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Abstract: Aiming to solve the problems of different spectral bands and spatial pixels contributing
differently to hyperspectral image (HSI) classification, and sparse connectivity restricting the con-
volutional neural network to a globally dependent capture, we propose a HSI classification model
combined with multi-scale residual spectral–spatial attention and an improved transformer in this
paper. First, in order to efficiently highlight discriminative spectral–spatial information, we propose
a multi-scale residual spectral–spatial feature extraction module that preserves the multi-scale in-
formation in a two-layer cascade structure, and the spectral–spatial features are refined by residual
spectral–spatial attention for the feature-learning stage. In addition, to further capture the sequential
spectral relationships, we combine the advantages of Cross-Attention and Re-Attention to alleviate
computational burden and attention collapse issues, and propose the Cross-Re-Attention mechanism
to achieve an improved transformer, which can efficiently alleviate the heavy memory footprint and
huge computational burden of the model. The experimental results show that the overall accuracy of
the proposed model in this paper can reach 98.71%, 99.33%, and 99.72% for Indiana Pines, Kennedy
Space Center, and XuZhou datasets, respectively. The proposed method was verified to have high
accuracy and effectiveness compared to the state-of-the-art models, which shows that the concept of
the hybrid architecture opens a new window for HSI classification.

Keywords: hyperspectral image classification; multi-scale feature extraction; residual spectral–spatial
attention; transformer

1. Introduction

Hyperspectral images (HSIs) contain both a high spatial resolution and continuous
spectral bands of different objects at the same time, with the characteristics of “spectral
image unity” [1,2]. They have been applied in a wide variety of applications, such as urban
management [3], geological exploration [4], and military surveys [5].

HSI classification is a foundation component in Earth-monitoring applications, with
the main goal of assigning each pixel in the HSI to specific land cover classes, thus achieving
precise identification and classification of surface cover. Initially, HSI classification mainly
used traditional machine learning methods to extract features. Typically, machine learning
methods first adopted some dimension reduction methods to reduce spectral redundancy,
such as principal component analysis (PCA) [6] and linear discriminant analysis (LDA) [7].
Traditional machine learning methods then employed classifiers such as the K-nearest
neighbor method [8], support vector machine [9], random forest [10], decision tree [11], and
other methods to classify the extracted features. Although traditional machine learning-
based methods have made progress in improving classification performance, they often rely
on hand-crafted features for HSI classification. With the rapid development of deep learning
and practical progress in the task of HSI classification, deep learning-based methods fully
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absorb the early experience of HSI classification, combining spectral and spatial information
to complete the classification task, and can directly extract effective deep features from the
original image [12]. Chen et al. [13] firstly introduced deep learning into the field of HSI
classification, and used the unsupervised deep feature-learning model stacked autoencoder
(SAE) to extract the features from the original image, which improves the accuracy of
HSI classification.

Due to the existence of spectral and spatial heterogeneity in HSI, it is difficult to
accurately identify land cover types using only spectral information. Therefore, the model
used to jointly extract spectral–spatial features from HSIs for classification has become
a research focus. Convolutional neural networks (CNNs) have been widely used in the
field of HSI classification to realize the joint extraction of spectral and spatial features [14].
Among these, the three-dimensional convolutional neural network (3D-CNN) achieves
direct end-to-end deep spectral–spatial feature extraction on HSIs, providing a robust
and reliable feature extraction mechanism [15,16]. Considering the importance of multi-
scale information for improving network performance, Song et al. [17] proposed a deep
feature fusion strategy that is able to effectively fuse multi-scale feature representations
by creating interconnections between different layers of information. Zhong et al. [18]
proposed the spectral–spatial residual network (SSRN), which sequentially uses spectral
residual blocks and spatial residual blocks to learn deep features from HSIs. Roy et al. [19]
proposed the attention-based adaptive spectral–spatial kernel improved residual network
(A2S2K-ResNet) with spectral attention to capture discriminative spectral–spatial features
in an end-to-end training approach. In addition, attention mechanisms are widely used
for HSI classification. Zhou et al. [20] designed a Cross-Attention Fusion module in an
Attention Multihop Graph and Multiscale Convolutional Fusion Network (AMGCFN) to
highlight important information and enhance feature fusion in different subnets. Gou
et al. [21] proposed a global spatial feature representation model to learn global spatial
features based on an encoder–decoder structure with channel attention and spatial attention.
The CNN-based approaches improved the local perception of the model by point-wise
operations with pixels around the image, but were limited by the kernel size and the number
of network layers, which results in an insufficient ability to capture global contextual
feature information.

In recent years, some studies have introduced a transformer, which extracts features
by convolution, and then used the transformer to obtain contextual information [22].
Dosovitskiy et al. [23] proposed the Vision Transformer (ViT) with a dynamic and global
sensory field, which ensures the model performs well in image classification tasks and
can learn the dependencies of different positions of the output image. ViT learns features
mainly using the multi-head attention mechanism, which can extract global information
from the non-overlapping parts of the image. Therefore, ViT can effectively capture the long-
range dependencies form the input images, enabling the network to parse the information
from a global perspective, and thus effectively assisting in describing the local semantic
information [24]. For the task of feature classification in HSIs, applying the ViT to sequence
data is more effective and flexible in analyzing the spectral data of HSIs [25]. Sun et al. [26]
proposed the Spectral–Spatial Feature Tokenisation Transformer (SSFTT) to obtain spectral–
spatial features and high-level semantic information.

However, when applying ViT to the HSI classification task, a prominent issue is that the
computational burden of the self-attention mechanism grows quadratically with input, and
its computational amount hinders the inference speed of the model. Additionally, unlike
CNNs that can be expanded to deeper layers to improve performance, the performance of
ViT saturates rapidly when expanded to deeper layers, the expansion difficulty is mainly
due to the collapse in attention, and the feature maps generated in deeper structures
tend to be the same. Therefore, to address the problem of computational burden, Zhang
et al. [27] proposed a lightweight transformer (LiT) that achieved a balance between high
computational efficiency and significant performance. Liu et al. [28] proposed the Swin-
Transformer to use a shift window to capture the global features. Meanwhile, Lin et al. [29]
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proposed the Cross-Attention in Vision Transformer (CAT), which used Cross-Attention to
focus on capturing local information inside the feature map patches, and captured global
information between the feature map patches in a single channel. Both methods made
the original square-growth computation become linear, which significantly reduced the
computation of the transformer.

To address the problem of attention collapse, researchers from AI Lab proposed the Re-
Attention mechanism, which regenerated the feature maps between layers to enhance the
diversity between layers, avoiding the problem of feature maps converging to be the same
in deeper layers [30]. Hybrid architectures combining the transformer and convolutions
have garnered widespread attention in building lightweight, high-performance models.
Some works have proposed a hybrid structure of a CNN and a transformer after analyzing
the working principle of the CNN and the transformer in detail, where shallow features are
extracted by the CNN and the extracted features are fed into a semantic tagger to tag the
global semantic information [31–33].

Based on the above-mentioned analysis, in this paper, an efficient multi-scale residual
spectral–spatial attention combined with an improved transformer (RSSAT) is proposed
for HSI classification. In RSSAT, we designed a multi-scale residual spectral–spatial fea-
ture extraction module to improve the discriminative power of extracted features and
adaptively fuse the acquired spectral and spatial information. In addition, we designed
improved transformers to fully extract high-level semantic features and model long-range
feature dependencies in HSI multidimensional datasets. Overall, our approach constructs a
shallow-to-deep feature-learning model that effectively reduces misclassification of small
target samples. The main contributions of this paper are summarized as follows:

1. In order to fully extract HSI high-level semantic features as well as to enhance
the effective representation of global contextual information, this paper combines
the respective representational features of a CNN and transformer, and proposes a
new HSI classification method called RSSAT. RSSAT has strong advantages in dis-
criminative feature extraction and capturing long-range dependencies with the best
classification performance.

2. By investigating the characteristics of HSIs, a multi-scale residual spectral–spatial fea-
ture extraction module was designed. The module fully exploits the local information
of HSIs in a two-layer cascade structure and selectively aggregates the information
between spectral bands and spatial pixels to highlight discriminative information.
The module alleviates the information loss in feature flow and retains more spec-
tral and spatial information, reducing misclassification of small target samples and
discrete samples.

3. In order to accurately capture long-range feature dependencies in HSI multidimen-
sional datasets, we propose an improved transformer. For the transformer, we design
the Cross-Re-Attention mechanism as an alternative to Self-Attention in the traditional
transformer. The innovative strategy significantly enhances the model’s ability to
learn high-level semantic features by introducing a learnable matrix that dynamically
generates new attention mappings between each layer.

4. According to the experimental results, RSSAT significantly outperforms other state-
of-the-art deep learning methods in terms of classification performance, especially
when dealing with uneven samples, and achieves an excellent improvement in its
classification accuracy.

2. Materials and Methods

Figure 1 demonstrates the framework of the RSSAT model. In general, the model ar-
chitecture mainly includes a multi-scale residual spectral–spatial feature extraction module
and an improved transformer module. The model skillfully integrates the advantages of
the CNN and transformer to enable feature extraction from shallow to deep, which enables
the model to fully utilize the rich spectral–spatial information in HSIs, further improving
the performance and robustness of the model. In the model training process, first, after
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removing the spectral redundant bands by principal component analysis (PCA), the HSI
data are fed into the convolution module to learn low-order features. Then, for the purpose
of enhancing the spectral–spatial feature representation capability and robustness of the
RSSAT model, residual spectral–spatial attention is embedded in the multi-scale residual
feature-learning part. The multi-scale residual spectral–spatial feature extraction module
re-adjusts and optimizes the extracted features through a two-level cascaded residual
structure to highlight discriminative information. Meanwhile, the model can effectively
establish channel connections between feature maps at different stages to enhance the
convergence ability of the RSSAT. Finally, we propose the improved transformer to obtain
long-distance dependencies of the sequential spectral features. The obtained discriminative
spectral–spatial features are employed to obtain the classification results.
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Figure 1. Framework of the proposed RSSAT model for HSI classification.

2.1. Residual Spectral–Spatial Attention

According to HSI pixel-level classification, there are two principles of joint extraction
of spectral and spatial information [34]:

Principle 1: Spectral information is the basis of HSI pixel-level classification and is the
most discriminative information.

Principle 2: Effective spatial information for HSI pixel-level classification refers to the
information carried by neighboring pixels that are similar to the center pixel.

Based on the above two principles, this paper embeds the residual spectral–spatial
attention module into the multi-scale feature extraction part to achieve the realignment and
optimization of the spectral and spatial features to highlight the discriminative information,
thereby improving the accuracy and efficiency of the HSI classification. Figure 2 illustrates
the structure of the proposed residual spectral–spatial attention module.
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In the paper, we introduce the spectral–spatial attention module [35] and combine it
with residual operations to create the residual spatial–spectral attention module to enhance
the feature extraction ability of RSSAT. First, we introduce the spectral attention module,
which achieves the selection of specific spectral bands from the input HSI. The module
highlights those bands that are useful for the classification task and reduces the influence
of irrelevant bands. Next, we introduce the spatial attention module, which achieves fine
extraction of spatial information by adaptively strengthening neighboring pixels that are
the same category as the center pixel or weakening pixels of different categories. The two
attention modules are arranged in a specific order. Based on the given input or intermediate
features, spectral attention weights are computed and applied to the relevant features.
Then, the obtained results are used as inputs to the spatial attention module.

Spectral Attention: The core purpose of the spectral attention module is to highlight
those spectral features that are critical for HSI classification. To realize the refinement and
selection of features, the spectral feature map is generated using the relationship between
the spectral information of the features. The structure of spectral attention module is given
in Figure 3.
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To aggregate information and infer finer spectral attention, an average pooling layer
and maximum pooling layer are employed. The two different feature descriptions are
obtained for the feature mapping based on the different pooling schemes. The kth element
of the output is calculated by Equation (1) and the kth channel of the output is calculated
by Equation (2).

yse
avg =

1
H × W

H

∑
i=1

W

∑
j=1

yk(i, j) (1)

yse
max = max(yk) (2)

where yk(i, j) is the value at position (i, j) of the kth channel. yse
avg and yse

max denote the
output of the average pooling and maximum pooling, respectively. H and W denote the
height and width, respectively.

For the purpose of fully understanding the interrelationships between different spec-
tral bands and to improve the generalization ability of the model, the outputs of the average
pooling layer and maximum pooling layer are directly fed into a shared MLP, which con-
tains two fully connected (FC) layers. A new weight is assigned to each pixel through the
SoftMax function. The output of the module is given as follows:

Fse = Sigmoid(MLP(yse
avg) + MLP(yse

max)) (3)

where Fse denotes the output of the spectral attention module.
Spatial Attention: The main purpose of the spatial attention module aims to enhance

the spatial information of neighboring pixels that have the same class label as the center
pixel, and to weaken the spatial information of pixels that have different category labels.
The spatial attention module is given in Figure 4.
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To fully aggregate the spatial information, an average pooling layer and a maximum
pooling layer are used to mine the target features. The spatial attention module takes the
output of the spectral attention module and passes it through the maximum pooling and
average pooling operations to obtain two new feature maps. Then, the information carried
by the two feature maps is horizontally concatenated and input into the 7 × 7 convolution
operation. Finally, the weight of attention is assigned to each pixel using a sigmoid function.
The mathematical expressions are shown as follows:

ysa
avg =

1
C ∑C

C=1 y∗k (i, j) (4)

ysa
max = max(y∗k ) (5)

Fsa = Sigmoid(Conv7×7(Concat(ysa
avg, ysa

max))) (6)

where ysa
avg and ysa

max denote the output denote the output of the average pooling and
maximum pooling, respectively. Fsa denotes the output of the spatial attention module.

2.2. Multi-Scale Residual Spectral-Spatial Feature Extraction Module

The multi-scale information enables the effective enhancement of the robustness and
increases the classification accuracy of the model [36]. Therefore, in this work, we designed
a two-tier cascaded multi-scale residual spectral–spatial feature extraction module to refine
the multi-scale information to obtain enhanced discriminative spectral–spatial features.
Figure 5 illustrates the structure of the module.
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The module uses convolution kernels of different sizes to obtain a better representation
of the image to enhance the feature extraction capability of the model. In this work, we
employed the 1 × 1 × 1, 3 × 3 × 3, and 5 × 5 × 5 convolution kernels. 1 × 1 × 1 convolution
is employed to extract the global information of the image, and 3 × 3 × 3 and 5 × 5 × 5 can
provide the local information of the image under different receptive fields. The proposed
model uses a 3D convolution layer after the residual spectral–spatial attention module so
that the spectral–spatial features extracted from the previous residual block achieve feature
fusion by 3D convolution. Based on this approach, the following residual spectral–spatial
attention module can acquire both the base features and the optimized features, which is
conducive to better learning of feature information by the model. Meanwhile, in order
to obtain more in-depth feature information extracted by each residual spectral–spatial
attention module and enrich the learning hierarchy of the network, we use residual learning
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outside each residual spectral–spatial attention module to achieve the effective transfer of
features and take full advantage of the independence of different features to complete the
global fusion of the features obtained from different residual blocks. Finally, the features
and information at different scales are fused using the Concat stitching operation to make
the acquired spectral and spatial features more comprehensive.

2.3. Improved Transformer

For the purpose of further obtaining the long-distance relationship of sequential spec-
tra, this work uses the transformer to enable the model to parse semantic information from
a global perspective. However, when applied to HSI classification tasks, the transformer
mainly suffers from the following two problems:

(1) Transformer architectures require large quantities of data and computational re-
sources for training and optimization. The computational complexity of the MHSF in
transformers shows quadratic growth with the input size. Therefore, using the transformer
module to investigate high-resolution images can lead to reduced computational efficiency
and slower model inference speed. The formula of computation can be expressed as:

FLOPMHSF = 4HWC2 + 2H2W2C (7)

where H denotes the height of the input, W denotes the width of the input, and C denotes
the number of channels in the input.

(2) Unlike CNNs, which can enhance performance by stacking additional convolu-
tional layers, the performance of the transformer is quickly saturated when scaling to
deeper layers. The difficulty of scaling the transformer is mainly caused by the attention
collapse problem. As the number of transformer layers increases, the attention maps grad-
ually become similar, and even after certain layers, the attention maps are basically the
same. This situation suggests that MHSF may not be able to efficiently learn useful feature
representations in deep transformer structures, resulting in the model failing to obtain the
desired performance gains [30].

Based on the above two points, this paper proposes a Cross-Re-Attention mechanism to
alleviate the problems of attention collapse and the huge computational burden. Generating
new feature maps between the layers of the transformer enhances the diversity of each layer
to avoid similarity in feature maps at deep layers. Meanwhile, considering the contextual
information extraction and communication, an attention processing method on a single-
channel feature map is used. The computation is significantly reduced compared to that for
attention on all channels. Figure 6 illustrates the framework of improved transformer block.

Patch merging is employed to an input that is down-sampled twice, and is used to
diminish the resolution and adjust the number of channels. The Cross-Re-Attention block
is composed of an Inner-Patch-Re-Attention (IPRA) block and a Cross-Patch-Re-Attention
(CPRA) block. By stacking IPRA blocks and CPRA blocks, the module efficiently extracts
and integrates features between pixels in a patch and between patches in a feature map.
The IPRA part performs pixel-by-pixel Re-Attention computation within each patch to
obtain information. Attention computation is performed pixel by pixel within each patch
pixel, aiming to capture and utilize the relationship between pixels within the patch to
obtain global information. This strategy not only significantly reduces the computational
burden, but also greatly enhances the inference efficiency of the model. The mathematical
expression of computation is as follows:

FLOPIPRA = 4HWC2 + 2N2HWC (8)

where N denotes the size of the patch in IPRA. Compared to the MHSA in the stan-
dard transformer, the computational complexity is reduced from quadratic correlation to
linear correlation.
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In CNN-based networks, although the perceptual field can be expanded by stacking
convolutional kernels, its sparse connectivity restricts its global dependency capture and
makes it difficult to expand the perceptual field to the global range. However, in a trans-
former, the feature map having a single channel inherently encompasses global information.
CPRA partially takes an individual channel as one of the group inputs. Re-Attention
is performed in one group to cross the information of different patches to obtain global
semantic information. Meanwhile, the attention maps are regenerated in layers of the
transformer to enhance their diversity on different layers.

By virtue of the Cross-Re-Attention mechanism, the existing transformer model can be
trained to obtain deep transformer models with linear growth in computation. Specifically,
the method is based on the head-generated attention maps and generates new attention
maps through dynamic aggregation. A learnable matrix, θ, is defined. This matrix is then
used to map attention to a regenerated new matrix, which is multiplied with the V matrix
in the transformer as follows:

Attention(Q, K, V) = Norm(θT(So f tmax(
θKT
√

d
)))V (9)

where d indicates the dimension of K. The Norm function is employed to reduce the layer-
wise variance. The SoftMax function is employed to compute the weights on the values.
Q (Query), K (Key), and V (Value) are the projections of tokens, which are the matrices
obtained by multiplying the input vectors with the weight matrices obtained after training.

3. Results

For the purpose of validating the performance of the RSSAT model, three public HSI
datasets were selected, namely Indian Pines, Kennedy Space Center (KSC), and XuZhou
datasets. To better understand the RSSAT structure, we used ablation experiments to
investigate the validity of each component of the model by removing different modules.
Meanwhile, we visualized the HSI classification maps to compare the feature extraction
capabilities of the proposed RSSAT and other SOTA methods.

3.1. Dataset Description and Experiment Design

(1) The Indian Pines dataset was imaged by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) in 1992. A region of size 145 × 145 was selected for annotation
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and used as a test dataset for HSI classification. The imaging wavelength range of the
dataset is 0.4–2.5 µm, and it can continuously provide images at 220 hyperspectral
bands with a spatial resolution of 20 m/pixel. Since bands 104–108, 150–163, and 220
cannot be reflected by water, these 20 bands are typically excluded from the research
process, leaving only 200 bands for analysis. The dataset contains 10,249 labeled
samples and 16 vegetation classes. It is worth mentioning that the number of samples
for these 16 classes of ground objects is unevenly distributed, making the dataset
prone to mixed pixels, which poses a challenge for classification.

(2) The KSC dataset was acquired by the National Aeronautics and Space Administration
(NASA) Airborne Visible/Infrared Imaging Spectrometer (VIRIS) instrument. The
dataset covers 224 spectral bands and 13 classes, and an area of 512 × 614 pixels has
been specially selected for detailed labeling to ensure the accuracy and usefulness
of the data. It has an excellent spectral resolution of 10 nm, ranging from 0.4 to
2.5 µm, capturing subtle spectral differences and providing strong support for analysis.
Meanwhile, the 18 m spatial resolution ensures the spatial accuracy of the image, fully
demonstrating the spatial characteristics of the features.

(3) The XuZhou dataset was acquired in November 2014 in XuZhou City, Jiangsu Province,
China. The test area size of 500 × 260 pixel with 436 bands was selected for labeling
to ensure classification accuracy. The test area, which is located near a coal mining
area, has been categorized into nine classes of ground objects.

Tables 1–3 report the information of the classes and number of available samples.
The Indian Pines and KSC datasets have 10,249 and 5211 labeled samples, respectively,
while the XuZhou dataset has 68,877 labeled samples. Compared to the Indian Pines and
KSC datasets, the XuZhou dataset has a larger number of samples. Therefore, this work
designed different proportions of labeled samples as training strategies for all datasets
and used different numbers of training samples to validate the performance of the RSSAT
method. On the Indian pines and KSC datasets, 20% of labeled samples were randomly
selected for training, 10% of labeled samples for validation, and 70% of labeled samples
as the testing set. For the XuZhou dataset, 10%, 10%, and 80% of the labeled pixels were
randomly selected as the training set, validation set, and test set, respectively.

Table 1. Details of the Indian Pines dataset.

No. Class Color Sample Numbers False-Color Map Ground-Truth Map
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For a fair comparison, our experiments were conducted on an Intel (R) Xeon (R) CPU 

E5–2620 v4 @ 2.10 GHz processor, 128 GB RAM, and an NVIDIA GeForce RTX 2080Ti 

(GPU), Window10, using the PyTorch framework and the Python 3.7 compiler. In order 

to minimize the errors and contingencies of the experiments, all experimental results are 

the average of 10 experiments. For model training, all experiments used batch processing. 

We set the training batch size to 32 × 32. Meanwhile, the Adam optimizer was employed 

to learn the weights and the original learning rate was set to 0.003. To ensure that the 

model can be adequately trained and perform optimally, we set the maximum iteration 

time to 200 epochs. We set an early stopping strategy to avoid the overfitting problem. 

3.3. Experiment Comparison and Analysis 

In the study, the classification performance of the proposed RSSAT was verified by 

comparison with the SVM [37], 3D-CNN [14], residual neural network (ResNet) [38], 

Multi-Attention Fusion Network (MAFN) [39], Spectral–Spatial Feature Tokenisation 

Transformer (SSFTT) [26], SSRN [18], and Dual-View Spectral and Global Spatial Feature 

Fusion Network (DSGSF) [21] methods. SVM is a traditional image classification method. 

The remaining models are deep learning-based algorithms, which utilize deep neural net-

works to process HSI classification tasks. Among these, the experimental results were 

quantitatively evaluated by three metrics: overall accuracy (OA), average accuracy (AA), 

and Kappa (K) coefficient. OA represents the percentage of correctly classified pixels in 

all pixel classification results. The Kappa coefficient is employed to test uniformity and 

determine whether the prediction results of the method are identical to the true results. 

The value of the Kappa coefficient ranges from −1 to 1, where a positive value indicates 

superior classification performance, a negative value indicates poor classification perfor-

mance, and a value close to 0 indicates average classification performance. 

Quantitative classification results for evaluation indicators and the accuracy of each 

class are given in Tables 4–6, respectively (the standard deviation of ten runs was taken as 

the experimental result). Overall, it could be observed from all experimental results of the 

datasets that our proposal yields the best accuracy and relatively low standard deviations. 

Specifically, on the Indian Pines dataset, RSSAT achieves 97.31% in terms of AA; at the 

same time SVM, 3D-CNN, ResNet, MAFN, SSFTT, and SSRN achieve 79.76%, 76.95%, 

92.64%, 96.65%, 96.08%, and 92.63%, respectively. On the Indian Pines, KSC, and XuZhou 

datasets, compared to SSRN, the increases in OA of our proposal are 0.30%, 0.44%, and 

0.09%. The proposed RSSAT method consistently demonstrates superiority in perfor-

mance compared to SSRN, which is a strong argument for the superiority of our method 

in improving the representation of specific spectral–spatial features by readjusting the 

high spatial correlation contexts over spectral bands. Moreover, in the Indian Pines da-

taset, 16 classes of samples are unevenly distributed in terms of quantity. For example, 
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class are given in Tables 4–6, respectively (the standard deviation of ten runs was taken as 
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Multi-Attention Fusion Network (MAFN) [39], Spectral–Spatial Feature Tokenisation 

Transformer (SSFTT) [26], SSRN [18], and Dual-View Spectral and Global Spatial Feature 

Fusion Network (DSGSF) [21] methods. SVM is a traditional image classification method. 

The remaining models are deep learning-based algorithms, which utilize deep neural net-

works to process HSI classification tasks. Among these, the experimental results were 

quantitatively evaluated by three metrics: overall accuracy (OA), average accuracy (AA), 

and Kappa (K) coefficient. OA represents the percentage of correctly classified pixels in 

all pixel classification results. The Kappa coefficient is employed to test uniformity and 

determine whether the prediction results of the method are identical to the true results. 

The value of the Kappa coefficient ranges from −1 to 1, where a positive value indicates 

superior classification performance, a negative value indicates poor classification perfor-

mance, and a value close to 0 indicates average classification performance. 

Quantitative classification results for evaluation indicators and the accuracy of each 

class are given in Tables 4–6, respectively (the standard deviation of ten runs was taken as 

the experimental result). Overall, it could be observed from all experimental results of the 

datasets that our proposal yields the best accuracy and relatively low standard deviations. 

Specifically, on the Indian Pines dataset, RSSAT achieves 97.31% in terms of AA; at the 

same time SVM, 3D-CNN, ResNet, MAFN, SSFTT, and SSRN achieve 79.76%, 76.95%, 

92.64%, 96.65%, 96.08%, and 92.63%, respectively. On the Indian Pines, KSC, and XuZhou 

datasets, compared to SSRN, the increases in OA of our proposal are 0.30%, 0.44%, and 

0.09%. The proposed RSSAT method consistently demonstrates superiority in perfor-

mance compared to SSRN, which is a strong argument for the superiority of our method 

in improving the representation of specific spectral–spatial features by readjusting the 

high spatial correlation contexts over spectral bands. Moreover, in the Indian Pines da-

taset, 16 classes of samples are unevenly distributed in terms of quantity. For example, 
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model can be adequately trained and perform optimally, we set the maximum iteration 

time to 200 epochs. We set an early stopping strategy to avoid the overfitting problem. 

3.3. Experiment Comparison and Analysis 

In the study, the classification performance of the proposed RSSAT was verified by 

comparison with the SVM [37], 3D-CNN [14], residual neural network (ResNet) [38], 

Multi-Attention Fusion Network (MAFN) [39], Spectral–Spatial Feature Tokenisation 

Transformer (SSFTT) [26], SSRN [18], and Dual-View Spectral and Global Spatial Feature 

Fusion Network (DSGSF) [21] methods. SVM is a traditional image classification method. 

The remaining models are deep learning-based algorithms, which utilize deep neural net-

works to process HSI classification tasks. Among these, the experimental results were 

quantitatively evaluated by three metrics: overall accuracy (OA), average accuracy (AA), 

and Kappa (K) coefficient. OA represents the percentage of correctly classified pixels in 

all pixel classification results. The Kappa coefficient is employed to test uniformity and 

determine whether the prediction results of the method are identical to the true results. 

The value of the Kappa coefficient ranges from −1 to 1, where a positive value indicates 

superior classification performance, a negative value indicates poor classification perfor-

mance, and a value close to 0 indicates average classification performance. 

Quantitative classification results for evaluation indicators and the accuracy of each 

class are given in Tables 4–6, respectively (the standard deviation of ten runs was taken as 

the experimental result). Overall, it could be observed from all experimental results of the 

datasets that our proposal yields the best accuracy and relatively low standard deviations. 

Specifically, on the Indian Pines dataset, RSSAT achieves 97.31% in terms of AA; at the 

same time SVM, 3D-CNN, ResNet, MAFN, SSFTT, and SSRN achieve 79.76%, 76.95%, 

92.64%, 96.65%, 96.08%, and 92.63%, respectively. On the Indian Pines, KSC, and XuZhou 

datasets, compared to SSRN, the increases in OA of our proposal are 0.30%, 0.44%, and 

0.09%. The proposed RSSAT method consistently demonstrates superiority in perfor-

mance compared to SSRN, which is a strong argument for the superiority of our method 

in improving the representation of specific spectral–spatial features by readjusting the 

high spatial correlation contexts over spectral bands. Moreover, in the Indian Pines da-

taset, 16 classes of samples are unevenly distributed in terms of quantity. For example, 
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The remaining models are deep learning-based algorithms, which utilize deep neural net-

works to process HSI classification tasks. Among these, the experimental results were 

quantitatively evaluated by three metrics: overall accuracy (OA), average accuracy (AA), 

and Kappa (K) coefficient. OA represents the percentage of correctly classified pixels in 

all pixel classification results. The Kappa coefficient is employed to test uniformity and 

determine whether the prediction results of the method are identical to the true results. 
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superior classification performance, a negative value indicates poor classification perfor-
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3.2. Experiment Configuration

For a fair comparison, our experiments were conducted on an Intel (R) Xeon (R) CPU
E5–2620 v4 @ 2.10 GHz processor, 128 GB RAM, and an NVIDIA GeForce RTX 2080Ti
(GPU), Window10, using the PyTorch framework and the Python 3.7 compiler. In order to
minimize the errors and contingencies of the experiments, all experimental results are the
average of 10 experiments. For model training, all experiments used batch processing. We
set the training batch size to 32 × 32. Meanwhile, the Adam optimizer was employed to
learn the weights and the original learning rate was set to 0.003. To ensure that the model
can be adequately trained and perform optimally, we set the maximum iteration time to
200 epochs. We set an early stopping strategy to avoid the overfitting problem.

3.3. Experiment Comparison and Analysis

In the study, the classification performance of the proposed RSSAT was verified by
comparison with the SVM [37], 3D-CNN [14], residual neural network (ResNet) [38],
Multi-Attention Fusion Network (MAFN) [39], Spectral–Spatial Feature Tokenisation Trans-
former (SSFTT) [26], SSRN [18], and Dual-View Spectral and Global Spatial Feature Fusion
Network (DSGSF) [21] methods. SVM is a traditional image classification method. The
remaining models are deep learning-based algorithms, which utilize deep neural networks
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to process HSI classification tasks. Among these, the experimental results were quanti-
tatively evaluated by three metrics: overall accuracy (OA), average accuracy (AA), and
Kappa (K) coefficient. OA represents the percentage of correctly classified pixels in all pixel
classification results. The Kappa coefficient is employed to test uniformity and determine
whether the prediction results of the method are identical to the true results. The value
of the Kappa coefficient ranges from −1 to 1, where a positive value indicates superior
classification performance, a negative value indicates poor classification performance, and
a value close to 0 indicates average classification performance.

Quantitative classification results for evaluation indicators and the accuracy of each
class are given in Tables 4–6, respectively (the standard deviation of ten runs was taken
as the experimental result). Overall, it could be observed from all experimental results
of the datasets that our proposal yields the best accuracy and relatively low standard
deviations. Specifically, on the Indian Pines dataset, RSSAT achieves 97.31% in terms of
AA; at the same time SVM, 3D-CNN, ResNet, MAFN, SSFTT, and SSRN achieve 79.76%,
76.95%, 92.64%, 96.65%, 96.08%, and 92.63%, respectively. On the Indian Pines, KSC,
and XuZhou datasets, compared to SSRN, the increases in OA of our proposal are 0.30%,
0.44%, and 0.09%. The proposed RSSAT method consistently demonstrates superiority
in performance compared to SSRN, which is a strong argument for the superiority of our
method in improving the representation of specific spectral–spatial features by readjusting
the high spatial correlation contexts over spectral bands. Moreover, in the Indian Pines
dataset, 16 classes of samples are unevenly distributed in terms of quantity. For example,
there are only 20 labeled samples for the 9th class (Oats), while the 11th class (Soybean-
mintill) contains 2455 labeled samples. The uneven sample distribution presents a serious
challenge to the HSI classification. For the accuracy of the 9th class, SSFTT (67.22 ± 7.29),
SSRN (58.94 ± 48.22), and other methods with better performance still fail to provide a
good solution.

Table 4. Quantitative classification performance of different methods on the Indian Pines dataset.

Methods SVM 3D-CNN ResNet MAFN SSFTT SSRN RSSAT

1 59.23 ± 19.05 81.73 ± 7.04 95.17 ± 10.06 95.57 ± 6.10 99.76 ± 0.73 77.21 ± 31.4 93.66 ± 9.42
2 71.14 ± 1.39 66.34 ± 7.96 90.65 ± 6.68 98.17 ± 2.11 94.85 ± 1.15 98.51 ± 1.36 98.80 ± 0.82
3 74.59 ± 1.81 72.20 ± 15.21 91.16 ± 5.82 96.68 ± 5.50 99.24 ± 0.47 97.81 ± 1.24 98.63 ± 0.75
4 60.65 ± 7.43 83.69 ± 7.94 92.25 ± 9.29 97.94 ± 2.62 99.30 ± 1.08 99.37 ± 0.84 98.64 ± 1.19
5 89.19 ± 3.15 94.91 ± 1.20 98.41 ± 1.17 98.58 ± 1.05 98.78 ± 0.94 95.91 ± 1.76 98.18 ± 1.60
6 88.63 ± 1.56 96.51 ± 1.37 97.05 ± 2.96 98.56 ± 1.88 99.37 ± 0.39 98.78 ± 1.43 99.22 ± 0.84
7 85.71 ± 8.31 88.56 ± 3.68 80.91 ± 31.15 94.94 ± 7.81 98.40 ± 3.20 70.01 ±48.2 97.66 ± 7.00
8 90.19 ± 1.64 99.10 ± 0.85 96.08 ± 2.93 99.71 ± 0.49 99.79 ± 0.45 98.46 ± 2.27 99.82 ± 0.53
9 74.12 ± 13.49 64.01 ± 17.76 86.00 ± 24.67 81.89 ± 13.98 67.22 ± 7.29 58.94 ± 48.22 85.32 ± 13.57
10 75.28 ± 2.04 82.57 ± 5.35 91.40 ± 6.44 96.13 ± 3.54 97.54 ± 0.89 97.54 ± 1.61 98.12 ± 1.09
11 78.16 ± 1.19 64.15 ± 8.16 92.31 ± 5.22 98.61 ± 1.94 99.22 ± 0.35 99.22 ± 0.49 98.96 ± 0.73
12 72.68 ± 3.94 81.93 ± 5.41 90.8 ± 7.81 96.59 ± 3.26 95.96 ± 1.09 98.52 ± 0.95 98.09 ± 1.41
13 92.23 ± 2.85 99.02 ± 0.45 95.76 ± 4.37 98.92 ± 1.41 98.86 ± 0.71 98.67 ± 4.04 98.48 ± 2.19
14 91.66 ± 0.95 89.61 ± 4.56 93.38 ± 4.52 99.45 ± 0.36 99.38 ± 0.88 99.17 ± 1.01 99.39 ± 0.44
15 74.67 ± 6.95 87.44 ± 4.07 94.99 ± 5.48 97.94 ± 2.65 98.01 ± 1.21 99.22 ± 0.88 98.32 ± 1.62
16 98.10 ± 2.53 93.97 ± 5.14 95.58 ± 3.71 95.63 ± 3.64 91.69 ± 5.79 94.79 ± 6.14 95.68 ± 4.34

OA (%) 79.92 ± 0.65 77.15 ± 2.69 92.40 ± 1.81 97.98 ± 0.38 98.07 ± 0.39 98.41 ± 0.44 98.71 ± 0.28
AA (%) 79.76 ± 2.43 76.95 ± 2.54 92.64 ± 3.40 96.65 ± 1.10 96.08 ± 1.44 92.63 ± 6.20 97.31 ± 1.07
K × 100 76.99 ± 0.75 73.76 ± 2.96 91.31 ± 2.08 97.70 ± 0.43 97.85 ± 0.50 98.22 ± 0.51 98.53 ± 0.32

In our proposed RSSAT method, we use a two-tier cascaded multi-scale residual
spectral–spatial feature-learning module by introducing a spectral–spatial attention mecha-
nism. Meanwhile, we strategically embed ResBlock to enhance the nonlinear representation
capability. The module mitigates the information loss in the feature stream, preserves more
spatial information, and better addresses the challenge of scale diversity under different
land cover types. Therefore, RSSAT (85.32 ± 13.57)% achieves the best classification results
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on the 9th class. At the same time, we obtained the best classification performance in
terms of overall evaluation metrics, and obtained the closest classification maps to the
ground truth.

Table 5. Quantitative classification performance of different methods on the KSC dataset.

Method SVM 3D-CNN ResNet MAFN SSFTT SSRN RSSAT

1 92.81 ± 0.79 94.29 ± 1.81 94.27 ± 7.83 97.85 ± 2.41 99.91 ± 0.14 98.95 ± 0.14 99.72 ± 0.56
2 86.62 ± 5.10 91.52 ± 4.65 91.07 ± 9.95 93.82 ± 4.88 93.89 ± 4.30 95.97 ± 9.53 94.21 ± 10.00
3 73.33 ± 8.35 88.81 ± 8.04 84.39 ± 10.48 84.62 ± 10.1 98.04 ± 2.82 97.32 ± 3.07 98.85 ± 1.94
4 54.48 ± 8.64 80.55 ± 9.36 74.18 ± 10.06 75.65 ± 15.45 98.21 ± 1.64 97.63 ± 2.26 98.57 ± 1.78
5 60.22 ± 12.13 81.06 ± 5.16 66.39 ± 20.92 81.01 ± 9.92 98.30 ± 2.36 98.63 ± 2.76 97.88 ± 4.08
6 65.47 ± 8.34 85.64 ± 8.41 86.83 ± 21.62 88.64 ± 21.18 99.88 ± 0.22 100 ± 0.00 99.94 ± 0.16
7 76.21 ± 3.83 92.76 ± 13.2 80.35 ± 28.52 88.19 ± 15.34 99.77 ± 0.68 83.60 ± 33.76 98.52 ± 3.43
8 86.60 ± 5.03 95.88 ± 1.95 92.10 ± 11.31 97.20 ± 2.56 99.82 ± 0.42 99.76 ± 0.21 99.74 ± 0.35
9 88.45 ± 2.66 97.39 ± 1.31 91.30 ± 12.74 94.32 ± 6.49 99.97 ± 0.07 99.85 ± 0.35 100.00 ± 0.00
10 96.30 ± 4.94 99.91 ± 0.20 98.51 ± 1.67 99.18 ± 0.91 99.96 ± 00.09 100 ± 0.00 100.00 ± 0.00
11 96.16 ± 1.52 98.12 ± 1.86 97.45 ± 7.33 99.76 ± 0.44 99.91 ± 0.26 99.63 ± 1.09 100.00 ± 0.00
12 93.61 ± 2.67 98.12 ± 1.86 93.50 ± 12.89 96.12 ± 2.70 99.89 ± 0.30 98.94 ± 2.46 99.87 ± 0.25
13 99.68 ± 0.68 99.97 ± 0.57 99.36 ± 0.77 99.68 ± 0.85 100 ± 0.00 100 ± 0.00 100.00 ± 0.00

OA (%) 87.94 ± 1.57 95.49 ± 0.25 91.37 ± 4.92 94.09 ± 4.00 99.24 ± 0.14 98.89 ± 1.52 99.33 ± 0.57
AA (%) 82.30 ± 2.49 92.01 ± 0.50 88.44 ± 7.97 92.41 ± 4.34 98.58 ± 0.22 97.79 ± 3.43 99.02 ± 0.76
K × 100 86.57 ± 1.75 94.86 ± 0.28 90.36 ± 5.54 93.44 ± 4.42 99.11 ± 0.15 98.77 ± 1.69 99.25 ± 0.64

Table 6. Quantitative classification performance of different methods on the XuZhou dataset.

Methods SVM 3D-CNN ResNet MAFN SSFTT SSRN RSSAT

1 96.98 ± 0.24 88.01 ± 4.82 99.75 ± 0.12 99.15 ± 0.51 99.59 ± 0.21 99.59 ± 0.29 99.91 ± 0.04
2 99.91 ± 0.05 94.96 ± 9.80 99.94 ± 0.06 99.46 ± 0.64 99.98 ± 0.03 99.91 ± 0.05 99.98 ± 0.02
3 95.47 ± 0.45 92.13 ± 5.09 99.96 ± 0.06 95.95 ± 6.68 99.54 ± 0.25 99.04 ± 0.47 100.00 ± 0.00
4 97.79 ± 0.69 89.12 ± 2.53 99.56 ± 0.21 97.41 ± 3.31 99.92 ± 0.08 99.82 ± 0.16 99.98± 0.02
5 96.14 ± 0.19 92.92 ± 2.04 98.39 ± 0.78 97.71 ± 1.35 99.56 ± 0.20 99.92 ± 0.10 99.19± 0.26
6 89.81 ± 0.62 89.31 ± 1.92 96.77 ± 2.27 94.65 ± 3.98 99.64 ± 0.17 99.78 ± 0.10 99.69 ± 0.23
7 90.27 ± 0.41 84.24 ± 1.47 97.21 ± 2.78 97.75 ± 1.38 99.90 ± 0.05 99.64 ± 0.41 99.81 ± 0.11
8 98.68 ± 0.17 92.64 ± 4.94 95.91 ± 9.54 98.11 ± 2.09 99.94 ± 0.13 98.23 ± 0.44 99.62 ± 0.13
9 98.38 ± 0.33 99.36 ± 0.33 99.22 ± 0.84 95.85 ± 7.96 99.62 ± 0.16 99.47 ± 0.42 99.33± 0.25

OA (%) 96.23 ± 0.08 90.06 ± 2.67 98.72 ± 0.93 98.01 ± 1.34 99.68 ± 0.06 99.63 ± 0.09 99.72 ± 0.05
AA (%) 95.94 ± 0.16 87.57 ± 1.77 98.52 ± 1.19 97.34 ± 2.32 99.72 ± 0.04 99.49 ± 0.15 99.73 ± 0.05
K ×100 95.21 ± 0.11 87.51 ± 3.22 98.38 ± 1.18 97.48± 1.68 99.60 ± 0.09 99.51± 0.12 99.64 ± 0.07

In addition, Figures 7–9 show the learning curves of the proposed method. On the
learning curves of these three datasets, as the number of epochs increases, both the loss
values and accuracy tend to have a smoothed output. The maximum fluctuation in loss val-
ues is less than 0.5, effectively demonstrating the excellent convergence performance of the
model. Meanwhile, the gradual fitting of the accuracy curves in the figure visually demon-
strates the remarkable generalization ability of the model. Based on the above analysis, our
method exploits complementary hybrid blocks to enable the efficient characterization of
the deep spectral–spatial features.
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3.4. Visualization of Classification Maps

In order to visually demonstrate the effectiveness of the RSSAT method, we analyzed
the classification results over the Indian Pines, KSC, and XuZhou datasets, as shown in
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Figures 10–12. These classification maps display that RSSAT has fewer misclassified pixels
and cleaner boundaries than other SOTA models. Therefore, we can conclude that the
RSSAT method outperforms all the methods for classification.
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Figure 10. Classification maps of the Indian Pines dataset. (a) Ground truth. (b) SVM. (c) CNN.
(d) ResNet. (e) MAFN. (f) SSFTT. (g) SSRN. (h) RSSAT.
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Figure 11. Classification maps of the KSC dataset. (a) Ground truth. (b) SVM. (c) CNN. (d) ResNet.
(e) MAFN. (f) SSFTT. (g) SSRN. (h) RSSAT.
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4. Discussions
4.1. Feature Visualization Analysis

For the purpose of investigating the feature representation capability of RSSAT, the
t-distributed stochastic neighborhood embedding (t-SNE) algorithm [40] was used to
visualize and compare the features extracted by ResNet and RSSAN in 2D space. As shown
in Figures 13–15, the samples belonging to the same class are clearly clustered into a group
in the figures, while samples of different classes are easily separated from each other. From
the visualization results, the RSSAT method is more significant and effective in clustering
the features, which further proves that the method gains the abstract representation of
spectral–spatial features for HSIs.
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4.2. Time Cost Comparison

In order to comprehensively evaluate the efficiency of different methods in the HSI
classification task, the running time and computational cost of each method are recorded in
detail in Table 7. As seen from the data in the table, the training time of RSSAT is slightly
longer compared to that of 3D-CNN, SSFTT, and SSRN. This is mainly attributed to the
complexity of the RSSAT model design, which contains more layers, thus increasing the
length of the training process to some extent. However, it is worth noting that RSSAT
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exhibits a significant advantage in classification accuracy. This performance enhancement,
especially in the accurate classification of small target samples, compensates for its minor
shortfall in training time. This balance between performance and efficiency of RSSAT is
reasonable considering that classification accuracy is often a crucial metric in practical
applications. Meanwhile, RSSAT shows significant advantages in both efficiency and
performance compared to ResNet and MAFN. This further demonstrates that RSSAT is
able to achieve superior classification performance with moderate computational cost,
providing an efficient and feasible solution for the HSI classification task.

Table 7. Training time in minutes (m) and test time in seconds (s) between the comparison methods
and the RSSAT method for three datasets.

Methods
Indian Pines KSC XuZhou

Params (M) Training (m) Test (s) Params (M) Training (m) Test (s) Params (M) Training (m) Test (s)

3D-CNN 0.26 1.87 4.43 0.14 1.21 2.21 1.38 2.71 3.02
ResNet 83.58 15.36 13.06 83.29 8.08 6.41 86.39 28.65 7.78
MAFN 2.11 12.45 6.22 1.88 7.62 5.94 2.99 19.21 12.15
SSFTT 0.61 3.47 3.18 0.42 2.64 8.41 1.06 5.12 5.47
SSRN 1.39 11.50 4.67 1.25 5.09 2.26 2.77 16.34 5.41
RSSAT 1.61 12.07 3.31 1.45 8.91 7.10 2.85 18.55 9.27

Overall, although RSSAT may not be the optimal choice from the perspectives of
execution time and computational cost, its high-precision overall classification performance
and its ability to accurately recognize small target samples make up for these shortcomings.

4.3. Different Numbers of Training Samples

In order to be closer to real-world application scenarios and to test the generaliza-
tion ability of the model under limited data, we reduced the ratio of training samples
to validation samples. The experimental results are shown in Table 8. Specifically, we
randomly selected 5% of the samples in the Indian Pines dataset as the training set, 5%
of the samples as the validation set, and the remaining samples as the test set. From
the experimental results, the performance of each method shows a different degree of
degradation as the number of samples is reduced. Compared with other methods, RSSAT
still has obvious advantages with fewer samples, which proves that RSSAT has superior
generalization ability.

Table 8. Classification performance under 5% training samples for Indian Pines dataset.

Method ResNet MAFN SSFTT SSRN DSGSF RSSAN

OA (%) 92.87 95.75 95.26 95.14 97.68 97.61
AA (%) 87.44 94.34 95.87 76.30 94.29 95.03
K × 100 91.83 95.14 89.86 94.45 97.36 97.38

4.4. Ablation Experiments Analysis

In this experiment, we still used the three datasets as examples to perform ablation
experiments to investigate the gain in each component when using our RSSAT by removing
different modules. The relevant results are reported in Table 9.

(1) In this work, we employed the SSRN model with multi-scale information integration
as the basic model architecture (the experimental model was defined as Base).

(2) For the purpose of verifying the validity of the residual spectral–spatial attention
module over RSSAT, the experiment only increased the improved transformer based
on Base (the experimental model was defined as Base+IT).

(3) For the purpose of verifying the validity of the improved transformer module over
RSSAT, the experiment only increased the multi-scale residual spectral–spatial atten-
tion module based on Base (the experimental model was defined as Base+RSS).
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Table 9. Ablation experiments for each component.

Dataset Index Base Base+IT Base+RSS Base+RSS+IT

OA (100%) 98.36 ± 0.47 98.53 ± 0.20 98.62 ± 0.51 98.71 ± 0.28
Indian Pines AA (100%) 95.24 ± 2.79 97.25 ± 0.54 97.53 ± 1.32 97.31 ± 1.07

K × 100 98.13 ± 0.53 98.32 ± 0.33 98.42 ± 0.58 98.53 ± 0.32

OA (100%) 98.68 ± 0.53 99.25 ± 0.60 99.11 ± 0.35 99.33 ± 0.57
KSC AA (100%) 98.19 ± 2.23 98.82 ± 1.10 98.71 ± 0.32 99.02 ± 0.76

K × 100 98.53 ± 2.04 99.17 ± 0.67 99.01 ± 0.39 99.25 ± 0.64

OA (100%) 99.13 ± 0.63 99.70 ± 0.07 99.29 ± 0.03 99.72 ± 0.05
XuZhou AA (100%) 98.72 ± 1.14 99.56 ± 0.14 98.99 ± 0.04 99.73 ± 0.05

K × 100 99.01 ± 0.81 99.62 ± 0.08 99.10 ± 0.04 99.64 ± 0.07

Specifically, Base+IT increased OA by 0.17%, 0.57%, and 0.57% over the Indian Pines,
KSC, and XuZhou datasets, respectively, which showed that the transformer adequately
captured contextual information, enabling the network to parse semantic information from
a global perspective. Base+RSS improved OA by 0.26%, 0.43%, and 0.16% on different
datasets, demonstrating that the multi-scale residual spectral–spatial feature extraction
module helped the architecture to adaptively learn the important features of each spectral–
spatial domain while emphasizing the information-rich features and suppressing less useful
features.

5. Conclusions

In the paper, a novel hybrid architecture is examined for HSI classification. Specifically,
the proposed RSSAT method improves the representational ability of extracted features
and captures relationships within a long range in the spectral domain by combining the
strengths of a transformer and a CNN. For the RSSAT method, the residual spectral–
spatial attention mechanism is embedded in the multi-scale feature-learning part for the
joint extraction of spectral and spatial features on the selected multi-scale feature maps
to highlight the discriminative information. For the characteristics of the HSI spectral
approximation continuation, we propose the Cross-Re-Attention mechanism to improve
the formal transformer to achieve deeper ViT training, which effectively alleviates the
ViT attention collapse problem and computational volume problem. Overall, RSSAT
successfully extracts discriminative features in complex regions and significantly enhances
remote contextual information in the spectral domain. The classification performance is
evaluated on three challenging datasets. The overall accuracy of the RSSAT model was
98.71%, 99.33%, and 99.72%, and average accuracy was 97.31%, 99.02%, and 99.72%, for the
Indian Pines, KSC, and XuZhou datasets, respectively.

Since the number of samples in the Indian Pines dataset is small and unevenly dis-
tributed, there is still room for improvement in the classification performance of the RSSAT
model. In future work, we will study methods such as data expansion, loss constraints
between features and HSI data, and transformer optimization to facilitate the classification
performance of a small-sample HSI dataset.
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