problem with dynamic slicing when used for fault localization is that the actually
faulty code line(s) may not be part of the slice. This happens when the fault results in the
non-execution of a loop or branch of a conditional statement. Relevant slicing solves this
problem by adding such statements to the slice [6]. Therefore, relevant slices can be larger
than dynamic slices.

In this paper, we present pruned slicing, a technique that reduces the size of dynamic
and relevant slices by reasoning over Boolean expressions. Pruned slicing adds only those
parts of Boolean expressions to the slice that actually contribute to the outcome of the

Electronics 2024, 13, 1146. https://doi.org/10.3390/electronics13061146 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13061146
https://doi.org/10.3390/electronics13061146
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5144-059X
https://doi.org/10.3390/electronics13061146
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13061146?type=check_update&version=4

Electronics 2024, 13, 1146 2 of 28

Boolean expressions. While all of the Boolean sub-expressions might be evaluated, not all
of them might contribute to the result. For example, the expression ‘a and b and c’, where
a = true, b = true, and c = false, evaluates to false; the outcome of this expression can
only be changed when the value of c is changed. Therefore, all statements that change
c should be part of the slice, but the statements that change a and b need not be part of
the slice.

To motivate our approach, we use the code snippet illustrated in Algorithm 1. This
code snippet [7] is taken from Pandas, a well-known data analysis library for Python.
For the sake of clarity, we have only indicated those source code lines that are necessary
to convey our idea. The line numbers indicated in the figure mirror the line numbers
from the source code file as in the commit. Assume that a programmer has reproduced a
bug. He notices that tail has the wrong value after executing line 943 and computes the
dynamic slice for tail. Among other statements, this slice contains lines 883, 885, and 894.
When manually investigating the slice and the variables’ values, the programmer realizes
that the condition in line 938 evaluated to true because the second part of the condition
(i.e., not (len(’, ’.join(head)) < display_width and ...)) evaluated to true; the
first part (i.e., is_truncated) evaluated to false and therefore did not contribute to the
decision that the then-branch should be taken. Therefore, the programmer knows that
is_truncated cannot be responsible for the observed bug, and he can focus on the other
parts of the slice. Pruned slicing relieves the programmer from this manual reasoning effort
for conditionals; it adds only those parts of nested Boolean expressions to the slice that
actually contribute to the result of the expression. In this example, the pruned slice does
not contain lines 883, 885, and 894.

Algorithm 1 Expert analysis of the file base.py from the Python library Pandas.

868 def _format_data (s e l f , name=None) :
. . .

883 n = len (s e l f)
884 sep = ’ , ’
885 max_seq_items = get_opt ion (’ d isplay . max_seq_items ’) or n
. . .

894 i s _ t r u n c a t e d = n > max_seq_items
. . .

938 i f (i s _ t r u n c a t e d or
939 not (len (’ , ’ . j o i n (head)) < display_width and
940 len (’ , ’ . j o i n (t a i l)) < display_width)) :
941 max_len = max (b e s t _ l e n (head) , b e s t _ l e n (t a i l))
942 head = [x . r j u s t (max_len) for x in head]
943 t a i l = [x . r j u s t (max_len) for x in t a i l]

The reasoning over Boolean expressions is closely related to short-circuit evaluation. In
short-circuit evaluations, the second term of a binary Boolean expression is only evaluated
if the result of the first term is not sufficient to determine the final result of the Boolean
expression. While short-circuit evaluation has been discussed in the context of static
slicing [8], to the best of our knowledge, it has not yet been discussed in the context of
dynamic slicing in the scientific literature. For this reason, we will discuss short-circuit
evaluations for dynamic slicing in Section 3.

In this paper, we will empirically compare the slice length of dynamic slices, relevant
slices, pruned dynamic slices, and pruned relevant slices based on small Python 3 programs
from three different benchmarks, namely QuixBugs [9], the Refactory dataset [10], and a
Python 3 implementation of TCAS [11]. The results of this evaluation are quite different
for the three benchmarks. While relevant slicing has no impact on the TCAS programs,
it increases the slice size for 34% of the Refactory programs and 12% of the QuixBugs

Electronics 2024, 13, 1146 3 of 28

programs. Pruned slicing reduces the size of 76% of the TCAS slices, only two slices
from the Refactory set, and none of the slices of the QuixBugs programs. In the empirical
evaluation (see Section 7), we will discuss the reasons for these results.

The main contributions of this paper are as follows:

• A discussion of short-circuit evaluation for dynamic slicing.
• The introduction of pruned slicing.
• A proof-of-concept implementation of a dynamic, relevant, and pruned slicer for

Python 3 programs.
• An empirical evaluation of dynamic and relevant slicing with short-circuit evaluation

and pruned slicing on three small benchmarks.

This paper is based on our previous work on pruned slicing presented at the Interna-
tional Working Conference on Source Code Analysis and Manipulation (SCAM) [12]. It
improves our previous work by providing the following contributions:

• We extend our evaluation to relevant slicing and pruned relevant slicing. In particular,
we compare dynamic and relevant slicing with respect to executability, correct results,
slice length, and computation time.

• We extend our prototype slicer by implementing a relevant slicer.

The remainder of this article is structured as follows. We discuss the related works
with respect to existing slicing approaches, challenges for building a slicer, and fields
of application in Section 2. In Section 3, we discuss the syntax of Boolean expressions
and explain dynamic and relevant slicing, as well as dynamic slicing with short-circuit
evaluation. In Section 4, we explain how pruned slicing works. In Section 5, we discuss the
relation of the different slice types. Section 6 introduces the technical details of our prototype
implementation and explains how we tested the implementation utilizing metamorphic
testing. Furthermore, we list the limitations of this prototype and discuss the steps necessary
to build a real-world dynamic slicer for Python. We evaluate the basic dynamic and relevant
slicer, as well as our pruned slicing extension, in Section 7, and we conclude this paper in
Section 8.

2. Related Works

Slicing dates back to the 1980s when Mark Weiser [1] introduced static (backward)
slicing. A static slice contains all statements that contribute to the computation of a specific
variable’s value. A static slice computes the same result for this variable as the original
program when it is executed on the same input as the original program.

Bergeretti and Carré [13] introduced the concept of forward slicing. A forward slice
computes all parts of a program that will be influenced by changing a specific statement.

Later on, Korel and Laski [5] introduced the concept of dynamic slicing. A dynamic
backward slice contains all statements that contribute to the computation of a specific
variable’s value for a certain input. In contrast to its static counterpart, dynamic slicing
must not compute the same result for an arbitrary input but only for the predefined input.
It does only contain statements that were actually executed.

A weakness of dynamic slicing is that the slice does not contain those statements
that could have affected the value of the variable of interest if they had been evaluated
differently. In particular, when using dynamic slicing for fault-localization purposes,
important statements might be missing in the dynamic slice. Relevant slicing fixes this
problem by considering the potential relevant variables [6].

However, relevant slicing fails to include statements that modify a wrong memory
location. To solve this problem, Li and Orso [14] developed PMD-Slicer, a dynamic slicer
that takes into consideration potential memory-address dependencies.

An approximate dynamic slice [15] is the intersection of the execution trace and the
static slice. The approximate dynamic slice is a superset of the relevant slice.

Many other slicing techniques have been developed. We refer the interested reader to
Tip’s survey [16] and Silva’s comparison of slicing techniques [17] for more information on

Electronics 2024, 13, 1146 4 of 28

the purpose and application areas of the different slicing techniques and to Wong et al.’s
survey on software fault localization [18].

There exist several research prototype implementations of slicers. In his Bachelor’s
thesis, Hammacher [19] developed JavaSlicer, a dynamic backward slicer for Java. Un-
fortunately, this slicer only supports JDK versions 1.6 and 1.7. Ahmed et al. developed
Slicer4J [20], a dynamic slicer for programs written in Java 9 (or below). The same authors
developed Mandoline [21], a dynamic slicer for Android applications. Galindo et al. [22,23]
developed Java SDG Slicer, a static slicer that is based on the system dependence graph
(SDG). Nguyen et al. [24] proposed WebSlice, which generates program slices across several
programming languages, e.g., PHP, JavaScript, and SQL. Recently, Stiévenart et al. [25]
proposed an approach to slice WebAssembly programs.

Developing a slicer that supports the whole range of functionality of today’s pro-
gramming languages is challenging, particularly the handling of exception-related con-
structs [26], unconditional jumps [27], object orientation [27], concurrency [28], and shared
memory [29]. The aforementioned papers highlight that there are still many issues that
need to be addressed to develop slicers for programs written in modern programming
languages.

Despite the massive effort required to build a real-world slicer, slicing is useful in
many areas. In particular, fault localization benefits from backward slicing approaches
because slicing can be used in combination with other fault-localization techniques. Gosh
and Singh [30] combined dynamic slicing with spectrum-based fault localization (SBFL).
Soremekun et al. [31] empirically evaluated the effectiveness of slicing and SBFL. They
recommend a hybrid approach for fault localization: a programmer should first examine
the five highest-ranked statements from SBFL; if the fault is not detected within these five
statements, the programmer should examine the dynamic slice. Recently, Soha et al. [2]
proposed the use of slice-based spectra instead of coverage-based spectra in SBFL.

Besides fault localization, slicing can be also used in other endeavors, for example,
for test case separation [32], deobfuscating strings in mobile applications [33], detecting
security patches [34], and detecting API misuses [35].

3. Background

First, we discuss the structure of Boolean expressions in Section 3.1. Then, we discuss
dynamic slicing (Section 3.2), short-circuit evaluation (Section 3.3), and relevant slicing
(Section 3.4).

3.1. Syntax of Boolean Expressions

Definition 1. A Boolean expression e is recursively defined as follows:

• e1 AND e2, where e1 and e2 are Boolean expressions;
• e1 OR e2, where e1 and e2 are Boolean expressions;
• NOT e1, where e1 is a Boolean expression;
• True;
• False;
• Any expression that evaluates/casts to a Boolean value, e.g., ‘3 < 5’, ‘0’, ‘None’;
• A function/method call that returns a value interpretable as a Boolean.

We define the function eval(e) that returns the evaluation outcome of a Boolean expression e,
i.e., true or false.

In Python, many expressions dynamically cast to a Boolean value depending on their
context. For example, empty lists, sets, and dictionaries are interpreted as false, and their
non-empty counterparts are interpreted as true when used as conditionals or as part of a
Boolean expression. Similarly, empty strings are interpreted as false, and non-empty strings
are interpreted as true. ‘0’ is interpreted as false, and any other integer value is interpreted
as true. None evaluates to false. This list is for illustration purposes and is by no means
complete.

Electronics 2024, 13, 1146 5 of 28

3.2. Dynamic Slicing

We adapt Korel and Laski’s definition of dynamic slicing [5]. First, we formally define
the execution trace and the slicing criterion. Then, we explain an algorithm for computing
small dynamic slices.

The execution trace τ results from the execution of program Π on input ω.

Definition 2. An execution trace τ is the finite sequence of instructions 〈n1, . . . , nq〉 that was
executed when calling Π(ω). In case the program does not terminate, τ is a finite sequence up to a
threshold. Each instruction ni consists of the following:

• Instruction number X and execution number i: The instruction number X is the line number
of the statement in the source code, and the execution number i is the position of the statement
in the execution trace, i.e., Xi means that statement X is the ith statement in the execution
trace.

• Instruction type T(Xi): The instruction type is either control (C) or assignment (A). Source
code often comprises other types of statements (e.g., print(x)), but for the sake of simplicity,
we restrict ourselves to these types.

• Set of referenced (or used) variables U(Xi): U(Xi) comprises all variables that are referenced in
statement Xi. For example, for statement Xi: a[i]=b, the used variables are U(Xi) = {i, b}.
For function/method calls/definitions, U(Xi) is a variable vector to allow the matching of
parameters.

• Set of defined variables D(Xi): D(Xi) comprises all variables whose values are changed
in statement Xi. For example, for statement Xi: a[i]=b, the set of defined variables is
D(Xi) = {a}. For function/method calls/definitions, D(Xi) is a variable vector to allow the
matching of parameters.

• Set of control dependencies C(Xi): A statement Xi is control-dependent on another statement
Y j (i.e., Y j ∈ C(Xi)) if Xi is only executed when Y j evaluates in a way that allows its
execution, i.e., all statements in a loop body are control-dependent on the statement in the
loop head, and all statements in the then and else branches are control-dependent on the if
statement.

Example 1. For demonstration purposes, we use the following code snippet as program Π in our
running example:

1 a = x
2 b = y
3 c = z
4 d = y
5 i f a < b or a < c or d < c :
6 c = a
7 i f b > c :
8 c = b
9 d = c

Furthermore, we use ω = {x = 3, y = 2, z = 4} as input. The execution trace τ for Π(ω)
is 〈11, 22, 33, 44, 55, 66, 77, 98〉, with the types, definitions, uses, and control dependencies shown in
Table 1.

The slicing criterion consists of three parts: a program input ω, an instruction/execu-
tion number Xq, and a variable name v.

Electronics 2024, 13, 1146 6 of 28

Table 1. Instruction numbers X and execution numbers i, types T(Xi) (A = assignment, C = control),
definitions D(Xi), uses U(Xi), and control dependencies C(Xi) for all instructions in τ of Example 1.

Xi T (Xi) D (Xi) U (Xi) C (Xi)

11 A {a} {x} { }
22 A {b} {y} { }
33 A {c} {z} { }
44 A {d} {y} { }
55 C { } {a, b, c, d} { }
66 A {c} {a} {5}
77 C { } {b, c} { }
98 A {d} {c} { }

Definition 3. For an execution trace τ for a program Π that is executed with input ω, the triple
(ω, Xq, v) is a slicing criterion for variable name v if instruction/execution number Xq ∈ τ.

Example 2. The last definition of variable d is in line 98. Therefore, (ω = {x = 3, y = 2, z =
4}, 98, d) is a slicing criterion for program Π.

A dynamic slice behaves the same as the original program for the variable of interest
for the given input.

Definition 4. Any subset of statements Π′ ⊆ Π is a valid dynamic slice for the slicing criterion
(ω, Xq, v) if and only if Π′(ω) is an executable program and computes the same final value for
variable v as Π(ω).

According to Definition 4, the original program as well as the set of executed state-
ments are valid dynamic slices. However, we are interested in computing smaller slices.
Since there exists no algorithm for finding state-minimal slices for arbitrary programs [1],
we use an algorithm that computes small, but not necessarily minimal, dynamic slices (see
Algorithm 2).

Algorithm 2 Simplified dynamic slicing algorithm.

1: procedure DYNAMICSLICE(τ, (ω, Xq, v))
2: slice← {}
3: i← q
4: relevant← v
5: while i > 0 do
6: if relevant∩ D(Xi) 6= {} then
7: Cnew ← C(Xi) \ slice
8: slice← slice∪ {X} ∪ Cnew
9: relevant← (relevant \ D(Xi)) ∪U(Xi) ∪U(C(Xi))

10: if Cnew 6= {} then
11: i← maxExecutionNumberOfControlStatement(τ, Cnew)
12: continue
13: end if
14: end if
15: i← i− 1
16: end while
17: return slice
18: end procedure

The algorithm traverses the execution trace τ in a backward direction (see lines 3, 5,
and 15) and thereby keeps track of the relevant variables. The set of relevant variables is
initialized with the variable indicated in the slicing criterion (line 4). Whenever a variable

Electronics 2024, 13, 1146 7 of 28

in the relevant variables is defined (line 6), the line and its control dependencies are added
to the slice (line 8), and the relevant variables are updated (line 9).

To include the statements that change the values of variables used in the condition of
loops even when the loop body is executed only once, we keep track of the newly added
control statements (line 7). Whenever we add new control statements to the slice (line 10),
we set i to the highest execution number of this control statement (line 11). Korel and
Laski [5] used the Identity Relation to solve the problem caused by loops that are executed
only once.

This algorithm terminates because the execution trace τ is finite according to Definition 2
and i is decremented in every loop iteration (line 15), except when new control flow
statements are added (lines 10–13). The latter scenario is limited to the number of different
control statements in the (finite) execution trace: once a control statement has been added
to the slice, the control statement cannot be part of Cnew in a later iteration (see line 7).
Since the execution trace is finite, the number of different control statements is also finite.
Therefore, the algorithm terminates.

The algorithm illustrated in Algorithm 2 is a simplified version of the algorithm we
actually implemented. While proper handling of language constructs, such as function
calls and control flow statements for loops (e.g., break and continue), is essential for a
slicer, they are not relevant in the context of this paper. For the sake of clarity, we therefore
do not explain their handling here, but we provide the source code of our proof-of-concept
prototype implementation for interested readers (see Section 8).

Example 3. The algorithm in Algorithm 2 computes {1, 2, 3, 4, 5, 6, 9} as the slice for the slicing
criterion (ω = {x = 3, y = 2, z = 4}, 98, d).

3.3. Short-Circuit Evaluation

While the slice {1, 2, 3, 4, 5, 6, 9} in Example 3 is shorter than the complete program, it
contains statements that are not required to fulfill Definition 4. In this section, we explain
how slices can be further reduced using short-circuit evaluation.

In programming languages supporting short-circuit evaluation, the second part of a
binary Boolean expression is only evaluated if the first part is not sufficient to determine
the outcome of the expression. To consider short-circuit evaluations in dynamic slicing,
we first have to define the set of effective uses U: U(Xi) contains all variables that were
referenced in statement X and actually evaluated in Xi. For example, for the assignment
‘a = b and c’ with eval(b) = false and eval(c) = true, the set of used variables U is {b, c},
whereas the set of effective uses U is {b} because the second part of the expression is
never evaluated.

Definition 5. The set of effective uses U of an expression e is as follows:

e eval(e1) eval(e2) U(e)

e1 AND e2 true ? U(e1) ∪U(e2)
false ? U(e1)

e1 OR e2 true ? U(e1)
false ? U(e1) ∪U(e2)

NOT e1 ? - U(e1)

True - - {}
False - - {}
other - - U(e)

The effective uses U(e) replace the sets of used variables U(e) in line 9 of the dynamic
slicing algorithm in Algorithm 2, i.e., relevant← (relevant \ D(Xi)) ∪U(Xi) ∪U(C(Xi)).

Electronics 2024, 13, 1146 8 of 28

Example 4. In our running example, the first term of the condition in statement 55 (i.e., a < b)
evaluates to false and the second term (a < c) evaluates to true. Therefore, the third term (d < c)
will not be evaluated, and the set of effective uses is therefore U(55) = {a, b, c}. The short-circuit
dynamic slice for the slicing criterion (ω = {x = 3, y = 2, z = 4}, 98, d) is {1, 2, 3, 5, 6, 9}.

To the best of our knowledge, short-circuit evaluation has not been discussed in the
context of dynamic slicing. For this reason, in our SCAM paper [12], we investigated
how the publicly available slicers Slicer4J [20] and JavaSlicer [19] handle short-circuit
evaluations. We evaluated slicers for Java programs because, to the best of our knowledge,
there currently exist no other slicers for Python programs.

We used a jar file containing the class illustrated in Figure 1 and the following test
cases:

• Base test case t1 : {input = 31, sliceexp = {3, 4, (5), 6, 7, (11)}}, where both sub-
expressions of line 6 (a > 2 and b < 2) evaluate to true.

• Base test case t2 : {input = 33, sliceexp = {3, 4, (5), 6, (8), 9, (11)}}, where the second
sub-expression evaluates to false.

• Short-circuit test case t3 : {input = 11, sliceexp = {3, (5), 6, (8), 9, (11)}}, where the
first expression evaluates to false and thus the second expression is not evaluated.

1 public c l a s s SliceMe {
2 public s t a t i c void main (S t r i n g args []) {
3 i n t a = args [0] . charAt (0) − ’ 0 ’ ;
4 i n t b = args [0] . charAt (1) − ’ 0 ’ ;
5 i n t e ;
6 i f (a>2 && b<2) {
7 e = 1 ;
8 } e lse {
9 e = 2 ;

10 }
11 System . out . p r i n t l n (e) ;
12 }
13 }

Figure 1. Java code to test short-circuit evaluation of existing dynamic slicers.

Line numbers 5, 8, and 11 are in parentheses because of insufficient and ambiguous
definitions of dynamic slicing. Although lines 5 and 8 are not part of the slice according
to the Algorithm presented in Algorithm 2, they have to be part of the slices in order
to generate executable code (see Definition 4). Line 11 does not change any variables of
interest, but one could argue that programmers are also interested in seeing the lines they
have indicated as slicing criteria in the slice.

Analogously, we created another jar file that contains the same class, but the statement
in line 6 is changed to if(a>2 || b<2) to test the behavior where two expressions are
connected with a logical or. For this example, we created three additional test cases (t4,
t5, and t6) to evaluate both the base behavior and the behavior in the case of short-circuit
evaluation.

JavaSlicer computes the correct slices for all test cases. Slicer4J computes the correct
slices for t1, t2, t4, and t5, but the computed slices for t3 and t6 are too small as they do not
contain lines 3 and 6. This is particularly problematic when using slicing for debugging
purposes, as a potentially faulty statement might be missing. We refer the interested reader
to our SCAM paper [12] for more information about this experiment.

Short-circuit evaluation not only helps make slices shorter but also avoids the prob-
lem of adding code to the slice that should not be executed. A common usage of short-
circuit evaluation is to check whether an object exists before checking the value of one
of its member variables, e.g., if obj is not None and obj.getValue() > 0. The code

Electronics 2024, 13, 1146 9 of 28

obj.getValue() should only be called when the object exists. Because of such scenarios, it
is essential that short-circuit evaluation is properly implemented in dynamic slicing.

3.4. Relevant Slicing

The problem with dynamic slicing in the context of fault localization is that the slice
might not contain the statement(s) that have actually caused the fault. This happens when
a fault changes the value of a variable used in the condition of a loop or conditional in
such a way that the condition evaluates to false instead of true, and the loop body or the
conditional branch that would have changed a relevant variable is not executed.

Besides the issue that the actually faulty statement(s) might be missing in the slice,
dynamic slicing causes another problem: under certain circumstances, the sliced program
might not behave as the original program because of an incomplete dynamic slice as the
following example demonstrates.

Example 5. We use the following code snippet from the Refactory dataset (question 3, cor-
rect_3_056.py) [10] as Π and compute the dynamic slice for (ω = {lst = [3, 3]}, 1015, l).

1 def r e m o v e _ e x t r a s (l s t) :
2 l = []
3 f o r i in l s t :
4 c h e c k e r =True
5 f o r k in l :
6 i f k== i :
7 c h e c k e r = F a l s e
8 i f c h e c k e r :
9 l +=[i]

10 r e turn l

The execution trace is τ = 〈11, 22, 33, 44, 55, 86, 97, 38, 49, 510, 611, 712, 813, 314, 1015〉, and
the dynamic slice is {1, 2, 3, 4, 8, 9, 10}. The slice does not contain statements 5, 6, and 7 because
they are not necessary according to the dynamic slicing algorithm. However, the slice computes a
different result for ω than the original program, i.e., Π(ω) = [3], Πdyn_slice(ω) = [3, 3].

To solve this problem, the statements that did not affect the relevant variables but
would have affected them if they had been evaluated differently have to be considered [6].
Therefore, we extend our execution trace τ = 〈n1, . . . , nq〉 with static information from
the source code. Each instruction ni is assigned an additional attribute, namely the set of
potential relevant variables P(Xi).

Definition 6. The set of potential relevant variables P(Xi) is as follows:

• The set of variables that could be (re)defined in any of the branches of the conditional in case of
conditionals.

• The set of variables that would be (re)defined in the loop body in case of loops.
• {} for assignments (i.e., T(Xi) = A).

Example 6. The sets of potential relevant variables P for Example 5 are as follows: For assignments,
P is always the empty set, i.e., P(22) = P(44) = P(97) = P(49) = P(712) = P(1015) = { }. For
the loops and the conditionals, P is P(33) = P(38) = P(314) = {checker, l}, P(55) = P(510) =
{checker}, P(611) = {checker}, and P(86) = P(813) = {l}.

Algorithm 3 highlights the changes necessary to transform the dynamic slicing algo-
rithm into a relevant slicing algorithm. Essentially, we have to additionally check for all
control statements if the set of potential relevant variables contains variables of interest,
i.e., relevant variables (line 15). If this is the case, we add the control statement to the slice
(line 16). The variables that are referenced in the control statement are added to the set of
relevant variables in line 17.

Electronics 2024, 13, 1146 10 of 28

Algorithm 3 Relevant Slicing algorithm: Changes necessary for short-circuit evaluation are
highlighted in blue; changes necessary for relevant slicing are highlighted in red.

1: procedure RELEVANTSLICE(τ, (ω, Xq, v))
2: slice← {}
3: i← q
4: relevant← v
5: while i > 0 do
6: if relevant∩ D(Xi) 6= {} then
7: Cnew ← C(Xi) \ slice
8: slice← slice∪ {X} ∪ Cnew
9: relevant← (relevant \ D(Xi)) ∪U(Xi) ∪U(C(Xi))

10: if Cnew 6= {} then
11: i← maxExecutionNumber(τ, Cnew)
12: continue
13: end if
14: end if
15: if T(Xi) == C ∧ relevant∩ P(Xi) 6= {} then
16: slice← slice∪ {X}
17: relevant← relevant∪U(Xi)
18: end if
19: i← i− 1
20: end while
21: return slice
22: end procedure

Example 7. The relevant slice for Example 5 is {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. In contrast to the
dynamic slice, it contains statements 5, 6, and 7 because when analyzing 813, T(Xi) == C ∧
relevant∩ P(Xi) 6= {}, and therefore statement 813 is added to the slice. Consequently, the effective
uses U(813) = {checker} are added to the relevant variables, causing statements 510, 611, and 712

to be added to the slice.
In the dynamic slicing algorithm, statement 813 is not added to the slice; instead, statement 86

is included. However, since statements 5, 6, and 7 are not executed before statement 86, they cannot
be part of the dynamic slice.

Example 8. The relevant slice for Example 1 is {1, 2, 3, 4, 5, 6, 7, 9}. In contrast to the dynamic
slice, it additionally contains statement 7 because if the condition in statement 7 had been evaluated
to true, the variable c, which is in the set of relevant variables, would have been changed.

4. Pruned Slicing

While relevant slicing fixes certain problems with dynamic slicing, relevant slices are
often larger than their dynamic counterparts. In this section, we propose an extension of
dynamic and relevant slicing for reducing the size of slices, which is called pruned slicing.

Pruned slicing picks up on the idea of short-circuit evaluation and further refines it.
When using short-circuit evaluation, we argue that we do not have to add the variables
of the third term of the condition a < b or a < c or d < c in line 5 of Example 1 to the
slice because it is not evaluated. However, the condition evaluated to true because the
second term evaluated to true. The final outcome of the condition can only be changed
when at least the outcome of the second term changes. Therefore, the second term is
outcome-determining, whereas the first and the third terms are not outcome-determining.

The outcome-determining uses Û(e) replace the sets of effective uses U(e) in line 9
of the dynamic slicing algorithm in Algorithm 2 (and the relevant slicing algorithm in
Algorithm 3), i.e., relevant← (relevant \D(Xi))∪ Û(Xi)∪ Û(C(Xi)). In the case of relevant
slicing, line 17 has to be changed to relevant← relevant∪ Û(Xi).

Electronics 2024, 13, 1146 11 of 28

Definition 7. The set of outcome-determining uses Û(e) of a Boolean expression e is as follows:

e eval(e1) eval(e2) Û(e)

e1 AND e2 true true Û(e1) ∪ Û(e2)

true false Û(e2)

false ? Û(e1)

e1 OR e2 true ? Û(e1)

false true Û(e2)

false false Û(e1) ∪ Û(e2)

NOT e1 ? - Û(e1)

True - - {}
False - - {}

other - - U(e)

Example 9. In our running example, the first term of the condition in statement 55 (i.e., a < b)
evaluates to false, the second term (a < c) evaluates to true, and the third term (d < c) is not
evaluated. The set of outcome-determining uses Û(55) is {a, c}. Therefore, the pruned dynamic
slice for the slicing criterion (ω = {x = 3, y = 2, z = 4}, 98, d) is {1, 3, 5, 6, 9}, and the pruned
relevant slice for the same slicing criterion is {1, 2, 3, 5, 6, 7, 9}.

Pruned dynamic slicing inherits the limitations of its underlying basic slicing algo-
rithm, i.e., dynamic or relevant slicing. Statements that are missing in the dynamic or
relevant slices are also absent in the pruned version.

Since our motivation to improve dynamic slicing comes from the goal of using it for
fault localization, we shortly discuss the implications of pruned slicing in this application
area. In cases where there are multiple faults in a program, the programmer has to be
aware that some of the faulty statements might be pruned away. However, the pruned slice
includes at least one of the faulty lines (assuming that the basic slicing algorithm included
it). A similar problem might occur when relying on execution traces: a fault can change
the control flow such that another faulty statement is not executed. The solution to this
problem is to locate and fix the first fault and then execute and slice the program again.

Besides possibly reducing the slice size, pruned slicing also reduces the complexity
when it comes to understanding Boolean expressions, as sub-expressions that do not influ-
ence the outcome of the Boolean expression are pruned away. This can help programmers
focus on the important parts when debugging.

Example 10. Consider the following code snippet taken from the file network.py of the Home
Assistant project [36], an open-source project for home automation.

222 i f (
223 (not r e q u i r e _ c u r r e n t _ r e q u e s t or i n t e r n a l _ u r l . h o s t ==

_ g e t _ r e q u e s t _ h o s t ())
224 and (not r e q u i r e _ s s l or i n t e r n a l _ u r l . scheme == ‘ ‘ h t t p s ’ ’)
225 and (not r e q u i r e _ s t a n d a r d _ p o r t or i n t e r n a l _ u r l . i s _ d e f a u l t _ p o r t ())
226 and (a l l o w _ i p or not i s _ i p _ a d d r e s s (s t r (i n t e r n a l _ u r l . h o s t)))
227) :
228 r e turn n o r m a l i z e _ u r l (s t r (i n t e r n a l _ u r l))

A developer might wonder why this expression evaluated to false. Pruned slicing can help the
developer by highlighting those parts of the conditional that are responsible for the evaluation to
false. Assume that the first two terms evaluate to true, the third term evaluates to false, and the
fourth term is not evaluated because of short-circuit evaluation. Visually highlighting the third term
helps the programmer focus on the following part of the program:

Electronics 2024, 13, 1146 12 of 28

222 i f (
223 (not require_current_request or internal_url.host == _get_request_host())
224 and (not require_ssl or internal_url.scheme == “https”)
225 and (not r e q u i r e _ s t a n d a r d _ p o r t or i n t e r n a l _ u r l . i s _ d e f a u l t _ p o r t ())
226 (and (allow_ip or not is_ip_address(str(internal_url.host)))
227) :
228 return normalize_url(str(internal_url))

5. Relation of the Different Slice Types

In this section, we briefly discuss the relation of the different slice types. From
Definitions 2, 5, and 7 follows the relation ∀Xi : Û(Xi) ⊆ U(Xi) ⊆ U(Xi). Since the
sets of outcome-determining uses are always subsets of the sets of effective uses, the set of
relevant variables in the slicing algorithms (see Algorithms 2 and 3) is smaller or equal for
pruned slicing. From this follows that pruned dynamic slices are a subset of the original
dynamic slices and pruned relevant slices are a subset of the original relevant slices:

pruned dynamic slice ⊆ dynamic slice (1)

pruned relevant slice ⊆ relevant slice (2)

Dynamic slices and relevant slices are both subsets of the approximate dynamic
slices [31]:

dynamic slice ⊆ approximate dynamic slice (3)

relevant slice ⊆ approximate dynamic slice (4)

The approximate dynamic slice is the intersection of the executed statements and the
static slice [6,31]:

approximate dynamic slice = executed statements∩ static slice

⇒ approximate dynamic slice ⊆ executed statements

⇒ approximate dynamic slice ⊆ static slice

(5)

From Equations (3)–(5) it follows that:

dynamic slice ⊆ executed statements (6)

relevant slice ⊆ executed statements (7)

In our previous work [12], we claimed that dynamic slices are subsets of their rele-
vant counterparts, i.e., dynamic slice ⊆ relevant slice. This is only true for minimal slices.
However, since our slicing algorithms (see Algorithms 2 and 3) compute small but not nec-
essarily minimal slices, it cannot be guaranteed that this relation always holds. Computing
state-minimal slices for arbitrary programs is equal to the halting problem [1]. Therefore,
we content ourselves with computing small slices. However, this implies that we cannot
state dynamic slice ⊆ relevant slice. In fact, when we tested the implementation of our proof-
of-concept slicer, we observed several times that the dynamic slices were slightly larger
than their relevant counterparts, as the following example demonstrates.

Example 11. Consider the following code snippet from the Refactory dataset (question 4, cor-
rect_4_080.py) [10] as Π and the slicing criterion (ω = {lst = [(“F′′, 19)]}, 1215, new_list).

1 def s o r t _ a g e (l s t) :
2 n e w _ l s t = []

Electronics 2024, 13, 1146 13 of 28

3 age = []
4 f o r i in l s t :
5 age = age + [i [1] ,]
6 while len (l s t) != 0 :
7 f o r j in l s t :
8 i f j [1] == max (age) :
9 l s t . remove (j)

10 age . remove (max (age))
11 n e w _ l s t = n e w _ l s t + [j ,]
12 r e turn n e w _ l s t

The dynamic slice according to our algorithm in Algorithm 2 is {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
and the relevant slice according to our algorithm in Algorithm 3 is {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12}. The
relevant slice does not contain the statement from line 10 (i.e., age.remove(max(age))). This statement
is actually not necessary when the source code is called with input “[(“F”, 19)]”, but it is included in
the dynamic slice.

6. Prototype Implementation

We discuss the technical details of our prototype in Section 6.1. We test our implemen-
tation utilizing a metamorphic testing approach, which we describe in Section 6.2. Our
prototype is not a production-grade slicer but a proof-of-concept slicer. Therefore, it comes
with numerous limitations, which we list in Section 6.3. We discuss the challenges that
need to be addressed in order to develop a production-grade dynamic slicer for Python in
Section 6.4.

6.1. Technical Details

Figure 2 illustrates the workflow of our slicing tool. The tool consists of two compo-
nents: the tracer and the slicer.

Source Code

Program Input

Execution Trace
Tracer

Slicer
Variable name

Slice
Line Number

Configuration

Figure 2. Input, processing steps, and output of our proof-of-concept slicing tool.

The tracer takes as input the source code of the program and the program input and
executes the input on the program. The output of the tracer is an execution trace that is
augmented with the control, definition, use, and potential relevant sets. Furthermore, it
contains the input values and evaluation results of all Boolean expressions.

In order to track which statements were executed, we instrument the source code
before executing the program. To accomplish this task, we make use of the Python 3
standard library for Abstract Syntax Tree (AST) manipulation [37].

The slicer takes as input the trace, a line number, a variable, and a configuration. In
principle, a user could manually indicate the line number that should be used, but for
reasons of simplicity, our slicer takes the last executed instruction from the execution trace
as a starting point for the slicing endeavor. There are two parameters that can be configured:
the type of the slice, i.e., dynamic or relevant slice, and with/without pruning. The slicer
takes short-circuit evaluation and identity relations into consideration.

The output of the slicer is a program where statements that are sliced away are replaced
with a pass statement. Import statements are always included in the sliced code, but they
are neither counted as executed nor as part of the slice.

Electronics 2024, 13, 1146 14 of 28

6.2. Metamorphic Testing

Although we tested the basic functionality of our tool using unit tests, it is unfeasible to
write test cases for every possible Python 3 program construct. In order to identify scenarios
where our tool does not work as intended, we made use of metamorphic testing [38] to
address the oracle problem. We utilized the three benchmarks TCAS, Refactory, and
QuixBugs to generate the test cases. Specifically, we added the following basic sanity
checks for every program/input combination:

• The original input program is executable.
• The augmentation of the original program is successful.
• Tracing of the program is successful.
• Slicer execution is successful.
• Code generation from the slice is successful.
• The execution results of the sliced program are equal to the execution results of the

original program for the input and variable provided in the slicing criterion.
• The slices are shorter than or equal to the size of the set of executed statements (i.e.,

|dynamic slice| ≤ |executed statements| and |relevant slice| ≤ |executed statements|).
• The pruned slices are shorter than or equal to the size of their non-pruned counterparts

(i.e., |pruned dynamic slice| ≤ |dynamic slice| and |pruned relevant slice| ≤ |relevant slice|).
These checks guarantee that our tracer, slicer, and code generator succeed without

crashes and produce valid Python 3 code for the benchmark programs. They confirm
that the produced slices contain all necessary statements to produce the same results as
the original programs for the same inputs. Furthermore, the size comparisons of the
dynamic/relevant slices to the set of executed statements can detect violations of the
relations stated in Equations (6) and (7). The size comparisons of the pruned slices to
the non-pruned slices can detect violations of the relations stated in Equations (1) and (2).
However, this does not guarantee that the slices are minimal. There exists no algorithm
that finds state-minimal slices because finding minimal slices is similar to the halting
problem [1]. Notably, a fake slicer that always returns the set of executed statements would
pass all of our metamorphic tests. Therefore, we added basic unit tests from samples where
the dynamic and relevant slices are smaller than the set of executed statements, and where
the pruned slices are smaller than their dynamic and relevant counterparts. These unit tests
confirm these relationships as well as equality to manually created slices acting as ground
truth.

6.3. Limitations

Our slicer is a proof-of-concept prototype that supports only basic Python 3 language
constructs. Its purpose is to demonstrate (1) the differences between dynamic and rele-
vant slicing, and (2) that a reduction can be achieved with pruned slicing. Developing a
production-grade slicer is out of the scope of this academic work.

Therefore, our slicer has several limitations. We support only the tracing of single-file
programs. We do not support lambdas, yield statements, nested classes or nested functions,
line breaks within statements, exception handling (keywords try, catch, and raise),
assert statements, delete statements (keyword del), decorators (e.g., @staticmethod or
@classmethod), annotated assignments, concurrency (keywords async and await), or
global variables.

Furthermore, there are several limitations with respect to function calls. We do not
support call-by-sharing, i.e., when a parameter is changed within a function call, statements
might be missing in the slice. We do not support a variable number of arguments (*args)
or named (**kwargs) arguments in function calls.

When it comes to object orientation, we support the tracing and slicing for a single
relevant instance of the same class. If there are multiple instances of a class and the user
is only interested in slicing for a variable that is connected to one of these instances, the

Electronics 2024, 13, 1146 15 of 28

tracing does not distinguish the code that runs in a class method based on its caller. We
support instance variables, but we do not support class variables and inheritance.

We do not slice programs that do not terminate. In the case of infinite loops, a finite
number of elements in the execution trace can be taken for the slicing approach. However,
our prototype does not deal with non-terminating programs.

6.4. Possible Improvements

The list of limitations presented above is quite long. In this section, we discuss some of
the aspects that need to be addressed to build a production-grade debugger for Python 3.

Dynamic slicers developed for Java programs, e.g., Slicer4J [20] and JavaSlicer [19], and
Android applications, e.g., Mandoline [21], instrument the bytecode to obtain the execution
trace. While Python is well known as an interpreted language, it actually compiles the
source code into an intermediate language before translating it into machine instructions.
Instrumenting this bytecode might be easier than instrumenting the AST, as described in
Section 6.1. A low-level representation of the source code, such as bytecode, has a smaller
instruction set. Therefore, it should be easier to support more of Python’s functionality.

Another aspect concerns memory management. Production-grade programs can
produce huge execution traces. Currently, we keep the execution traces in the main memory
and do not write them to the hard disc. While this is sufficient for our endeavor, such
an implementation will soon reach its limits when it comes to tracing production-grade
programs. Therefore, we recommend that the execution trace be continuously written to
the hard disc during the tracing process.

Several limitations of our slicer are attributed to missing scope management, e.g.,
global variables, class variables, and call-by-sharing. Scope management mechanisms are
required to correctly slice programs that exploit these commonly used language features.

The above-mentioned suggestions are three puzzle pieces that help build a production-
grade Python 3 slicer. However, building such a slicer remains a huge endeavor because of
the amount of Python 3 language features that need to be supported. The metamorphic
testing approach discussed in Section 6.2, when applied at scale, can help uncover missing
language feature support of the slicer and highlight bugs in the slicer.

7. Evaluation

First, we introduce our research questions (Section 7.1). Then, we present the evalua-
tion metrics (Section 7.2), the evaluation environment and restrictions (Section 7.3), and
the datasets used (Section 7.4). Finally, we present the results (Section 7.5) and discuss the
threats to validity (Section 7.6).

7.1. Research Questions

• RQ1: What is the difference between dynamic and relevant slicing with respect
to executability, correct results, and slice length? Dynamic slicing might result in
slices that do not terminate or that compute different values for the variable of interest
than the original program (see Section 3.4). Therefore, we analyze how often the
program/test case combinations result in non-terminating dynamic slices or slices
that compute the wrong result. While relevant slicing eliminates the majority of the
problems with dynamic slicing, it comes with a tradeoff: relevant slices might contain
more statements than dynamic slices. Thus, we analyze to what extent the size of the
slices increases.

• RQ2: What reduction with respect to slice length can be achieved by pruning
Boolean operations in dynamic and relevant slices? How many Boolean opera-
tors are pruned away? How frequently are Boolean operators used in real-world
programs? We compare the average size of the dynamic and relevant slices to the size
of the pruned versions to investigate the reduction that can be achieved. Since pruning
not only helps reduce the slice length but also reduces the size of nested Boolean
expressions, we additionally investigate how many Boolean operators are pruned

Electronics 2024, 13, 1146 16 of 28

away. Since the programs used in this evaluation are rather small, we investigate the
frequency of Boolean operators in 40 open-source Python projects.

• RQ3: How much additional time is required for tracing and slicing compared to
bare execution? What is the computation time overhead of relevant slicing com-
pared to dynamic slicing? What is the computation time overhead of pruned slic-
ing compared to dynamic and relevant slicing? Dynamic slicing requires that the
execution of a program be traced. This comes with computation costs. Therefore,
we analyze the time required for tracing and slicing and compare it with the bare
execution time. Furthermore, we analyze whether relevant slicing and pruned slicing
take longer than dynamic slicing.

7.2. Evaluation Metrics

We measure the number of statements in the original programs, execution traces, sets of
executed statements, and slices. Before measuring the number of statements, (1) we remove
all comments and all standalone string statements, as these do not add any functionality to
the program and can be considered as comments, and (2) we convert the programs into an
AST and translate them back in order to remove line breaks. This allows us to provide a
fair comparison of the evaluated programs.

We use the AST representation to count the number of lines with Boolean expressions
and the number of Boolean operators contained in the original programs, set of executed
statements, and slices.

We used timeit [39] with 50 repetitions to measure the execution times for executing,
tracing, and slicing the different programs.

7.3. Evaluation Environment and Evaluation Restrictions

We evaluated our approach on an AMD® Ryzen™ 7 Pro 3700U Processor (2.30 GHz,
up to 4.00 GHz Max Boost, 4 Cores, 8 Threads, 4 MB Cache) with 16 GB of RAM, Debian 11
as the operating system, and Python 3.9.

Since our prototype keeps the execution trace in the main memory, we have to restrict
the size of the produced execution traces. Given the small size of the input programs, we
limit the execution trace length to 106 elements and abort the tracing under the assumption
that programs reaching this limit are stuck and will not terminate by themselves. Fur-
thermore, we limit the duration for augmenting the source code to five seconds and the
duration for tracing, slicing, and code generation to one second each. Evaluation examples
that exceed these limits are dismissed.

We decided to use different time limits for the execution of the original and sliced
programs of the benchmarks because the programs of the different benchmarks have
different structures and, therefore, different execution times. TCAS does not contain
recursions (or loops), and therefore we have no time limit for executing the TCAS programs.
The programs of the Refactory dataset are small and have reasonable performance; a
decision when something hangs indefinitely can be made quickly. Therefore, we set the
time limit for executing these programs to 0.1 s. QuixBugs programs heavily rely on
recursion and loops and, therefore, often exhibit poor performance. Since we do not want
to exclude these slow but executable programs from this benchmark, we set the execution
timeout for QuixBugs programs to ten seconds.

7.4. Datasets

Several benchmarks with large and real-world Python 3 programs (e.g., Code4Bench [40],
BugSwarm [41], NFBugs [42], SECbench [43], and BugsInPy [44]) are publicly available.
However, due to the limitations discussed in Section 6.3, we cannot run our slicer on these
benchmarks. Therefore, we decided to use QuixBugs [9], the Refactory dataset [10], and
a Python 3 implementation of TCAS (i.e., a program of the Siemens benchmark [11]) to
address our research questions. Table 2 shows the characteristics of the used benchmarks.

Electronics 2024, 13, 1146 17 of 28

QuixBugs originated from the examples of a debugging competition and contains
31 programs. The programs have a simple structure and contain one or two functions,
which use recursion or contain (nested) loops. Each program is accompanied by several
test cases. All faults can be fixed by changing a single line. In total, we used 62 program
versions (31 correct and 31 faulty versions) in our evaluation.

The Refactory dataset [10] is a collection of five programming assignments created by
novice students. We removed the duplicate test cases and programs from the benchmark,
resulting in 2795 faulty program versions and 1230 correct versions, i.e., 4025 in total. Many
of the programs consist of a single function; the programs contain many (nested) loops, but
recursion is rarely used.

Table 2. Quantitative description of the benchmarks.

Benchmark TCAS Refactory QuixBugs

Base programs 1 5 31
LOC 91–100 3–115 6–23
Correct program
versions 1 1230 31

Faulty program
versions 37 2795 31

Test cases 1545 4–17 3–14
Avg. Num. Boolean
expressions 14.00 0.20 0.34

Boolean operations 12–15 0–4 0–2

In our previous work [12], we translated the code of the traffic collision avoidance
system (TCAS) from C to Python 3. The program is object-oriented and contains a single
class with a constructor and seven methods; one of those methods directly or indirectly
calls all other methods. There are no loops but many nested if constructs. While the original
C benchmark contains 41 faulty program versions, our Python 3 implementation consists of
one correct version and 37 faulty versions because two faulty versions were duplicates and
two faulty versions were not reproducible in Python because of Python’s array initialization
style. TCAS comes with 1545 test cases.

Pruned slicing reasons over Boolean expressions. In TCAS, on average, 14.00 Boolean
expressions are evaluated. In QuixBugs and the Refactory dataset, on average, 0.34 and 0.20
Boolean expressions are evaluated, respectively. Therefore, we expect that the achievable
slice reduction through the use of pruned slicing will be highest for the TCAS benchmark.

For each benchmark, we executed each faulty and each correct program version with
each test case. We set the timeouts as indicated in Section 7.3. In the next step, we traced
the execution steps of the program/test case combinations that terminated. Table 3 shows
the number of successful tracing attempts, as well as the number and reasons for failed
tracing attempts. We excluded 3144 program/test case combinations from the Refactory
dataset and 64 from QuixBugs because the programs used undefined variables, contained
invalid syntax, or did not terminate. Furthermore, we excluded 1161 program/test case
combinations from the Refactory dataset and 28 from QuixBugs, which contained language
constructs that are not supported by our prototype, and 18 program/test case combinations
from QuixBugs, which resulted in a timeout during tracing or exceeded the maximal
slice length.

Table 3. Number of traced program runs and reasons for failures.

Benchmark TCAS Refactory QuixBugs

Successfully executed and traced 58,710 20,836 374
Not executable - 3144 64
Not supported - 1161 28
Timeout during tracing - - 18

Electronics 2024, 13, 1146 18 of 28

7.5. Results

RQ1: What is the difference between dynamic and relevant slicing with respect
to executability, correct results, and slice length? We computed the slices for all pro-
gram/test case combinations that were successfully traced. We used the return value of the
function/method called in the test case as the slicing criterion.

Table 4 shows the number of successful slicing attempts, as well as the number and
reasons for failed slicing attempts, separately for dynamic and relevant slicing. For TCAS,
all program/test case combinations were successfully sliced. For the Refactory dataset
and QuixBugs, the majority of program/test case combinations could be successfully
sliced. The dynamic slices of 1044 program/test case combinations from the Refactory
dataset resulted in a timeout, but none of the relevant slices resulted in a timeout. This
occurred because dynamic slicing sometimes produced incomplete slices, i.e., slices where
statements responsible for terminating the loop were missing. There were six program/test
case combinations in QuixBugs where both the dynamic and relevant slices resulted in a
timeout. There were 76 program/test case combinations where dynamic slicing resulted in
other exceptions, and 83 combinations where relevant slicing resulted in other exceptions.
There was one program/test case combination in QuixBugs that resulted in an other
exception. In the Refactory dataset, there were 33 program/test case combinations where
the dynamic slice computed a different result than the original program and 25 where the
relevant slices computed different results than the original programs.

Table 4. Number of successfully sliced program runs and reasons for failures.

Benchmark TCAS Refactory QuixBugs
Slice Type (D = Dynamic, R = Relevant) D R D R D R

Successfully sliced 58,710 58,710 19,683 20,728 367 367
Timeout executing the sliced program - - 1044 - 6 6
Other Exception - - 76 83 1 1
Sliced result differs from original - - 33 25 - -

Figure 3 shows the average number of statements in the set of executed statements and
the dynamic and relevant slices. The data are based on the program/test case combinations
where both dynamic and relevant slicing computed the same result as the original program
for the variable indicated in the slicing criterion. For TCAS, the number of statements was
the same for relevant and dynamic slicing. Both slicing techniques reduced the number of
statements compared to the set of executed statements by an average of more than 33% for
the TCAS programs.

0 10 20 30 40 50
Mean number of statements

quixbugs

refactory

tcas

8.7

7.3

54.4

8.2

6.0

36.2

8.4

6.7

36.2

Relevant Slice (short circ. eval.)
Dynamic Slice (short circ. eval.)
Executed statements

mean_slice_size_df_both

Figure 3. Average number of statements executed and in the dynamic and relevant slices for the
three benchmarks. The data are based on program/test case combinations where both dynamic and
relevant slicing computed correct results for the variable and input indicated in the slicing criterion.

For the Refactory dataset, dynamic slicing achieved an average reduction of 17.8%
compared to the set of executed statements, and relevant slicing achieved a reduction of

Electronics 2024, 13, 1146 19 of 28

8.2%. For QuixBugs, dynamic and relevant slicing achieved reductions of 5.7% and 3.4%,
respectively. The programs of the Refactory dataset and QuixBugs are smaller than TCAS.
Therefore, their execution traces contained fewer statements. For smaller programs, a
smaller reduction with respect to slice size can be achieved.

Figure 4 compares the size of the relevant and dynamic slices point-wise, i.e., for
each program/test case combination. Table 5 provides the number of program/test case
combinations where the relevant slice was greater/smaller than or equal to the dynamic
slice for all three benchmarks. For TCAS, the relevant and dynamic slices were always
identical. For the programs of QuixBugs, the relevant slices were equal to or greater
than their dynamic counterparts. For the majority of the program/test case combinations
of the Refactory dataset, the relevant slices were equal to or greater than their dynamic
counterparts; however, there were 36 program/test case combinations where the relevant
slice was slightly smaller than the dynamic slice. We explained this phenomenon in
Section 5 (see Example 11).

Figure 4. Comparison of slice lengths for relevant and dynamic slicing. The data are based on
program/test case combinations where both dynamic and relevant slicing computed correct results
for the variable and input indicated in the slicing criterion.

Table 5. Number of program/test case combinations where the relevant slice was greater than, equal
to, or smaller than the dynamic slice.

Benchmark TCAS Refactory QuixBugs

Greater - 6678 45
Equal 58,710 12,955 322
Smaller - 36 -

Summary. The aforementioned results can be summarized as follows:

• The dynamic and relevant slices for TCAS are identical. This can be explained by
the structure of TCAS: there are no loops, and the then and else branches of the
conditionals change the same variable; therefore, relevant slicing has no impact.

Electronics 2024, 13, 1146 20 of 28

• For the Refactory dataset, relevant slicing eliminates the problem of non-terminating
slices and reduces the number of slices where the sliced program computes a different
result than the original program. However, the average size of the slice increases by
11.2%. For 65.9% of program/test case combinations, the relevant slice is identical to
the dynamic slice; for 34.0%, the relevant slice is larger than the dynamic slice; and for
0.2%, it is smaller.

• For QuixBugs, the number of successfully sliced program/test case combinations
stays the same, and the average slice size increases by 2.4%. For 87.7% of successfully
sliced QuixBugs program/test case combinations, the relevant slice is identical to the
dynamic slice, whereas for 12.3%, the size of the slice increases.

RQ2: What reduction with respect to slice length can be achieved by pruning
Boolean operations in dynamic and relevant slices? How many Boolean operators are
pruned away? How frequently are Boolean operators used in real-world programs? To
address these questions, we used all program/test case combinations that could be suc-
cessfully sliced (see top row of Table 4). Therefore, the figures and tables for dynamic and
relevant slicing are based on slightly different datasets within the Refactory dataset.

Figure 5 compares the average sizes of the dynamic/relevant slices to the average
sizes of the pruned dynamic/relevant slices. For TCAS, the pruning extension reduced
the average size of the dynamic and relevant slices by 10.2%. For the Refactory dataset
and QuixBugs, the average sizes of the dynamic and pruned dynamic slices were the
same, as were the average sizes of the relevant and pruned relevant slices. The difference
in reduction can be explained by the number of Boolean operations in the benchmarks:
while TCAS contains many Boolean operations, the programs of the Refactory dataset and
QuixBugs contain no or only a few Boolean operations (12–15 for the TCAS versions vs.
0–4 for the Refactory dataset and 0–2 for QuixBugs programs; see Table 2).

0 10 20 30 40 50
Mean number of statements

quixbugs

refactory

tcas

8.7

7.5

54.4

8.2

6.1

36.2

8.2

6.1

32.5

Dynamic Slicing

Pruned Dynamic Slice
Dynamic Slice (short circ. eval.)
Executed statements

0 10 20 30 40 50
Mean number of statements

8.7

7.5

54.4

8.4

6.9

36.2

8.4

6.9

32.5

Relevant Slicing

Pruned Relevant Slice
Relevant Slice (short circ. eval.)
Executed statements

mean_slice_size_df_combined_subfigures

Figure 5. Comparison of the size of the pruned slice with the size of the dynamic slice and the set of
executed statements (left), and comparison of the size of the pruned relevant slice with the size of the
relevant slice and the set of executed statements (right).

Table 6 indicates the number of program/test case combinations where the pruned
dynamic and relevant slices were greater/smaller than or equal to the dynamic and relevant
slices. Figure 6 visually compares the lengths of the dynamic and pruned dynamic slices of
each program/test case combination. In 76.0% of TCAS program/test case combinations,
pruning achieved a reduction in slice size, and in 24.0%, the size of the slice did not change.
For the Refactory dataset, there were only two program/test case combinations where the
size of the slice could be reduced using pruned slicing. For QuixBugs, the pruned slices
were the same as the original slices. Pruning never increased the slice size in any of the
program/test case combinations of the three benchmarks.

Figure 7 illustrates the correlation between the number of Boolean operators in the
execution traces and the slice length reduction achieved using pruned slicing. The more
Boolean operators executed, the more statements were removed from the slice. Since there

Electronics 2024, 13, 1146 21 of 28

were more Boolean operators in the TCAS programs compared to the programs from the
Refactory dataset and QuixBugs, pruned slicing worked better for the TCAS programs.

Table 6. Number of program/test case combinations where the pruned slices were greater than,
equal to, or smaller than the dynamic and relevant slices.

TCAS Refactory QuixBugs

Dynamic Slicing
Greater - - -
Equal 14,107 19,681 367
Smaller 44,603 2 -

Relevant Slicing
Greater - - -
Equal 14,107 20,726 367
Smaller 44,603 2 -

Figure 6. Comparison of the slice lengths for dynamic and pruned dynamic slicing. Each data point
represents one program/test case combination.

Electronics 2024, 13, 1146 22 of 28

0 1 2 3 4 12 13 14 150 1 2 3 4 12 13 14 15
Boolean operators

0

5

10

15

20

Sl
ice

 le
ng

th
 re

du
ct

io
n

Pruned Dynamic Slicing

0 1 2 3 4 12 13 14 150 1 2 3 4 12 13 14 15
Boolean operators

Pruned Relevant Slicing

slice_size_reduction_subfigures

Figure 7. Relation of the number of Boolean operators in the execution trace to the reduction in the
slice length achieved with the pruned slicing extension.

Pruned slicing can help the programmer better understand Boolean expressions by
focusing on those parts of the Boolean expression that actually contributed to the outcome
of the Boolean expression, as demonstrated in Example 10 in Section 4. Therefore, in
Figure 8, we illustrate how many Boolean operators were contained in the dynamic and
relevant slices, as well as in their pruned versions. TCAS exhibited the highest reduction,
from an average of 4.1 Boolean operators in the dynamic and relevant slices to 1.9 Boolean
operators in their pruned versions. For the Refactory dataset, no change was observed. For
QuixBugs, the average number of Boolean operators was reduced from 0.3 to 0.2.

0 1 2 3 4
Mean number of Boolean operators

quixbugs

refactory

tcas

0.3

0.1

4.1

0.2

0.1

1.9

Dynamic Slicing

Pruned Dynamic Slice
Dynamic Slice (short circ. eval.)

0 1 2 3 4
Mean number of Boolean operators

0.3

0.1

4.1

0.2

0.1

1.9

Relevant Slicing

Pruned Relevant Slice
Relevant Slice (short circ. eval.)

mean_num_boolops_subfigures

Figure 8. Mean number of Boolean operators contained in the dynamic, relevant, and pruned slices.

Pruned slicing can only reduce the number of statements in a slice when Boolean oper-
ators are executed. For this reason, in our previous work [12], we investigated the frequency
of Boolean operations in the 20 most downloaded Python packages from PyPI [45] and the
20 most starred Python projects from GitHub [46] (excluding educational and non-English
repositories). Figure 9 shows the percentage of lines containing Boolean operations for
these 40 projects and our benchmark programs. TCAS exhibits the highest percentage
with 10.6%. There is one project, namely python-certifi, that does not contain any Boolean
operators. The other projects contain between 0.1% and 3.1% Boolean operators. Since
no real-world programs contain anywhere near the percentage of Boolean operators as
TCAS, a reduction in the slice size, as achieved for TCAS, would be unlikely for real-world
programs. The 40 projects are many times larger than the programs of the Refactory dataset
and QuixBugs; therefore, a higher reduction for real-world programs (except python-certifi)
compared to QuixBugs and the Refactory dataset might be possible.

Electronics 2024, 13, 1146 23 of 28

py
th

on
-c

er
tif

i
s3

tra
ns

fe
r

bo
to

3
bo

to
co

re
py

th
on

-rs
a

aw
s-

cli
sc

ik
it-

le
ar

n
fla

sk
ce

rtb
ot

 fa
ce

_r
ec

og
nu

m
py

co
re

m
an

im
fa

st
ap

i
ke

ra
s

sc
ra

py
pa

nd
as

dj
an

go
ur

llib
3

re
fa

ct
or

y
Re

al
-T

im
e-

V.
-C

.
six

cf
fi-

br
an

ch
-d

f.
se

nt
ry

id
na

ty
pi

ng
su

pe
rs

et
py

as
n1

re
qu

es
ts

co
m

po
se

ch
ar

de
t

qu
ix

bu
gs

se
tu

pt
oo

ls
ht

tp
ie pi
p

da
te

ut
il

ric
h

th
ef

uc
k

an
sib

le
wh

ee
l

py
ya

m
l

tc
as

0

2

4

6

8

10

12

%
 li

ne
s w

ith
 B

oo
le

an
 o

pe
ra

tio
ns

0.
0 0.
1 0.
3 0.
4

0.
5

0.
5

0.
6

0.
6 0.
7

0.
7

0.
7

0.
8

0.
8

0.
8

0.
9

0.
9

0.
9 1.
0

1.
1

1.
1

1.
1

1.
1

1.
1

1.
2 1.
2

1.
2

1.
2 1.
3

1.
3

1.
4

1.
4 1.
6

1.
6

1.
6

1.
6 1.
7 1.
8 2.
0 2.
2 2.
2 3.

1
10

.6

lines_with_boolops_per_loc

Figure 9. Percentage of LOC containing Boolean operators in the 20 most downloaded Python
packages from PyPI, the 20 most starred Python projects on GitHub, and the three benchmarks. We
highlighted in blue the benchmarks used in the evaluation.

Summary. The aforementioned results can be summarized as follows:

• Pruned slicing reduces the slice size for TCAS by 10.2%. There is no reduction for the
Refactory dataset and QuixBugs because only a few Boolean operators are used.

• Pruning can decrease the size of the slice without ever increasing it.
• The more Boolean operators executed, the greater the achievable reduction through

the use of pruned slicing.
• Pruned slicing can help reduce the number of Boolean sub-terms in the sliced program

that need to be investigated by the developer.
• The 40 investigated Python projects show a similar frequency of Boolean operators as

the Refactory dataset and QuixBugs but are substantially bigger in terms of LOC.

RQ3: How much additional time is required for tracing and slicing compared to
bare execution? What is the computation time overhead of relevant slicing compared to
dynamic slicing? What is the computation time overhead of pruned slicing compared
to dynamic and relevant slicing? We measured the performance in terms of execution
time by averaging 50 repetitions of executing, tracing, and slicing for each program/test
case combination. We did not include the execution time for augmenting the source code
in the tracing execution time. We used the same traces for dynamic slicing, relevant slicing,
and pruned slicing. However, relevant and pruned slicing required more information
compared to dynamic slicing: for relevant slicing, we had to analyze the source code to
identify the potential relevant variables; for pruned slicing, we had to keep track of the
evaluation results of all computed Boolean sub-expressions. We did not investigate the
overhead produced for relevant and pruned slicing in the tracing part. The time required
for keeping track of the values of the Boolean sub-expressions was included in the tracing
execution time. The potential relevant variables were determined during the augmenting
process; therefore, the execution time was not measured.

Figure 10 shows the mean execution times for executing, tracing, and computing the
dynamic, relevant, and pruned slices. The execution time required for tracing the executed
statements was orders of magnitude larger than the bare execution of the programs.

Electronics 2024, 13, 1146 24 of 28

0 2 4 6 8 10 12 14 16
milliseconds

quixbugs

refactory

tcas

0.036

0.001

0.011

4.565

0.760

3.081

13.498

0.215

0.576

13.344

0.215

0.533

13.215

0.272

0.580

13.381

0.273

0.535
Pruned Relevant Slicing
Relevant Slicing
Pruned Dynamic Slicing
Dynamic Slicing
Tracing
Bare test

mean_performance_df

Figure 10. Runtime comparison: Mean runtimes for bare execution, tracing, and computing the
dynamic, relevant, and pruned slices.

Computing relevant slices took slightly longer than computing dynamic slices for
TCAS and the Refactory dataset. This can be explained by the additional checks required
for the potential relevant variables (see Section 3.4). Interestingly, computing the relevant
slices for QuixBugs required, on average, less time than computing the dynamic slices. We
computed the effect size in terms of Cohen’s d for all three benchmarks. The differences
were very small for all three benchmarks according to Sawilowsky [47] (TCAS: 0.011;
Refactory: 0.086; QuixBugs: 0.005).

Pruned dynamic slicing required slightly less computation time compared to dynamic
slicing for TCAS. This can be explained by the size of the set of relevant variables: the set
of relevant variables was compared to the set of defined variables for each executed line.
With pruned slicing, this set was smaller than with dynamic or relevant slicing, resulting
in less time required for comparison. Pruned slicing was as fast as as dynamic slicing for
the Refactory dataset. Pruned relevant slicing took longer than relevant slicing for the
Refactory dataset and QuixBugs. This can be explained by the fact that pruning hardly ever
reduced the set of relevant variables in these benchmarks because of the lack of Boolean
expressions, and the additional reasoning came with a small computational overhead.
However, the effect sizes in terms of Cohen’s d were again very small (dynamic-pruned
dynamic TCAS: 0.135; Refactory: 0.000; QuixBugs: 0.003; and relevant-pruned relevant
TCAS: 0.138; Refactory: 0.001; QuixBugs: 0.003).

Figure 11 illustrates that the slice computation time depends on the length of the
execution trace. The execution times of the QuixBugs programs clearly highlight this
behavior. The QuixBugs programs extensively used recursion and nested loops, and the
resulting execution traces were often substantial. Therefore, the higher slice computation
time for QuixBugs can be explained by the length of the execution trace. The Pearson
coefficient for all three datasets was greater than 0.7, indicating a strong positive correlation
(TCAS: 0.955; Refactory: 0.720; QuixBugs: 0.811).

Electronics 2024, 13, 1146 25 of 28

Figure 11. Runtime analysis: Dynamic slicing duration in relation to the length of the execution trace
on a logarithmic scale.

While performance was not our main focus during the implementation of our pro-
totype, the mean tracing and slicing time spans were within an acceptable range, with
less than a millisecond for TCAS and the Refactory dataset and a few milliseconds for
QuixBugs. We expect that a mature slicer will improve upon these numbers.

Summary. The aforementioned results can be summarized as follows:

• Tracing and slice computation takes orders of magnitude longer than the bare execu-
tion.

• The different slicing techniques have similar computation times.
• The time span required for slicing correlates with the length of the execution trace.

7.6. Threats to Validity

The biggest threat to external validity is the representativeness of the used benchmark
programs. Since our prototype implementation has many limitations, our evaluation
is limited to small programs. We counteracted this threat by using three benchmarks
containing programs with different structures such as nested conditionals, loops, and
recursive functions. The differences in the structures are reflected in the results. While
relevant slicing has no influence on the results of TCAS, it increases the slice size of the
Refactory and QuixBugs programs, and while pruned slicing has no or only little effects on
the programs of QuixBugs and the Refactory dataset, it reduces the size of the majority of
TCAS slices.

To figure out whether the programs represent the structure of real-world programs, we
compared the percentage of LOC containing Boolean operators in these three benchmarks
to those of 40 open-source Python projects. The comparison revealed that reductions similar
to those achieved in the TCAS programs are unrealistic. However, 39 of these 40 projects
contain Boolean operators; therefore, pruned slicing might achieve reductions in slice size.

The developed prototype is a major threat to the internal validity of our results.
While we designed our prototype with the greatest care, the complexity of the task was
immense, particularly when it came to loops, recursive function calls, the immense range

Electronics 2024, 13, 1146 26 of 28

of Python language features, and detecting modifications of parameters within function
calls. Therefore, bugs cannot be ruled out. To counteract this threat, we used metamorphic
testing, which revealed several coding errors and enabled us to fix them. However, it is not
possible to detect all coding errors with metamorphic testing.

Metamorphic testing primarily checks whether all statements that should be included
in the slice are actually included, but it does not check whether all of the included statements
are actually necessary. The latter check is not suitable for our slicer since our algorithm
computes small but not necessarily minimal slices. Therefore, it cannot be ruled out that
the slices computed by our slicer are larger than actually necessary.

8. Conclusions

In this paper, we have proposed an extension of dynamic and relevant slicing called
pruned slicing. Pruned slicing reduces the size of dynamic and relevant slices by reasoning
over the evaluation outcome of Boolean sub-expressions and their contribution to the final
result of a nested Boolean expression.

We empirically evaluated the average slice sizes of dynamic, relevant, pruned dynamic,
and pruned relevant slices for programs taken from three benchmarks containing Python
programs, namely TCAS, the Refactory dataset, and QuixBugs. Even though all programs
are small, their structures are different, which impacted the results. While the relevant slices
of the TCAS programs were equal to the dynamic slices, the average relevant slice sizes of
the Refactory and QuixBugs programs increased by 11.2% and 2.4%, respectively. Pruned
slicing reduced the slice size of the TCAS programs by an average of 10.2%, but it did not
reduce the slice sizes of the Refactory and QuixBugs programs. However, for QuixBugs,
the number of Boolean operators was slightly reduced. The differences in execution time
for computing dynamic and relevant slices and their pruned counterparts were negligible.

Our evaluation was limited to small programs because of the limitations of our proof-
of-concept slicing tool. Developing a dynamic or relevant slicer from scratch that supports
all features of a modern programming language is an enormous endeavor. In future work,
we will explore the latest dynamic slicers for other programming languages and try to
extend promising dynamic slicers with our pruning technique in order to perform our
experiments on real-world programs.

Slicing is particularly useful for fault localization, either as a standalone approach or
as a preprocessing step for another fault-localization technique. In both scenarios, small
slices are preferred over large slices. Even though pruning does not always reduce the size
of dynamic and relevant slices, it comes with negligible additional computational costs and
should, therefore, be implemented in dynamic and relevant slicers.

Author Contributions: Conceptualization, B.H. and T.H.; methodology, B.H. and T.H.; software, B.H.
and T.H.; validation, B.H. and T.H.; formal analysis, B.H. and T.H.; investigation, B.H. and T.H.;
resources, B.H. and T.H.; data curation, B.H. and T.H.; writing—original draft preparation, B.H.;
writing—review and editing, B.H. and T.H.; visualization, B.H. and T.H.; supervision, B.H.; project
administration, B.H.; funding acquisition, B.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded in whole, or in part, by the Austrian Science Fund (FWF) (Grant
Number P 32653) http://doi.org/10.55776/P32653 (accessed on 16 March 2024). For the purposes
of open access, the author has applied a CC BY public copyright license to any author-accepted
manuscript version arising from this submission.

Data Availability Statement: The data presented in this study, as well as our source code is openly
available in Zenodo at https://doi.org/10.5281/zenodo.10852301 (accessed on 16 March 2024) and
GitHub (https://github.com/AmadeusBugProject/prunedSlicing) (accessed on 16 March 2024).
Publicly available datasets were analyzed in this study. QuixBugs can be found here: https://github.
com/jkoppel/QuixBugs (accessed on 16 March 2024) [9]. The Refactory dataset can be found here:
https://github.com/githubhuyang/refactory (accessed on 16 March 2024) [10].

Conflicts of Interest: The authors declare no conflicts of interest.

http://doi.org/10.55776/P32653
https://doi.org/10.5281/zenodo.10852301
https://github.com/AmadeusBugProject/prunedSlicing
https://github.com/jkoppel/QuixBugs
https://github.com/jkoppel/QuixBugs
https://github.com/githubhuyang/refactory

Electronics 2024, 13, 1146 27 of 28

References
1. Weiser, M. Program Slicing. IEEE Trans. Softw. Eng. 1984, SE-10, 352–357. [CrossRef]
2. Soha, P.A.; Gergely, T.; Horváth, F.; Vancsics, B.; Beszédes, Á. A Case Against Coverage-Based Program Spectra. In Proceedings

of the IEEE Conference on Software Testing, Verification and Validation (ICST), Porto de Galinhas, Brazil, 12–16 April 2023; IEEE:
New York, NY, USA, 2023; pp. 13–24. [CrossRef]

3. Beizer, B. Software Testing Techniques, 2nd ed.; ITP Media: Yas South Abu Dhabi, United Arab Emirates, 1990; p. 580.
4. Hirsch, T.; Hofer, B. What we can learn from how programmers debug their code. In Proceedings of the 8th International

Workshop on Software Engineering Research and Industrial Practice (SER-IP), Madrid, Spain, 4 June 2021; pp. 37–40. [CrossRef]
5. Korel, B.; Laski, J. Dynamic program slicing. Inf. Process. Lett. 1988, 29, 155–163. [CrossRef]
6. Agrawal, H.; Horgan, J.; Krauser, E.; London, S. Incremental regression testing. In Proceedings of the Conference on Software

Maintenance, Montreal, QC, Canada, 27–30 September 1993; pp. 348–357. [CrossRef]
7. Pandas. Base.py. Available online: https://github.com/pandas-dev/pandas/blob/a00154dcfe5057cb3fd86653172e74b6893e337

d/pandas/core/indexes/base.py (accessed on 11 March 2024).
8. Steindl, C. Program Slicing for Programming Languages. Ph.D. Thesis, Johannes Kepler University, Linz, Austria, 1999.
9. Lin, D.; Chen, A.; Koppel, J.; Solar-Lezama, A. QuixBugs: A Multi-Lingual Program Repair Benchmark Set Based on the

Quixey Challenge. In Proceedings of the ACM SIGPLAN International Conference on Systems, Programming, Languages, and
Applications: Software for Humanity (SPLASH Companion), Vancouver, BC, Canada, 23–27 October 2017; pp. 55–56. [CrossRef]

10. Hu, Y.; Ahmed, U.Z.; Mechtaev, S.; Leong, B.; Roychoudhury, A. Re-factoring based program repair applied to programming
assignments. In Proceedings of the 34th International Conference on Automated Software Engineering (ASE), San Diego, CA,
USA, 11–15 November 2019; pp. 388–398. [CrossRef]

11. Hutchins, M.; Foster, H.; Goradia, T.; Ostrand, T. Experiments on the effectiveness of dataflow- and control-flow-based test
adequacy criteria. In Proceedings of the 16th International Conference on Software Engineering (ICSE), Sorrento, Italy, 16–21
May 1994; pp. 191–200. [CrossRef]

12. Hirsch, T.; Hofer, B. Pruning Boolean Expressions to Shorten Dynamic Slices. In Proceedings of the 22nd International Working
Conference on Source Code Analysis and Manipulation (SCAM), Limassol, Cyprus, 3–4 October 2022; IEEE: New York, NY, USA,
2022; pp. 1–11. [CrossRef]

13. Bergeretti, J.F.; Carré, B.A. Information-flow and data-flow analysis of while-programs. ACM Trans. Program. Lang. Syst.
1985, 7, 37–61. [CrossRef]

14. Li, X.; Orso, A. More Accurate Dynamic Slicing for Better Supporting Software Debugging. In Proceedings of the 13th
International Conference on Software Testing, Verification and Validation (ICST 2020), Porto, Portugal, 24–28 October 2020;
pp. 28–38. [CrossRef]

15. Agrawal, H.; Demillo, R.A.; Spafford, E.H. Efficient Debugging with Slicing and Backtracking; Technical Report; Purdue University:
West Lafayette, IN, USA, 1990.

16. Tip, F. A Survey of Program Slicing Techniques. J. Program. Lang. 1995, 3, 121–189.
17. Silva, J. A vocabulary of program slicing-based techniques. ACM Comput. Surv. 2012, 44, 1–41. [CrossRef]
18. Wong, W.E.; Gao, R.; Li, Y.; Abreu, R.; Wotawa, F. A Survey on Software Fault Localization. IEEE Trans. Softw. Eng.

2016, 42, 707–740. [CrossRef]
19. Hammacher, C. Design and Implementation of an Efficient Dynamic Slicer for Java. Bachelor’s Thesis, University of Saarland,

Saarbrucken, Germany, 2008.
20. Ahmed, K.; Lis, M.; Rubin, J. Slicer4J: A dynamic slicer for Java. In Proceedings of the 29th ACM Joint Meeting European

Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE), Athens, Greece,
23–28 August 2021; pp. 1570–1574. [CrossRef]

21. Ahmed, K.; Lis, M.; Rubin, J. Mandoline: Dynamic Slicing of Android Applications with Trace-Based Alias Analysis. In
Proceedings of the IEEE 14th International Conference on Software Testing, Verification and Validation (ICST 2021), Valencia,
Spain, 4–13 April 2021; pp. 105–115. [CrossRef]

22. Galindo, C.; Perez, S.; Silva, J. A Program Slicer for Java (Tool Paper). In Proceedings of the Software Engineering and Formal
Methods, Berlin, Germany, 26–30 September 2022; pp. 146–151. [CrossRef]

23. Galindo, C.; Pérez, S.; Silva, J. Program slicing of Java programs. J. Log. Algebr. Methods Program. 2023, 130, 100826. [CrossRef]
24. Nguyen, H.V.; Kästner, C.; Nguyen, T.N. Cross-language program slicing for dynamic web applications. In Proceedings of the

10th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), Lisbon, Portugal, 5–9 September 2015; pp. 369–380. [CrossRef]

25. Stiévenart, Q.; Binkley, D.W.; Roover, C.D. Static stack-preserving intra-procedural slicing of webassembly binaries. In
Proceedings of the 44th International Conference on Software Engineering (ICSE ’22), Pittsburgh, PA, USA, 22–27 May 2022;
pp. 2031–2042. [CrossRef]

26. Galindo, C.; Pérez, S.; Silva, J. Exception-sensitive program slicing. J. Log. Algebr. Methods Program. 2023, 130, 100832. [CrossRef]
27. Galindo, C.; Pérez, S.; Silva, J. Program Slicing Techniques with Support for Unconditional Jumps. In Proceedings of the 23rd

International Conference on Formal Engineering Methods (ICFEM 2022), Madrid, Spain, 24–27 October 2022; pp. 123–139.
[CrossRef]

http://doi.org/10.1109/TSE.1984.5010248
http://dx.doi.org/10.1109/ICST57152.2023.00011
http://dx.doi.org/10.1109/SER-IP52554.2021.00014
http://dx.doi.org/10.1016/0020-0190(88)90054-3
http://dx.doi.org/10.1109/ICSM.1993.366927
https://github.com/pandas-dev/pandas/blob/a00154dcfe5057cb3fd86653172e74b6893e337d/pandas/core/indexes/base.py
https://github.com/pandas-dev/pandas/blob/a00154dcfe5057cb3fd86653172e74b6893e337d/pandas/core/indexes/base.py
http://dx.doi.org/10.1145/3135932.3135941
http://dx.doi.org/10.1109/ASE.2019.00044
http://dx.doi.org/10.1109/ICSE.1994.296778
http://dx.doi.org/10.1109/SCAM55253.2022.00006
http://dx.doi.org/10.1145/2363.2366
http://dx.doi.org/10.1109/ICST46399.2020.00014
http://dx.doi.org/10.1145/2187671.2187674
http://dx.doi.org/10.1109/TSE.2016.2521368
http://dx.doi.org/10.1145/3468264.3473123
http://dx.doi.org/10.1109/ICST49551.2021.00022
http://dx.doi.org/10.1007/978-3-031-17108-6_9
http://dx.doi.org/10.1016/j.jlamp.2022.100826
http://dx.doi.org/10.1145/2786805.2786872
http://dx.doi.org/10.1145/3510003.3510070
http://dx.doi.org/10.1016/j.jlamp.2022.100832
http://dx.doi.org/10.1007/978-3-031-17244-1_8

Electronics 2024, 13, 1146 28 of 28

28. Nanda, M.G.; Ramesh, S. Interprocedural slicing of multithreaded programs with applications to Java. ACM Trans. Program.
Lang. Syst. 2006, 28, 1088–1144. [CrossRef]

29. Galindo, C.; Llorens, M.; Pérez, S.; Silva, J. Slicing Shared-Memory Concurrent Programs The Threaded System Dependence
Graph Revisited. In Proceedings of the IEEE International Conference on Software Maintenance and Evolution (ICSME), Bogota,
Colombia, 1–6 October 2023; pp. 73–83. [CrossRef]

30. Ghosh, D.; Singh, J. A dynamic slicing-based approach for effective SBFL technique. Int. J. Comput. Sci. Eng. 2021, 24, 98–107.
[CrossRef]

31. Soremekun, E.; Kirschner, L.; Böhme, M.; Zeller, A. Locating Faults with Program Slicing: An Empirical Analysis. arXiv 2021,
arXiv:2101.03008.

32. Messaoudi, S.; Shin, D.; Panichella, A.; Bianculli, D.; Briand, L.C. Log-Based Slicing for System-Level Test Cases. In Proceedings
of the International Symposium on Software Testing and Analysis (ISSTA), Aarhus, Denmark, 12–16 July 2021; pp. 517–528.

33. de Vos, M.; Pouwelse, J. ASTANA: Practical String Deobfuscation for Android Applications Using Program Slicing. arXiv 2021,
arXiv:2104.02612.

34. Wang, S.; Wang, X.; Sun, K.; Jajodia, S.; Wang, H.; Li, Q. GraphSPD: Graph-Based Security Patch Detection with Enriched Code
Semantics. In Proceedings of the IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 21–25 May 2023;
pp. 2409–2426. [CrossRef]

35. Zhang, Z.; Lei, Y.; Yan, M.; Mao, X.; Su, T.; Yu, Y. Influential Global and Local Contexts Guided Trace Representation for Fault
Localization. ACM Trans. Softw. Eng. Methodol. 2022, 1, 27. [CrossRef]

36. Home Assistant: Network.py. Available online: https://github.com/home-assistant/core/blob/1242456ff1fc8f70ff48503f91d6d5
4d9a46cfbc/homeassistant/helpers/network.py (accessed on 11 March 2024).

37. Python Documentation: Abstract Syntax Tree. Available online: https://docs.python.org/3/library/ast.html (accessed on
11 March 2024).

38. Segura, S.; Fraser, G.; Sanchez, A.B.; Ruiz-Cortes, A. A Survey on Metamorphic Testing. IEEE Trans. Softw. Eng. 2016, 42, 805–824.
[CrossRef]

39. Python Documentation: Timeit—Measure Execution Time of Small Code Snippets. Available online: https://docs.python.org/3/
library/timeit.html (accessed on 11 March 2024).

40. Majd, A.; Vahidi-Asl, M.; Khalilian, A.; Baraani-Dastjerdi, A.; Zamani, B. Code4Bench: A multidimensional benchmark of
Codeforces data for different program analysis techniques. J. Comput. Lang. 2019, 53, 38–52. [CrossRef]

41. Tomassi, D.A.; Dmeiri, N.; Wang, Y.; Bhowmick, A.; Liu, Y.C.; Devanbu, P.T.; Vasilescu, B.; Rubio-Gonzalez, C. BugSwarm:
Mining and Continuously Growing a Dataset of Reproducible Failures and Fixes. In Proceedings of the International Conference
on Software Engineering (ICSE), Montreal, QC, Canada, 25–31 May 2019; pp. 339–349. [CrossRef]

42. Radu, A.; Nadi, S. A dataset of non-functional bugs. In Proceedings of the International Working Conference on Mining Software
Repositories (MSR), Montreal, QC, Canada, 26–27 May 2019; pp. 399–403. [CrossRef]

43. Reis, S.; Abreu, R. SECBENCH: A Database of Real Security Vulnerabilities. In Proceedings of the International Workshop on
Secure Software Engineering in DevOps and Agile Development (SecSE), Oslo, Norway, 11–15 September 2017; pp. 70–85.

44. Widyasari, R.; Sim, S.Q.; Lok, C.; Qi, H.; Phan, J.; Tay, Q.; Tan, C.; Wee, F.; Tan, J.E.; Yieh, Y.; et al. BugsInPy: A database of existing
bugs in Python programs to enable controlled testing and debugging studies. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE), New York,
NY, USA, 8–13 November 2020; pp. 1556–1560. [CrossRef]

45. PyPiStats: Most Downloaded PyPI Packages. Available online: https://pypistats.org/top (accessed on 1 June 2021).
46. GitHub Topics: Python. Available online: https://github.com/topics/python?l=python&o=desc&s=stars (accessed on

1 June 2021).
47. Sawilowsky, S.S. New Effect Size Rules of Thumb. J. Mod. Appl. Stat. Methods 2009, 8, 597–599. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/1186632.1186636
http://dx.doi.org/10.1109/ICSME58846.2023.00019
http://dx.doi.org/10.1504/IJCSE.2021.113657
http://dx.doi.org/10.1109/SP46215.2023.10179479
http://dx.doi.org/10.1145/3576043
https://github.com/home-assistant/core/blob/1242456ff1fc8f70ff48503f91d6d54d9a46cfbc/homeassistant/helpers/network.py
https://github.com/home-assistant/core/blob/1242456ff1fc8f70ff48503f91d6d54d9a46cfbc/homeassistant/helpers/network.py
https://docs.python.org/3/library/ast.html
http://dx.doi.org/10.1109/TSE.2016.2532875
https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
http://dx.doi.org/10.1016/j.cola.2019.03.006
http://dx.doi.org/10.1109/ICSE.2019.00048
http://dx.doi.org/10.1109/MSR.2019.00066
http://dx.doi.org/10.1145/3368089.3417943
https://pypistats.org/top
https://github.com/topics/python?l=python&o=desc&s=stars
http://dx.doi.org/10.22237/jmasm/1257035100

	Introduction
	Related Works
	Background
	Syntax of Boolean Expressions
	Dynamic Slicing
	Short-Circuit Evaluation
	Relevant Slicing

	Pruned Slicing
	Relation of the Different Slice Types
	Prototype Implementation
	Technical Details
	Metamorphic Testing
	Limitations
	Possible Improvements

	Evaluation
	Research Questions
	Evaluation Metrics
	Evaluation Environment and Evaluation Restrictions
	Datasets
	Results
	Threats to Validity

	Conclusions
	References

