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Abstract: A level shifter (LS) appears to be highly efficient and effective in solving voltage contentions
between deep sub-threshold and core voltage levels. An input voltage-level driven split-input
inverter that can create common unconnected PMOS and NMOS transistors for the input inverter is
proposed, which is powered and used at the input stage to achieve maximum conversion efficiency.
Layout and simulation results across different corners have demonstrated that the proposed LS is
highly useful for cutting-edge nanoscale applications. It can up-convert voltage from 0.2 V to 1.2 V
and down-convert from 1.2 V to 0.2 V @ 1 MHz input pulse, with a level-up or level-down mean
switching delay of 1.3 ns, and a power of 9.5 nW. Moreover, the LS occupies an area of 8 µm2, which
is a reasonably compact size compared to the typical LS designs. Overall, the proposed voltage LS
design is an efficient and effective solution that could have an ample range of applications in IoT and
biomedical, wireless sensor networks.

Keywords: propagation delay; power consumption; voltage-level driven-input inverter; Internet of
Things (IoT); System-on-Chip (SoC)

1. Introduction

Portable devices, such as cell phones, computers, laptops, and various sophisticated
electronic devices, are very popular with a variety of applications. The demand for hand-
held devices has led to numerous reductions in the size of devices, their weight, and the
recharge intervals of these devices. Designing for lower power is the essential element for
lighter and longer-lasting batteries. Thus, power reduction is the most essential design
issue that today’s VLSI design engineers must face when dealing with the design of inte-
grated circuits. Supply voltage scaling can be the most efficient method of reducing the
dynamic power of switching because both the voltage of supply and its voltage fluctuation
are decreased by reducing the supply voltage, leading to a quadratic decrease in dynamic
power, whereas the speed decreases [1–3].

Integrated System-on-Chip (SoC) architectures are a composition of dissimilar blocks
of intellectual property (IP) cores that operate at different levels of input voltage to meet the
required time-related criteria [4–6]. Non-critical blocks consume less energy by operating at
lower supply voltages (VDDL), sometimes in the sub-threshold region, while time-critical
blocks require higher supply voltages (VDDH) to achieve the desired performance [7–9].
To ensure proper interaction between different voltage domains/cores, reliable LS circuits
are necessary to maintain the signal integrity of the design, as depicted in Figure 1.
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Figure 1. Level shifter position. 

Current state-of-the-art LSs are categorized into two types: circuit topologies using 
cross coupled (CC) and current mirror (CM) techniques. While LSs that utilize CC tech-
niques (Figure 2) have less standby power consumption, they are limited by a trade-off 
between their pull-up and pull-down networks, which affects their speed and energy 
consumption during switching. LSs face a challenge when up-converting sub-threshold 
voltages, as it causes the pull-down network areas to be too large and complex in practice 
[10–13]. 

 
Figure 2. Cross coupled LS. 

Current-mirror-based architectures [7,10,14] perform better when a wide range of 
up-conversion is required, as they face more contention among pull-up and pull-down 
networks, which results in increased speed and reduced energy consumption. However, 
they tend to consume more static power. To overcome the limitations of cross-coupled 
and current-mirror-based topologies, recent studies have presented several options. For 
example, adaptive/regulated pull-up networks have been recommended in some studies 
to reduce current contention in cross-coupled-based systems and improve energy effi-
ciency. 

An improved Wilson current mirror that utilizes mixed-threshold voltage devices 
has also been reported to address issues with conventional current-mirror-based LSs. In 
order to achieve even greater energy efficiency, the output stage of an inverting buffer 

Figure 1. Level shifter position.

Current state-of-the-art LSs are categorized into two types: circuit topologies us-
ing cross coupled (CC) and current mirror (CM) techniques. While LSs that utilize
CC techniques (Figure 2) have less standby power consumption, they are limited by
a trade-off between their pull-up and pull-down networks, which affects their speed and
energy consumption during switching. LSs face a challenge when up-converting sub-
threshold voltages, as it causes the pull-down network areas to be too large and complex
in practice [10–13].
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Figure 2. Cross coupled LS.

Current-mirror-based architectures [7,10,14] perform better when a wide range of
up-conversion is required, as they face more contention among pull-up and pull-down
networks, which results in increased speed and reduced energy consumption. However,
they tend to consume more static power. To overcome the limitations of cross-coupled
and current-mirror-based topologies, recent studies have presented several options. For
example, adaptive/regulated pull-up networks have been recommended in some studies
to reduce current contention in cross-coupled-based systems and improve energy efficiency.

An improved Wilson current mirror that utilizes mixed-threshold voltage devices has
also been reported to address issues with conventional current-mirror-based LSs. In order
to achieve even greater energy efficiency, the output stage of an inverting buffer includes a
split-input configuration, which is employed in conjunction with an improved Wilson CM
that uses mixed-threshold voltage devices [7,15–19].

This study introduces a new short circuit aware inverter that can create common
unconnected PMOS and NMOS for a split-input inverter LS design that has been validated
through layout and simulation measurements, which the authors believe to be the first of its
kind. The designed circuit was laid out using 65 nm CMOS and tested on five different PVT
corners. Section 2 of the paper outlines the split-input inverter level shifter (SILS), which
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is then assessed based on measurement results in Section 3. Conclusions are presented
in Section 4.

2. Proposed Input Voltage-Level Driven Split-Input Inverter Level Shifter

Figure 3 shows the invented input voltage-level driven-input inverter level shifter de-
sign, which is based on a short-circuit-aware inverter that can create common unconnected
PMOS and NMOS for the “split-input inverting buffer LS” design. Unlike previous designs,
the circuit utilizes a split-input inverting buffer (MP2-MN2) to reduce power consumption.
However, the output stage driving method is unique and involves a boosting inverter and
additional feedback connected to MN4-MP4. The split inverter MP2-MN2 eliminates the
short circuit when VIN is equal to VDDL. The boosting inverter MP3-MN3 ensures the
full swing at VOUT for both logic 0 and 1. The W/L ratio of NMOS is 1:1 and PMOS is
3:1,which are maintained at the level shifting stage, and 4:1 for MP1 and 2:1 for MN1 at the
2 × 1 multiplexer stage at the 65 nm techno logy node.
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Figure 3. Proposed SILS.

The proposed SILS design is different from other solutions presented in previous
studies. Compared to previous designs, this split-input inverter enables the proposed
design features and a larger voltage differential. This results in a reduction in the short
circuit power of the driving stage and improved energy efficiency during both VDDL
to VDDH and VDDH to VDDL transitions, particularly for up-conversion from the sub-
threshold region. Figure 5 demonstrates the transitory behavior of SILS as the input pulse
amplitude voltage is up-converted from 0.2 V to 1.2 V for output transitions.

VSC(t) = 0.5
[

τGmMP2
CL

(VDDH − |VthMP2|)− τ IMP2
CL

|VthMP2|
]
e

t
τ +

0.5
[

τGmMN2
CL

(VDDH − |VthMN2|)− τ IMN2
CL

|VthMN2|
]
e

t
τ +

(VDDH − |VthMN2|) When VIN > VDDL

(1)

where VSC is the voltage at node SC, GmMP2 is the transconductance of the MP2, GmMN2
is the transconductance of the MN2, VthMP2 is the nominal Vt of the MP2, VthMN2 is the
nominal Vt of the MN2, CL is the total capacitances of the VOUT and gate capacitance
of MP3-MN3, and IMP2 and IMN2 represent the currents of MP2 and MN2, respectively.
Voltage at node VSC is a function of rise time and fall time, which will be negligible as the
inverter creates common unconnected PMOS and NMOS transistors. In Figure 3, a short
circuit aware inverter is shown in a circuit comprising MP3 and MN3 devices, which are
never simultaneously ON or OFF, and the node voltage at SC is influenced by Equation (1)
when the VIN is equal to VDDL. When the VIN is less than or equal to VDDH, the level
transition of VSC involves the supply level rails from VDDH to VSS. Therefore, due to a
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considerable fall time, VOUT reaches 0. The difference between the first-order and second-
order terms leads to a fractional value and means the node voltage SC is stronger than zero,
and the driving inverter produces VDDL equal to VOUT as per the mathematical model in
Equation (2).

VSC(t) = 0.5
[

τGmMP2

CL
(VDDH − |VthMP2|)−

τ IMN2

CL
|VthMN2|

]
When VIN ≤ VDDH (2)

When the VIN is equal to VDDL, MP1 turns ON, which will make VDDH available at
VDD. LS acts as a level up-converter, and MN2 ON and MP2 OFF and node voltage SC
cause the pull-down and driving inverter (MP3-MN3) to produce a strong VOUT (VDDH).
The feedback path ensures MP2 OFF, and when the VIN is equal to VDDH, MN1 turns
ON, which will make VDDL available at VDD. LS acts as a level down-converter, and
MN2 ON and MP2 OFF and node voltage SC cause the pull-down and driving inverter
(MP3-MN3) to produce a strong VOUT (VDDL). The feedback path ensures MP2 OFF,
and when the input signal VIN is equal to VSS, MP1 turns ON, which will make VDDH
available at VDD. MN2 OFF and MP2 ON and node voltage SC cause the pull-up and
driving inverter (MP3-MN3) to produce a strong VSS. The performance of SILS is depicted
in the measurements and results sections.

The current flowing through the MP2-MN2 branch is low for both VDDL and VDDH
inputs, indicating that the node SC is either VDD or VSS when fully charged, and it triggers
the MP3 or MN3 to switch ON or OFF. The activation of MP1 and the reduction in conflict
at the SC node cause the SC node to rise and turn on MN3, the MN3 component can be
turned OFF by fully discharging the SC to 0 V. From Figure 2, the proposed LS is used
during the conversion of the input signal from high to low. To charge the SC and discharge
the VOUT node to VSS, the charging current IRISE is mirrored as IFALL and the sum of CL
with the rate of change of VOUT. Consequently, the rise and fall times of VOUT are made
to be symmetrical, as shown in (3). The specifications of the proposed SILS are compared
in the results and discussion sections.

IRISE = IFALL + CL
d
dt

VOUT (3)

To enhance the switching performance and ensure a small area and low VDDL robust-
ness, a dual VTH design technique was utilized along with appropriate transistor scaling.
Specifically, LVT devices were used for MN3-MN4, while RVT devices were employed for
the remaining transistors. An important point to consider is that the voltage shifting range
of the SILS can be extreme between VDDL and VDDH. Figure 4 depicts the proposed LS
layout. The LS design utilized only two metal wires.
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The layout comprises metal layers, an n wire, and p-wires with the adaptive biasing
system for a split-input inverter with 2.72 µm × 2.94 µm implementations, and it needs
approximately the same space in length and width as CMOS devices. It is apparent that the
layouts in the size of the MP2 transistor are the largest because it covers nearly one half of
the area of MN1. Its size is rather small in comparison to the available LS, and it becomes
negligible in large arrays of the LS interface. The resulting LS occupies approximately an
8 µm2 area.

The transient waveforms of SILS for 0.2 V and 1.2 V for VDDL and VDDH, respectively,
are depicted in Figure 5. A short-circuit-aware inverter that can create common unconnected
PMOS and NMOS for the split-input inverter buffer LS is utilized to decrease the short
circuit current during VDDL to VDDH and VDDH to VDDL transitions. The voltage
variation between VDDL and VDDH nodes ensures the required impedance of the pull-up
and pull-down of the MN2 and MP2 inverter, allowing for it to be turned on at extreme
levels of VDDLs, thereby reducing the short circuit current and reducing the power of SILS.
As mentioned in Figure 3, by adding up MP1, MN1 results in a 2 × 1 multiplexer that
enables the LS to be an up shifter or a down shifter, suitable for a sub-threshold and super
threshold LS circuit, where VDDL is lower than the Vt of the MOSFET. Figure 5 illustrates
the VDDL-to-VDDH switching characteristics where VDDH is 1.2 V and VDDL is set at
0.2 V. The IRISE and IFALL are produced alternately, in contrast with logic mismatches. The
proposed SILS have no contention between VDDL and VDDH level shifting.
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3. Measurement and Results
3.1. Power and Delay as Functions of VDDL

Figures 6 and 7 show the relationship between the measured average power and delay
for different VDDLs while up shifting, as it shifts voltage from 0.2 V to 1.2 V @ 1 MHz and
the SILS temperature is at 27 ◦C. Power consumption is a crucial parameter to be taken into
consideration. The power consumption that was measured for the SILS circuit is illustrated
in Figure 6. The amount of power consumed depends on the intensity of the input signal.
In addition, the input side inverter which is supplied via VDDH takes up the majority of
the power. VDDL is connected only directly to an input converter when the input is at
VDDH. The maximum power consumption variation is observed when the VIN is in the
range of 0.175 V to 0.2 V. The smallest power utilization variation happens when the circuit
transforms the input signal from VDDH to VDDL. The SILS power consumption is almost
uniform for all VDDLs from 0.2 V to 0.375 V, and between 0.175 V and 0.2 V, there is a
significant reduction in power due to the super threshold region of the MN2 operation.
Due to the self-biasing of MP2-MN2, as VDDL increases, the SILS power is stable due
to the feedback-driven MN4-MP4 arrangement, resulting in the significant difference in
impedances among MP2-MN2. Taken as a whole, the results in terms of power and energy
of each transition of the SILS show that it is suitable for all nanoscale applications aimed at
moderate to high energy savings.
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The delay of SILS in relation to VDDL with a fixed VDDH of 1.2 V, as well as when
using fem to farad capacitive load, is displayed in Figure 7. A delay when VDDL to VDDH
transition, while VDDL < 0.3 V, is more because of the larger shifting gain of SILS when it
is converting to 1.2 V. The delay variant curve, especially the rising delay, is approximately
flat for VDDL > 0.3 V. The variations that have been measured for the rising delay at VDDH
are fixed at 1.2 V, whereas an IC in the circuit is used to load the split-input inverter circuit.
In this diagram, it is shown that the delay is measured as the SILS converts a pulse-shaped
signal that has a 0.2 V and 1.2 V amplitude. In Figure 7, it is evident that the delay of the
circuit is nearly flat from 0.3 V onwards. The SILS delay is uniform for all VDDLs from
0.3 V to 0.5 V, influenced by the self-biasing of MP2-MN2. As VDDL rises from 0.275 V
to 0.3 V, the SILS delay decreases due to overcoming the super threshold region of the
operation. Overall results in terms of delay show that the proposed SILS is suitable for all
nanoscale applications.

3.2. Power and Delay as Functions of VDDH

Figures 8 and 9 show the relationship between the measured average power and delay
for different VDDHs while down shifting, as it shifts from 1.2 V to 0.2 V @ 1 MHz and
the SILS temperature is at 27 ◦C. The SILS power consumption is almost uniform for all
VDDHs from 0.9 V to 1.1 V, influenced by the (2) and self-biasing of MP2-MN2. As VDDH
increases, the SILS power is stable due to the feedback-driven MN4-MP4 arrangement,
resulting in the significant difference in impedances among MP2-MN2. The results of
power and energy for each transition of the SILS show that it is suitable for all nanoscale
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applications aimed at moderate to high energy savings. The amount of power consumed
depends on the intensity of the input signal. For the level-up shift, the input inverter is
supplied via VDDH, which takes up the majority of the power.
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The SILS delay decreases uniformly for all VDDHs from 0.9 V to 1.1 V, influenced by
the (3) and self-biasing of MP2-MN2. As VDDH increases, the SILS delay decreases due
to the feedback-driven MN4-MP4 arrangement, resulting in the significant difference in
impedances among MP2-MN2. Overall results in terms of delay of SILS show that it is
suitable for all nanoscale applications. The propagation delay for VDDH < 0.9 V is more
because of the wider shifting gain of SILS when it is converting VDDH to VDDL of 0.2 V.
From the delay variation curve, there is a flat delay for VDDL > 0.3 V. The variations that
have been measured for the falling delay at VDDL are fixed at 0.2 V, whereas a split inverter
integrated into the circuit is used to load the split-input inverter circuit.

3.3. Impact of Load on SILS Performance

The measured power for a typical sample was recorded for the experiment that was
conducted at different load capacitances from 10 fF to 90 fF, and it is illustrated in Figure 10
at VDDL = 0.2 V and VDDH = 1.2 V @ 1 MHz. The maximum power penalty variation of
the SILS over the range is just 1.75 times the power at 10 fF while levelling up, and there is
no considerable power penalty variation while levelling down, and the power variations of
the other LSs are between 30 and 90 times [20–22]. The proposed SILS shows negligible
power variations.
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The measured delay for a typical sample was recorded for the experiment that was
conducted at different load capacitances from 10 fF to 90 fF, and it is illustrated in Figure 11
at VDDL = 0.2 V and VDDH = 1.2 V @ 1 MHz. The maximum delay penalty variation of the
SILS over the range is just 1.8 times the delay at 10 fF while levelling up, and 1.9 times the
delay penalty variation while levelling down, and the delay discrepancies of the other LSs
are around 25 to 100 times. The proposed SILS shows negligible power variations, which
means the robustness of the SILS against load variations is strong.
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The measured minimum VDDL required is 0.19 V for up-conversion to 1.2 V. Among
the ten simulation results, the worst-case scenario resulted in a voltage input of 0.19 V at
27 ◦C. On the other hand, the most efficient sample was able to up-convert a VIN pulse as
low as 0.2 V, as illustrated in Figure 5. The performance of the SILS-based structure was
found to be very negligibly influenced by the temperature. At lower temperatures, the
leakage current flow was reduced, leading to an improvement in the VDDL min value,
while at higher temperatures, the VDDL min value deteriorated due to increased leakage
current flow. The stable power consumption was determined by considering a VDDL value
of 0.2 V and a VDDH value of 1.2 V, while levelling up the static power utilization remained
constant at around 1.3 nW, which is 28% of the power for VDDH in the range of 4.65 W.

Two cascaded inverters were employed to buffer the proposed SILS for driving the
output at a capacitive load of 50 fF and the test tools, which allowed us to measure the
power and delay. Additionally, the output buffering was kept constant in an alternative
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“test” path of the circuit to determine each element’s separate contribution to the total
power and delay. In the scenario where the input pulse voltage equals 0.2 V, the mean delay
is practically 0.4 ns, whereas at a VDDH of 1.2 V, it rises to about 1.75 ns when VDDL is at
0.2 V, which is roughly 77% higher. The power drops when VDDL increases, primarily as a
result of the short-circuit-aware inverter. The mean energy usage for VDDL = 0.2 V and
VDDH = 1.2 V is just 16 fJ. Another major point to assert is how successfully the suggested
LS adjusts the performance of the device improving with increasing operating frequency. It
can be observed that the outcome was obtained from the layout in the presence of a load
capacitance of 50 fF.

3.4. Comparison Results and Discussion

Table 1 shows a comparison of various LS designs based on their performance. The
CC-based LS circuit in [3,4] achieves low standby power, which is limited by a trade-off
between their pull-up and pull-down, which affects their speed and energy consumption
during switching, but consumes a significant amount of energy per transition at 30.7 fJ [3],
which is approximately twice that of the proposed SILS. According to [11], the LS approach
for the 55 nm CMOS node achieves the lowest energy/transition of 27 fJ and a marginal
VDDL of 0.3 V. However, it also has the highest delay of 82 ns. Current-mirror-based
architectures perform better when a wide range of up-conversion is required, as they face
less contention between pull-up and pull-down, resulting in increased speed and reduced
energy consumption. However, they tend to consume more static power [20,21], and the
CM-based solution suffers from poor switching performance and a limited shifting range.
Compared to other LS designs in 65 nm CMOS, the CM-based LS in [21] is competitive,
with a switching delay of 7.5 ns. In comparison to [23], the proposed LS SILS demonstrates
in this paper that it offers considerable decrements in power by approximately 25% higher
power at the cost of lower VDDL at 0.2 V. This statement implies that in order to achieve
a higher level of robustness against process corners, the proposed circuit has a trade-off
between power and delay. The comparison in Table 1 shows that the suggested circuit has
the minimum up-convertible VDDL and is the most robust among the compared circuits,
with a variability of around 10%. It should be noted that the simulation results were taken
at different process corners, which may be representative of all possible process variations,
but the fact that the suggested circuit outperformed the other circuits despite the inverter
type circuit limitation makes the result even more significant. The proposed SILS is robust
not only in terms of a wide conversion range, power, and delay, but also in that it has the
capability to perform up shift or down shift, unlike other LSs capable of performing only
up shift.

Table 1. Comparison of LSs.

Ref./
Proposed

Technology
(nm)

Type of
Technique

VDDL
(V)

VDDH
(V)

Power
(nW)

Delay
(ns)

PDP
(fJ)

[3] 65 CC 0.3 1.2 30.7 25 0.768

[4] 55 CC 0.3 1.2 23 53 1.219

[20] 65 CM 0.3 1.2 552 17.5 9.660

[11] 55 CM 0.3 1.2 27 82 2.214

[21] 65 CM 0.3 1.2 124 7.5 0.930

[22] 55 CM 0.45 1.2 180 57 10.26

[23] 65 DLS 0.3 1.2 12 186 2.230

SILS
(Up/Down) 65 Inverter 0.2 1.2

16 0.4 0.006

03 1.75 0.005

Where, CC—cross-coupled; CM—current mirror; DLS—dynamic leakage suppression.
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The SILS has the least number of MOS devices (see Figure 12). The number of MOS
devices needed for the proposed LS is only 08, which is the lowest among all LSs, mainly
owing to both level up- or level down-conversion, and which is approximately 25% lower
than the transistor used in [20].
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Figure 5 illustrates the least possible VDDL of SILS for varying frequencies with a
distinctive corner including MOS transistors, 27 ◦C and VDDH = 1.2 V. It can be seen that
by decreasing the frequency of the circuit, the power consumption is decreased, which
suggests that either decreases in frequency or decreasing the VDDL to lower than 0.2 V are
possible. The minimum value of VDDL can be 0.15 V when the SILS operates at 100 kHz.
The delay and power consumption at lower frequency has shown that the minimum
possible VDDL can be achieved to meet the needs of IoT and biomedical, wireless sensor
network applications. Apparently, the proposed SILS has the lowest PDP and area for up
or down voltage-level conversions.

4. Conclusions

This study proposes a split-input inverter level shifter that effectively converts sub-
threshold voltages to nominal supply voltages. The proposed structure consists of a
short-circuit-aware inverter that can create common unconnected PMOS and NMOS tran-
sistors and an output inverter that can accelerate the inverter’s power delivery to improve
switching and energy efficiency. The split-input inverter level shifter was implemented
using 65 nm CMOS technology, and we tested the performance for different factors such as
voltages, temperatures, and process corners. From the results obtained, it is concluded that
the design can convert very low-voltage inputs with an average of 0.2 V under optimistic
conditions at 27 ◦C, and the SILS can produce up to 1.2 V. The proposed circuit demon-
strates efficient dynamic power consumption and low latency. It has a remarkable delay of
1.3 ns, coupled with excellent energy efficiency. The energy consumption is also impressive,
with an average power of 9.5 nW.
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