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Abstract: The vulnerability of civil receivers of the Global Satellite Navigation System (GNSS) to
spoofing jamming has raised significant concerns in recent times. Traditional multi-antenna spoofing
detection methods are limited in application scenarios and come with high hardware costs. To address
this issue, this paper proposes a novel GNSS spoofing detection method utilizing three low-cost
collinear antennas. By leveraging the collinearity information of the antennas, this method effectively
constrains the observation equation, leading to improved estimation accuracy of the pointing vector.
Furthermore, by employing a binary statistical detection model based on the sum of squares (SSE)
between the observed value and the estimated value of the pointing vector, real-time spoofing signal
detection is enabled. Simulation results confirm the efficacy of the proposed statistical model, with
the error of the skewness coefficient not exceeding 0.026. Experimental results further demonstrate
that the collinear antenna-based method reduces the standard deviation of the angle deviation of
the pointing vector by over 55.62% in the presence of spoofing signals. Moreover, the experiments
indicate that with a 1 m baseline, this method achieves 100% spoofing detection.

Keywords: collinearity; Global Navigation Satellite System (GNSS); low cost; multi-antenna;
spoofing detection

1. Introduction

GNSS is widely recognized as an accurate and effective means for users to obtain spa-
tiotemporal reference information [1]. However, it is susceptible to various vulnerabilities,
such as intentional or unintentional spoofing signals in the environment, which can lead
to a decrease in positioning accuracy or even provide false Positioning, Navigation, and
Timing (PNT) information. These issues can result in serious security threats in applications
like unmanned aerial vehicles and autopilot systems [2,3]. One of the current hotspots
in the field of GNSS anti-spoofing is the multi-antenna GNSS spoofing detection method,
which utilizes the geometric differences between spoofing signals and real signals to detect
spoofing attempts [4–6]. Since it is nearly impossible to replicate the geometric space
information of GNSS satellites, the multi-antenna spoofing detection method has become
one of the most effective spoofing detection techniques [7,8].

The simplest form of the multi-antenna technique is the two-antennas spoofing detec-
tion method. These methods are typically predicated on the notion that multiple spoofing
signals emanate from a single direction (e.g., a GNSS signal repeater broadcasting all
received GNSS signals). In this scenario, the double difference between the code pseudo-
range and carrier phase observations received by the two antennas serves as the deciding
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factor for spoofing detection [9]. Assuming that two or more spoofing signals are coming
from the same direction, the single difference of pseudo-range or carrier phase for distinct
antennas is nearly identical, and the double difference of pseudo-range or carrier phase
between two or more spoofing signals will approach zero. In contrast, the difference for real
signals varies significantly, as the directions of different satellites differ greatly at any given
time, resulting in a relatively large double difference observation value. Generally speaking,
the observation value of pseudo-range does not suffer from any ambiguity resolution issues,
making it easier to implement. However, the observation error of pseudo-range is relatively
significant and may significantly impact the algorithm’s spoofing performance [10,11]. The
carrier phase’s precision is two orders of magnitude greater than the code pseudo-range,
so the carrier phase is the preferred choice for constructing the detection statistical model
in the two-antennas spoofing detection method [12,13]. Nonetheless, this approach is
contingent on the assumption that the spoofing signal originates from the same direction.
If the spoofing source emitted only one spoofing signal, this technique might fail [14,15].

The utilization of multiple antennas through the array anti-spoofing method has been
proposed as a more advanced approach [16–18]. This technique samples the GNSS signal
in the space domain through the array antenna and detects the spoofing signal based on
the direction of the incident signal. A null is formed in the antenna pattern employing
adaptive filtering, which leads to the complete suppression of the spoofing signal towards
the direction of the interference source [19]. However, this method can only detect a limited
number of spoofing signals. When there are multiple spoofing signals, this method may
also fail, and forming a null for the spoofing signal will also cause a certain degree of
attenuation of the real signal power [20,21]. Additionally, the cost of large-scale dedicated
antenna arrays is high, limiting its practical applications [22–24].

There exists a comparatively intricate multi-antenna spoofing detection technique that
can identify a single spoofing signal and spoofing signals from varying directions [25].
When the attitude information of several antennas is obtainable, the real signal’s incident di-
rection can be deduced from the satellite’s broadcast ephemeris information, in conjunction
with the antenna’s crude position. The method deems that there is spoofing signal jamming
when the difference between the estimated signal incident direction and the actual incident
direction of the multi-antenna is greater than a stipulated threshold [26]. In principle, this
method can identify the presence of spoofing signals as long as the incident direction of the
actual and spoofing signals are inconsistent. Due to the absence of additional assumptions,
this method has a vast range of practical applications. Since ephemeris information is
challenging to forge, this approach has a strong likelihood of detecting spoofing in a variety
of circumstances. Nevertheless, using this method typically necessitates more intricate
multi-antenna calibration technology to ensure the accuracy of estimation of the signal
direction [27]. Furthermore, obtaining accurate carrier attitude information requires auxil-
iary equipment such as an inertial navigation system (INS) or inertial measurement unit
(IMU) [28–30]. Therefore, the entire equipment incurs relatively high hardware and system
complexity costs, making it challenging to implement [31].

This paper proposes a method to detect spoofing using three low-cost antennas, ad-
dressing the current issues with multi-antenna spoofing detection methods. The proposed
method leverages the collinear arrangement of the antennas to effectively constrain the
observation equation, aiding in the accurate estimation of the pointing vector. Statistical
models are constructed for both real and spoofing signals, measuring the SSE statistics be-
tween the observed values and the estimated values of the pointing vector and employing
a reasonable threshold value to enable effective spoofing detection. This method does not
require the use of additional hardware equipment, resulting in a reduction in hardware
costs while achieving real-time detection of spoofing signals. To further detail the proposed
method, Section 2 outlines the statistical model of spoofing signals and the principle of
spoofing detection. The spoofing signal model is then verified by Monte Carlo simulation
in Section 3. Experimental verification scenarios are created in Section 4, with one scenario
containing spoofing signals and another without. Finally, Section 5 summarizes the paper.
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2. Principle of Spoofing Detection Method Using Three Collinear Antennas

The paper proposes a spoofing detection method that utilizes three collinear antennas,
as illustrated in Figure 1. The antennas are aligned in a linear formation and labeled as
Antenna 1, Antenna 2, and Antenna 3. The direction of the vector is represented by the
pointing vector, which is the unit direction vector between any two points in space. As
the three antennas are in the same line, the pointing vector calculated from any of the
baselines is entirely consistent. To avoid potential clock errors, the three antennas are
operated by a common oscillator, and their placement on the carrier is fixed, allowing for
accurate measurement of the baseline length between them. In this paper, the baseline
length between antennas is labeled as d12, d23, and d13, where d23 = d13 − d12. To maintain
consistency in the integer ambiguity of the carrier phase, the length difference between
antennas is set to be less than half a wavelength, expressed as d23 − d12 < 0.5λ, where
λ refers to the wavelength of the received signal [32–34]. Assuming m is the number of
satellites, the carrier phase single difference observation equation between Antenna 1 and
Antenna 2 can be formulated as follows:

Φ̆12 = Φ12 + e = d12Ha + e (1)

where Φ12 is the carrier phase single-difference true matrix between Antenna 1 and Antenna
2. The observation noise, denoted by e, is Gaussian white noise with zero mean value and
a standard deviation of σ and satisfies e ∼ N

(
0, σ2Im

)
, where Im is the m-order identity

matrix. The m × 3 satellite line-of-sight vector matrix, represented by H, can be obtained
from the ephemeris information. The pointing vector between antennas is denoted by a.
Additionally, based on the geometric relationship depicted in Figure 1, the true value of the
carrier phase single difference may also be expressed as follows:

Φ12 = d12Ha = d12 cos θ (2)

where θ is direction of arrival (DOA) of the satellite signals. According to Equation (2), we
can get the following:

a = (HTH)−1HTΦ12/d12 = (HTH)−1HT cos θ (3)
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From Equation (3), it is evident that the pointing vector a exhibits a positive correlation
with the cosine matrix of the signals’ DOA. The pointing vector represents the signals’
geometry matrix, projected onto the navigation coordinate system, and it reflects the
spatial distribution of the GNSS signals. Should a spoofing signal be present, a substantial
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deviation will arise between the DOA of the spoofing signal and that of the real signal,
thereby causing the pointing vector to change. Consequently, detecting the spoofing signal
can be achieved by computing the observation error of the pointing vector.

We can obtain the observed value ă of the pointing vector by solving the least squares
of Equation (1):

ă = (HTH)−1HTΦ̆12/d12 (4)

As evidenced by Equation (4), the accuracy of ă is typically compromised by the
prevailing observation noise, leading to a non-negligible deviation from optimal perfor-
mance. In tandem with this, ă conforms to the Gaussian distribution. Furthermore, the
variance-covariance matrix of ă can be delineated as follows:

Σ = σ2(HTH)−1/d2
12 (5)

It is established that ă can be represented as ă ∼ N(a, Σ). The evaluation of the
pointing vector’s observation error requires an estimation of its true value a. It can be
inferred from Equation (5) that Σ is inversely proportional to the square of d12, which
implies that the accuracy of ă is positively correlated with the baseline length of Antenna 1
and Antenna 2. To enhance the precision of the pointing vector, additional restrictions can
be placed on it by leveraging the unit characteristics and Antenna 3′s information.

The more accurate pointing vector ă′ can be calculated according to the following
formula:

ă′ = argmin∥a∥2
2=1∥ă − a∥2

2
(6)

where ∥ · ∥2
2 represents the two-norm of the vector. Given that the three antennas are

aligned in a collinear fashion, the pointing vector for Antenna 1 and Antenna 2 is the same
as that for Antenna 1 and Antenna 3. Consequently, the measured carrier phase difference
between Antenna 1 and Antenna 3 can be mathematically expressed as:

Φ̆13 = d13Hă′ + e (7)

In order to re-estimate the pointing vector, the following minimization formula us-
ing Φ̆13 can be employed:

min∥a∥2
2=1Φ̆13

∥∥Φ̆13 − d13Ha
∥∥2

2 (8)

Equation (8) pertains to the solution via least squares with quadratic constraints. This
solution may be obtained through the use of the Lagrange multiplier method.

d13(HTH + kI)a = HTΦ̆13 (9)

The value of k in Equation (9) can be determined iteratively using the Newton method,
starting from an initial value of 0 and converging to a stable final value. Subsequently, this
value of k can be used in Equation (9) to obtain an estimate of the pointing vector â.

â = (HTH + kI)−1HTΦ̆13/d13 (10)

Based on the calculation process of â, it is evident that the accuracy of the estimated
value â is notably higher than that of the observed value ă. This is primarily attributable to
a sequence of constrained optimization techniques, whereby additional data from Antenna
3 are incorporated. Consequently, â is deemed as a reliable estimate of the true value a. To
evaluate the error between â and ă, we employ the SSE statistics, which can be defined
as follows:

SSE = (ă − â)TΣ−1(ă − â) (11)

The utilization of the normalization factor Σ−1 is essential for the normalization of the
residual pointing vector. Equation (11) clearly indicates that in the absence of any spoofing
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signals, the SSE metrics must conform to the chi-square distribution with three degrees of
freedom, which is represented as χ2(3).

In the case of the spoofing signal, it is assumed that the satellite signal i is in fact being
interfered with. In particular, we record the DOA of the true satellite signal as θi. We can
denote the DOA with the spoofing signal as θsp and express the carrier phase difference of
baseline 12 accordingly.

Φ̆′
12 = Φ̆12 + ∆Φ = Φ̆12 + d12

(
cosθsp − cosθ

)
(12)

At this time, the observed value of the pointing vector can be recorded as ă′:

ă′ = (HTH)−1HTΦ̆′
12/d12 = (HTH)−1HT(Φ̆12 + ∆Φ)/d12

= ᾰ + (HTH)−1HT∆Φ/d12
(13)

We set R =
(
HTH)−1HT , and then, Equation (13) can be rewritten as:

ă′ = ă + R
(
cosθsp − cosθ

)
(14)

In the presence of the spoofing signal, the SSE between the observed value ă′ and
estimated value â of the pointing vector can be mathematically expressed as follows:

SSE = (ă′ − â)TΣ−1(ă′ − â) (15)

At present, it is expected that the SSE should meet a non-central chi-square distribution
with 3 degrees of freedom, denoted as χ2(3, γ). Based on this, the identification of binary
hypotheses for both real signals and spoofing signals can be formulated as follows:

H0(no spoofing) : SSE ∼ χ2(3)

H1(spoofing) : SSE ∼ χ2(3, γ)
(16)

where the eccentricity γ of chi-square distribution can be expressed as follows:

γ = ∆ΦTRTΣ−1R∆Φ/d2
12

= (cosθsp − cosθ)TRTΣ−1R(cosθsp − cosθ)
(17)

The findings of this research demonstrate that the value of γ is positively related to the
cosine difference of the DOA between the real and spoofing signals, as depicted in Equation
(17). Conversely, the correlation is negative with the covariance matrix Σ of the pointing
vector. As for Equation (5), it shows that the SSE statistic is inversely proportional to the
square of d12. Therefore, γ should be proportional to the square of d12. In simpler terms,
increasing the baseline can result in larger SSE statistics for the same spoofing scenario.

According to the Neyman–Pearson criterion, an appropriate threshold value SSEth
can be determined. The null hypothesis H0 is rejected when SSE exceeds SSEth, and it is
not rejected when SSE is less than or equal to SSEth. The detection probability PD and the
false alarm rate Pfa can be calculated using the following equations:Pf a = P{SSE > SSEth|H0} = 1 −

∫ SSEth
0 pχ2(3)(x)dx

PD = P{SSE > SSEth|H1} =
∫ ∞

SSEth pχ2(3,γ)(x)dx
(18)

where and are probability density functions (PDF) of χ2(3) and χ2(3, γ), respectively.
According to Equation (18), it can be observed that the false alarm rate Pfa is directly

related to the threshold value SSEth. In practical applications, the threshold value SSEth is
typically determined based on a predetermined false alarm rate Pfa (e.g., Pfa = 10−4). The
relationship between the threshold value and the false alarm rate is illustrated in Figure 2.
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The appropriate threshold value can be selected based on the performance requirements of
the specific application scenario.
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Under current technical conditions, achieving accurate phase synchronization in real
time between the spoofing signal and the real signal is not possible. Typically, there is a
considerable angle deviation between the two signals, leading to the identification of the
presence of the spoofing signal through changes in the SSE statistics.

3. Simulation Verification Results

This section presents the simulation-based verification of the proposed method. Specif-
ically, we created two sets of antenna configurations, each with three antennas arranged
in a straight line but with differing baseline lengths. The first set had baseline lengths of
d12 = 0.20 m, d13 = 0.48 m, while the second set had a baseline length of d12 = 0.30 m,
d13 = 0.68 m. The simulated scene included seven stationary GPS satellites and utilized L1
frequency signals with a wavelength of approximately 19 cm. The observed noise standard
deviation σ of carrier phase was set to 2 mm. The simulation was conducted under two
conditions: the H0 hypothesis without the spoofing signal and the H1 hypothesis with the
spoofing signal. Each case underwent 10,000 simulations.

The H0 hypothesis posits that the antennas are capable of receiving all real signals,
while the H1 hypothesis suggests that the spoofing signals with higher power can capture
the receiver’s tracking loop, leading to deviations in the carrier phase [35]. To model
the occurrence of two spoofing signals, we artificially introduced errors for the carrier
phase of the SV13 and SV21 satellites. Specifically, the elevation and azimuth deviations
for both the real and spoofing signals were −10◦ in the body frame coordinate system.
However, all other parameters remained consistent with the scenario of the absent spoofing
signal. Figure 3 presents the constellation distribution of both the real and spoofing
signals in the body frame coordinate system, with blue and yellow dots representing each
signal, respectively.

The SSE statistics for the H0 and H1 hypotheses, as well as the theoretical eccentric-
ity γ of the H1 hypothesis, can be calculated using Equations (11), (15) and (17). The
PDFs and corresponding theoretical distributions of two sets are shown in Figure 4a,b,
respectively. The green and gray histograms represent the SSE statistics of H0 and H1
hypotheses, respectively, and the red and black curves represent the theoretical distribution
of H0 and H1 hypotheses, respectively.
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Figure 4. Probability density distribution of SSE statistics of simulated data: (a) Set1: d12 = 0.20 m;
(b) Set2: d12 = 0.30 m.

Upon comparison of Figure 4a,b, a significant disparity in the SSE statistics becomes
evident between the H0 and H1 hypotheses. Consequently, it is feasible to ascertain the
presence of the spoofing signal by determining an appropriate threshold. Furthermore, the
maximum and mean values of SSE for H1 in Figure 4b are significantly greater than the
data in Figure 4a, indicating a correlation between the SSE statistics of the spoofing scenario
and the length of the baseline, which aligns with Equation (17). As a result, enhancing the
detection probability of this technique is theoretically possible by using a longer baseline.

The results indicate that the SSE statistics of the H0 hypothesis are generally in align-
ment with the χ2(3) theoretical distribution. However, a slight divergence is observed
between the SSE statistics of the H1 hypothesis and the χ2(3, γ) theoretical distribution,
which can be attributed to errors between the estimated and true values of the pointing
vector that arise due to spoofing signals. The χ2 distribution is inherently a skewed normal
distribution, and therefore, the degree of variation between the simulated and theoretical
distributions can be evaluated using the skewness coefficient.

The skewness coefficient serves as a crucial statistical metric delineating the asym-
metry level of a probability density function concerning the standard normal distribution.
Data symmetry is characterized by a skewness coefficient of 0, where a positive coefficient
signifies right skewness or positive skew, and a negative coefficient indicates left skewness
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or negative skew [36,37]. The magnitude of the skewness coefficient exhibits an inverse
relationship with the data bias intensity, with decreased values indicating data proximity
to a normal distribution. If the skewness coefficient of simulated data matches the theo-
retical distribution, it is considered that the constructed model possesses higher usability;
otherwise, it is regarded that the model has significant errors.

The skewness coefficient h is calculated by the following formula:

h =
K3

K2
√

K2
(19)

where K3 = m∑
(
SSE − SSE

)3/(p − 1)/(p − 2), K2 = ∑
(
SSE − SSE

)2/(p − 1), p is the
number of simulation data, and SSE is the mean of SSE statistics.

Table 1 presents the skewness coefficient h of both the SSE statistics and theoretical
distribution. The skewness coefficients of SSE statistics for H0 hypothesis are 1.678 and
1.681, respectively, with errors of 0.004 and 0.002 from the theoretical values. For the
H1 hypothesis, the skewness coefficients are 0.420 and 0.288, respectively, with an error
of 0.037 and 0.026, respectively. Although the error between the H1 hypothesis and the
theoretical distribution has slightly increased in comparison to the H0 hypothesis, it remains
consistent. Therefore, we can utilize χ2(3, γ) for the approximation of the H1 hypothesis
distribution fitting. Moreover, it is evident that the skewness coefficient of the second
set draws closer to the theoretical value as the baseline length increases. Simultaneously,
the skewness coefficient for the H1 hypothesis gradually decreases as the baseline length
increases, approaching normal distribution. Significantly, this outcome aligns entirely with
theoretical analysis.

Table 1. Simulated skewness coefficient and kurtosis of the SSE statistics and theoretical distribution.

Scheme Set χ2(3) H0 Hypothesis χ2(3,γ) H1 Hypothesis

Skewness
Set 1 1.674 1.678 0.383 0.420
Set 2 1.679 1.681 0.262 0.288

Kurtosis
Set 1 6.002 6.016 3.506 3.533
Set 2 6.011 6.012 3.124 3.140

Table 1 also presents the kurtosis of the SSE statistics and the theoretical distribution.
It can be observed from the table that the kurtosis under the H0 hypothesis is very close to
that of the theoretical distribution. The kurtosis under the H1 hypothesis is related to the
length of the baseline. The kurtosis of the Set 2, which utilizes a longer baseline, is closer to
the kurtosis of the normal distribution (theoretical value of 3). This conclusion is entirely
consistent with the preceding discussion.

To further assess the effectiveness of the proposed method, a threshold value of
SSEth = 20 was set, and the corresponding detection probability PD was plotted for various
DOA of spoofing signals, as depicted in Figure 5. It is evident from Figure 5 that a
pronounced drop in detection probability was observed when the DOA of the spoofing
signal closely aligns with the true signal, indicating a potential method failure. Nevertheless,
it can be observed that when the angular deviation between the spoofing signal and the true
signal exceeds 10◦, the detection probability of the method can reach nearly 100%. Given
the current technological capabilities, achieving real-time phase synchronization between
the spoofing and true signals is challenging, resulting in a significant angular deviation.
Hence, in the majority of cases, this method exhibits robust detection performance.
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4. Experimental Performance Verification
4.1. Performance Verification of Scenarios without Spoofing Signal

To validate the accuracy of the pointing vector estimation and false alarm rate of the
spoofing detection method proposed in this paper, experimental testing was conducted at
the Aerospace Information Research Institute, Chinese Academy of Sciences. The chosen
experimental site was an open outdoor area with no potential electromagnetic interference.
Using the UNICORECO UB480 receiver board and three cost-effective GNSS antennas,
we constructed a spoofing detection system. These antennas were powered by a shared
resonant oscillator, and their clocks were synchronized to eliminate any potential clock
differences. Additionally, we performed ample calibration to eliminate any initial er-
rors that may have arisen from the receiver. We fixed the three antennas onto a strip of
wood to ensure they were aligned in a straight line and then used tripods as carriers.
Physical representations of the receiver board and collinear antennas are displayed in
Figure 6a,b, respectively.
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In this experimental setup, the antennas received direct real signals. Both the tripod
and wooden structure remained stationary throughout the data collection process, while
we gathered two data sets by adjusting the antenna positions. Each set was observed for
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a duration of 1 h, at an output frequency of 1 Hz. The number of GPS satellites during
the observation period ranged from 6 to 8, with an average Position Dilution of Precision
(PDOD) of 1.8 to 2.7. The baseline lengths corresponding to the two sets were d12 = 0.26 m,
d13 = 0.60 m and d12 = 0.46 m, d13 = 1.00 m, respectively. The true value of the pointing
vector a = [0.626, 0.425, 0.653]T was obtained by averaging the observation values over an
extended period in advance. Using Equation (4), we can estimate the observed values ă of
the pointing vector for each epoch, and using Equation (10), we can calculate the estimated
values â of the pointing vector. Figure 7 shows the box diagrams containing the distribution
of observed values ă and estimated values â of the two data sets.
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Figure 7 demonstrates that, without the presence of spoofing signal jamming, the
observed values generally conform to a normal distribution. The upper and lower quartiles
display a symmetrical distribution. The median of the estimated value in the figure is
closer to the true value in comparison to the observed value, with the distribution of
the estimated values being more concentrated. The maximum and minimum estimated
values are significantly less than the observed values, with fewer observed outliers. These
findings effectively establish that the accuracy of pointing vector estimation subsequent
to collinearity constraint imposition is greater than the observed values. Furthermore, the
second set’s use of a longer baseline length produced more accurate values as compared to
the first set. This outcome corroborates the outcomes discussed in Section 2.

As the pointing vector is a unit vector, the precision of the observed values ă and
estimated values â can be assessed using the subsequent formula:

∆g = arccos(ăT · a/|ă|)
∆g′ = arccos(âT · a/|â|)

(20)

where |.| is the modular operation. The variables ∆g and ∆g′, measured in degrees (◦)
represent the discrepancies between the observed value ă, estimated value â, and the
true value a. To analyze these discrepancies, we determined the maximum, minimum,
mean, and standard deviation of both ∆g and ∆g′. The results of our statistical analysis are
presented in Table 2.
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Table 2. Statistics of ∆g and ∆g′ in different scenarios.

Scenario Set Scheme Mean (◦) Std (◦)

H0

Set1
∆g 0.5923 5.0593
∆g′ 0.2576 (57%) 3.7250 (26%)

Set2
∆g 0.3268 3.8727
∆g′ 0.1484 (55%) 1.5452 (60%)

H1

Set1
∆gs 1.1628 7.4731
∆gs

′ 0.4717 (59%) 4.6178 (38%)

Set2
∆gs 0.5165 4.2869
∆gs

′ 0.2292 (56%) 2.1197 (51%)

From the statistical values presented in Table 2, it is evident that the parameter ∆g′

is significantly reduced when compared to ∆g. The mean of ∆g′ is less than 1◦, which is
indicative of the effectiveness of the estimated value in approximating the true value a.
The mean of ∆g′ in the two sets exhibits a 60% and 55% reduction in comparison to that of
∆g, while the standard deviation shows a 57% and 55% reduction, thus highlighting the
greater accuracy of the estimated value compared to the observed value. The utilization of
a longer baseline is attributed to the smaller statistical values in Set2 when compared to
Set1, a finding that is consistent with the simulation results.

The SSE statistics for each set are depicted in Figure 8. It is noteworthy that the
received signals are real signals, and as a result, no substantial discrepancy can be observed
in the SSE statistics distribution between the two sets. By applying the χ2(3) theoretical
distribution of H0, an appropriate threshold (such as SSEth = 20) can be established. Given
that the SSE statistics for both sets are smaller than the set threshold, the false alarm rate is
considered to be 0.
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Figure 8. SSE statistics of real signals: (a) Set 1; (b) Set 2.

4.2. Performance Verification with Spoofing Signal

A spoofing test experiment scene was established near the experimental building of
the Chinese Academy of Sciences. The GNSS signal generator NavX®-NCS was utilized to
simulate the GPS signal in the scenario. The signal generator is depicted in physical form
in Figure 9a, while the transmitting antenna of the spoofing signal, shown in Figure 9b,
was employed. The NavX®-NCS signal generator can produce accurately defined analog
GNSS signals via the pre-defined ephemeris file. Specifically, the GPS signal of PRN 20
was generated by this generator and broadcasted via the transmitting antenna to carry out
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spoofing jamming alongside the real signal. To eliminate the near–far-effect, we endeavored
to diminish the amplification gain of the antenna while ensuring that the power of the
spoofing signal exceeds slightly that of the real signal.
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signal transmitting antenna.

In accordance with the previous section, we employed the same antenna configuration
for the sake of comparison. The corresponding baseline lengths for this scenario were
d12 = 0.26 m, d13 = 0.60 m, as well as d12 = 0.46 m, d13 = 1.00 m. The experiment’s observation
time for this spoofing scenario was 16 min and 40 s, involving 1000 sampling points. Prior
to the experiment, we obtained the true value of the antenna pointing vector by averaging
an extended observation time in advance, which was recorded as a = [0.420, 0.723, 0.549]T.
Throughout the entirety of the sampling period, the number of satellites fluctuated between
8 and 11. To facilitate analysis, we included data only from 8 common satellites during all
observation periods. The spoofing signal has significant power and must be present in each
observation data for the period.

Figure 10 displays the distribution box diagram of the pointing vector’s observed ă′ and
estimated values â in the current scenario. The figure illustrates that the existence of the
spoofing signal produces a significant deviation between the two values. Furthermore,
both values are no longer unbiased; nevertheless, the error between the estimated value
and true value is considerably reduced compared to the observed value. Additionally, the
estimated value’s distribution is concentrated, and its width is smaller than that of the
observed values in both sets.

Figure 10 illustrates the significant improvement in the accuracy of the estimated
value of the pointing vector resulting from the incorporation of constraint information
from collinear antennas. Furthermore, this approach demonstrates a notable resilience to
spoofing and jamming.

Figure 7 illustrates the distribution of estimated and observed values in the absence of
the spoofing signal. In the absence of the spoofing signal, both the estimated and observed
values serve as unbiased estimates of the true values, albeit with some improved precision.
Figure 10 showcases the distribution of estimated and observed values under the presence
of a spoofing signal. When the spoofing signal interferes, the observed values no longer
provide unbiased estimates of the true values, resulting in significant errors. Nonetheless,
the distribution of estimated values closely aligns with the unbiased estimates, thereby
enhancing both accuracy and precision. A comparison between Figures 7 and 10 reveals
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that the proposed method, through the incorporation of additional constraints, fortifies the
model and demonstrates a certain resilience against spoofing interference.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 10. Box diagram of observed and estimated values of pointing vector with spoofing signal. 

Figure 10 illustrates the significant improvement in the accuracy of the estimated 
value of the pointing vector resulting from the incorporation of constraint information 
from collinear antennas. Furthermore, this approach demonstrates a notable resilience to 
spoofing and jamming. 

Figure 7 illustrates the distribution of estimated and observed values in the absence of 
the spoofing signal. In the absence of the spoofing signal, both the estimated and observed 
values serve as unbiased estimates of the true values, albeit with some improved precision. 
Figure 10 showcases the distribution of estimated and observed values under the presence 
of a spoofing signal. When the spoofing signal interferes, the observed values no longer pro-
vide unbiased estimates of the true values, resulting in significant errors. Nonetheless, the 
distribution of estimated values closely aligns with the unbiased estimates, thereby enhanc-
ing both accuracy and precision. A comparison between Figures 7 and 10 reveals that the 
proposed method, through the incorporation of additional constraints, fortifies the model 
and demonstrates a certain resilience against spoofing interference. 

Utilizing Equation (20), we computed the deviation between the observed value 𝒂𝒂�′, 
estimated value 𝒂𝒂�, and the true value a, recorded as Δgs and Δgs′, the statistical results of 
which are also displayed in Table 2. When there were spoofing signals, the statistics of Δgs 
in Table 2 exhibited significant differences from that of Δg. Take, for instance, the first set, 
where the mean of Δgs increased by 1.66°. This implies that the existence of the spoofing 
signal has a considerable impact on the observed value of the pointing vector. Furthermore, 
the statistics of Δgs′ also increased in comparison with Δgs. In the first set, the mean increased 
by 1.11°. However, the error of Δgs′ was substantially reduced when compared with Δgs, 
where the mean and standard deviation of the two sets are reduced by 47%, 59%, and 57%, 
56%, respectively. This indicates that the accuracy of the estimated value 𝒂𝒂� is still consider-
ably higher than the observed value 𝒂𝒂�′ when the spoofing signal is present. 

Upon examination of Table 2, it is apparent that the standard deviation of the second 
set is lower than that of the first, regardless of whether it pertains to Δgs or Δgs′. This 
observation suggests that the precision of the pointing vector is positively correlated with 
the length of the baseline, a result that is in congruence with findings in the absence of 
spoofing signals. 

Equation (15) enables calculation of the SSE statistics for both sets, as depicted in 
Figure 11. Set1 and Set2 correspond to the blue and red curves on the graph, respectively, 
with the threshold for spoofing detection represented by a dotted line. When compared 
to Figure 8, Figure 11 reveals the SSE statistic to be higher in the presence of spoofing 

Figure 10. Box diagram of observed and estimated values of pointing vector with spoofing signal.

Utilizing Equation (20), we computed the deviation between the observed value ă′,
estimated value â, and the true value a, recorded as ∆gs and ∆gs

′, the statistical results
of which are also displayed in Table 2. When there were spoofing signals, the statistics
of ∆gs in Table 2 exhibited significant differences from that of ∆g. Take, for instance, the
first set, where the mean of ∆gs increased by 1.66◦. This implies that the existence of the
spoofing signal has a considerable impact on the observed value of the pointing vector.
Furthermore, the statistics of ∆gs

′ also increased in comparison with ∆gs. In the first set,
the mean increased by 1.11◦. However, the error of ∆gs

′ was substantially reduced when
compared with ∆gs, where the mean and standard deviation of the two sets are reduced
by 47%, 59%, and 57%, 56%, respectively. This indicates that the accuracy of the estimated
value â is still considerably higher than the observed value ă′ when the spoofing signal
is present.

Upon examination of Table 2, it is apparent that the standard deviation of the second
set is lower than that of the first, regardless of whether it pertains to ∆gs or ∆gs

′. This
observation suggests that the precision of the pointing vector is positively correlated with
the length of the baseline, a result that is in congruence with findings in the absence of
spoofing signals.

Equation (15) enables calculation of the SSE statistics for both sets, as depicted in
Figure 11. Set1 and Set2 correspond to the blue and red curves on the graph, respectively,
with the threshold for spoofing detection represented by a dotted line. When compared to
Figure 8, Figure 11 reveals the SSE statistic to be higher in the presence of spoofing signals.
Real-time detection of these signals can therefore be achieved by applying a reasonable
SSE threshold. Additionally, due to the utilization of a longer baseline, the mean of the
SSE statistic for Set2 exceeds that of Set1, consistent with Equation (17). It is observed that
longer baselines can enhance detection probability, producing detection rates of 99.53%
and 100% for Set1 and Set2, respectively. The experimental results underscore the efficacy
of longer baselines in increasing detection probabilities.
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Figure 11. SSE statistics with one spoofing signal.

Comparing Figures 8 and 11 shows that when there is no spoofing signal, the SSE
values remain below the predefined threshold, and the SSE values across both data sets
are closely aligned. However, in the presence of the spoofing signal, there is a substantial
increase in SSE values, surpassing the threshold significantly and indicating a positive
correlation between SSE values and baseline length. Consequently, by monitoring SSE
value fluctuations, we can effectively detect spoofing signals, with the potential for an
increased success rate by utilizing a longer baseline in the methodology.

In order to verify the performance of the method in the presence of multiple spoofing
signals, we further used the NavX®-NCS signal generator to generate two spoofing signals
and calculated the SSE metric for this scenario, as shown in Figure 12. Comparing Figure 12
with Figure 11, it can be observed that due to the presence of multiple spoofing signals,
the means of the SSE metric in Figure 12 are significantly larger than those in Figure 11,
while the detection probability in both cases is 100%. As the number of spoofing signals
increases, the detection performance of the method tends to improve.
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5. Discussion and Conclusions

Spoofing detection based on multi-antenna technology represents a growing field
within anti-spoofing research. Traditional methods using multiple antennas face challenges
related to limited applicability and high costs. In response to these challenges, our study in-
troduces a real-time spoofing detection approach utilizing three low-cost collinear antennas
and establishes a binary hypothesis statistical model for spoofing detection. By exploiting
the consistency of the pointing vectors from the three antennas, our method achieves effec-
tive spoofing signal detection. Simulation results illustrate a notable enhancement in the
accuracy of pointing vector estimation when spoofing signals are absent. Two sets of simu-
lated data show reductions in mean angle deviation of the pointing vector by 59.6% and
54.9%, and decreases in standard deviation by 56.5% and 54.6%, respectively. Additionally,
experimental findings reveal that the false alarm rate of our method approaches 0.

In the presence of spoofing signals, the estimation of the pointing vector becomes
biased. However, our proposed method effectively enhances the accuracy of pointing vector
estimation. Experimentally, we observe reductions of 47.12% and 59.43% in mean angle
error and 56.5% and 55.62% in standard deviation of the angle error of the pointing vector.
Moreover, our approach demonstrates proficient spoofing signal detection, with detection
probability increasing with the baseline length as predicted by our theoretical analysis.
Specifically, for a baseline length of 1 m, our method achieves a detection probability
of 100%.

Comparing the approach outlined in this study with the four-antenna array spoofing
detection method detailed in reference [31], it is evident that both techniques attain close
to 100% detection probability in static experimental assessments under spoofing signal
conditions. Nonetheless, the receiver employed in reference [31] is a specialized array
receiver characterized by substantial hardware dimensions and expenses. In contrast, the
three-antenna spoofing detection methodology introduced in this paper can be integrated
utilizing readily available low-cost receivers, offering substantial cost-effectiveness and
scalability benefits.
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