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Abstract: Ensuring safety while driving relies heavily on normal driving behavior, making the
timely detection of dangerous driving patterns crucial. In this paper, an Hourglass Attention ResNet
Network (HAR-Net) is proposed to detect dangerous driving behavior. Uniquely, we separately input
optical flow data, RGB data, and RGBD data into the network for spatial–temporal fusion. In the
spatial fusion part, we combine ResNet-50 and the hourglass network as the backbone of CenterNet.
To improve the accuracy, we add the attention mechanism to the network and integrate center loss
into the original Softmax loss. Additionally, a dangerous driving behavior dataset is constructed to
evaluate the proposed model. Through ablation and comparative studies, we demonstrate the efficacy
of each HAR-Net component. Notably, HAR-Net achieves a mean average precision of 98.84% on our
dataset, surpassing other state-of-the-art networks for detecting distracted driving behaviors.

Keywords: dangerous driving behavior detection; driving assistant; vehicle technology; gesture
recognition; deep learning

1. Introduction

Normal driving behavior is paramount for ensuring safe driving. Statistics and anal-
ysis have revealed that driver distraction accounts for over 70% of traffic accidents [1].
Engaging in dangerous driving behaviors like eating, drinking, using mobile phones,
talking, smoking, and other distractions significantly elevates the risk of accidents. Con-
sequently, detecting such behaviors has emerged as a pivotal research area in intelligent
transportation systems.

Typically, a driver’s state can be discerned through their hand movements during driv-
ing. However, this endeavor presents unique challenges. Firstly, distinguishing between
various hand behaviors is inherently more challenging than recognizing broader body
postures or distinct features. Additionally, collecting hand data often encounters issues like
external occlusions. Secondly, the driving environment itself poses challenges, including
varying backgrounds, light intensities, and image jitters caused by vehicle movement.
Despite these obstacles, the importance of accurate hand-based driving behavior detection
remains paramount for enhancing road safety.

Recently, the technology of deep learning has advanced significantly, sparking the in-
terest of numerous researchers across various domains such as lane detection [2], distracted
driver classification [3], object recognition [4], and data envelopment analysis [5]. In our
study, we categorize dangerous driving behaviors into five distinct groups: eating, drinking,
smoking, making phone calls, and playing with a phone. To address this challenge, we
introduce a novel network named Hourglass Attention ResNet Network (HAR-Net) for
dangerous driving behavior analysis.

In the HAR-Net architecture, we separately process optical flow data, RGB data,
and RGBD data, enabling spatial–temporal fusion. For spatial fusion, we leverage the
strengths of both ResNet-50 and the hourglass network, integrating them as the backbone of

Electronics 2024, 13, 1019. https://doi.org/10.3390/electronics13061019 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13061019
https://doi.org/10.3390/electronics13061019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13061019
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13061019?type=check_update&version=1


Electronics 2024, 13, 1019 2 of 17

CenterNet. Additionally, to enhance the model’s performance, we incorporate an attention
mechanism and integrate center loss with the traditional Softmax loss.

The main contributions of this study are as follows:

(1) We have proposed HAR-Net, a deep learning architecture designed specifically for
identifying dangerous driving behaviors. Within this framework, optical flow data,
RGB data, and RGBD data are individually inputted into the network, facilitating
spatial–temporal fusion for enhanced analysis.

(2) We have gathered data on dangerous driving behaviors and labeled them according
to five distinct categories to create a comprehensive dataset for our study.

(3) Comprehensive experiments have been conducted on three datasets, and the results
of ablation and comparison experiments demonstrate that the proposed method
significantly outperforms the baseline methods in terms of performance.

2. Related Works
2.1. Target Detection

Generally, the detection of dangerous driving behavior is a type of target detection.
Existing target detection methodologies can be broadly categorized into two types: the
two-stage target detection approach and the one-stage target detection approach.

The two-stage target detection method involves generating candidate regions using an
algorithm and subsequently classifying these samples by using a convolutional neural net-
work. For example, in the region-based convolutional neural network (R-CNN) algorithm
proposed in [6], the candidate regions of all samples are extracted using a selective search
algorithm and then classified using a convolutional neural network. However, a significant
drawback of this selective search algorithm is that it often extracts a considerable amount
of redundant information which can hinder the achievement of optimal results. To address
this issue, the Fast RCNN algorithm proposed in [7] combines region of interest (ROI) pool-
ing with a selective search algorithm to reduce redundant information. Additionally, Fast
R-CNN incorporates a multitask loss function that integrates candidate region classification
loss and location regression loss, directly incorporating boundary regression into CNN
training. While this approach mitigates the issue of redundant information, it still faces
challenges in terms of computational efficiency as it requires significant time to calculate
the candidate regions. Subsequently, the Faster RCNN algorithm is proposed in [8]. Faster
R-CNN integrates feature extraction, bounding box representation, and classification into a
unified network, resulting in a substantial improvement in detection speed.

The one-stage target detection algorithm eliminates the need for generating candidate
boxes by directly framing the target boundary location problem as a regression task. The
You-Only-Look-Once (YOLO) algorithm proposed in [9] takes the entire image as input
to the CNN and directly regresses the position and category of the bounding box in the
output layer. It divides the images into S × S grid cells. Any grid cell containing the center
of an object becomes responsible for predicting that object. Redmon et al. [10] propose
the YOLOv3 algorithm, incorporating multiscale prediction and DarkNet53. In [11], the
YOLOv4 algorithm is proposed, and its backbone is CSPDarknet53. CSPDarknet5 changes
the leak ReLU activation function to the Mish activation function [12] and adds the idea
of cross-stage concatenation. It also adds the spatial pyramid pooling algorithm [13] in
the middle of the network to strengthen the feature information. It can be observed that
the YOLOv4 algorithm shows advantages in accuracy and real-time computation, but it
relies on a large number of anchors. The CenterNet used in this study does not need to
distinguish whether an anchor is an object or background. Each target corresponds to only
one anchor, which is extracted from the heatmap. In other words, it is an anchor-free target
detection network with greater advantages in terms of speed and accuracy.

2.2. Dangerous Driving Behavior Detection

Previous studies examining dangerous driving behaviors, particularly those focused
on drivers’ hand movements, have predominantly employed traditional algorithm-based,
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device-based, and deep learning-based methodologies. In terms of research based on
traditional algorithms, Zhao et al. [14] propose a method to extract driver behavior features
based on homomorphic filtering, skin-like region segmentation, and the contour wave
transform. The driving posture dataset is used to extract the features. When comparing
the performance of various classification algorithms, such as the random forest classifier,
k-nearest neighbor (KNN), and multilayer perceptron (MLP), the random forest classifier
emerges as the most effective. Within a driver-centered driving assistance system, the
classification accuracy for the class “Eating” using a radio frequency classifier is greater
than 88%, proving the effectiveness of the method. Furthermore, the study employs a
pyramid gradient histogram to capture local features and establishes the SEU-DP driving
posture dataset for training and testing purposes. This dataset contains “operate the
steering wheel and gear lever”, “eat cake”, and “use mobile phone”. Finally, multilayer
perception classifiers are used to classify and predict different driving behaviors [15].
Although research is often based on traditional algorithms, research can also be conducted
with multilevel and wide-field classification. It often demands significant computational
resources and has difficulty achieving accurate recognition requirements.

Device-based research utilizes various instruments to gather depth and sensor infor-
mation for analyzing hand movements. A popular device in this domain is the wearable
data glove, equipped with numerous sensors. These gloves leverage magnetic positioning
sensors to pinpoint the wearer’s hand location in three-dimensional space, precisely detect-
ing the global hand position, finger joint positions, and the extent of finger bending. This
allows for the quantification of any hand action, enabling the identification of distinct hand
behaviors. Fang et al. [16] proposes a new data glove for gesture capturing and recognition
based on inertial and magnetic measurement units. This data glove is composed of a three-
axis gyroscope, three-axis accelerometer, and three-axis magnetometer. Three-dimensional
movements that include the arms, palms, and fingers are completely captured by data
gloves. The captured data can be combined with extreme learning machines for hand
detection and behavior recognition. This method accurately distinguishes subtle differ-
ences between different actions in scenarios that involve high speed and wide application.
However, it should be noted that the data glove is an intrusive device, potentially affecting
the user’s natural behavior during use. Consequently, to preserve normal driving behavior,
this method is not considered suitable for use in the driving environment.

In recent years, with the remarkable advancement of deep learning, numerous studies
have focused on analyzing dangerous driving behaviors. Jha et al. [17] propose a for-
mulation based on probabilistic models to determine salient regions for driver’s visual
attention description. A bidirectional posture–appearance interaction network (BPAI-Net)
is proposed in [18], and in their method, RGB frames and skeleton data are adopted for
driver behavior recognition. Ansari et al. [19] propose a driver mental fatigue and drowsi-
ness detection method by monitoring drivers’ head posture motions. Benjamin et al. [20]
propose a driver posture classification system to detect whether the driver is using a mobile
phone or eating food. Simultaneously, a new dataset is established to train and evaluate
different learning models. The dataset is captured using two infrared cameras, achieving
accuracies of 92.88% and 90.36% for the left and right-side camera data, respectively. In
summary, the method based on deep learning is widely used and has a high fault tolerance,
which is the most suitable method at present. However, we find that many networks lose
a considerable amount of information in the process of feature extraction. To correct this
defect, our study improves the entire network and proposes HAR-Net for the detection of
dangerous driving behavior.

3. Related Improvements

To improve the precision of the network, this study adopts some existing improvement
methods to improve the structures of the hourglass network and ResNet-50.
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3.1. Hourglass Network

The hourglass network derives its name partly from its distinctive shape. During
feature processing, the network initially down-samples the input, subsequently up-samples
it, and finally incorporates skip connections to enhance its performance. In this study, we
incorporate dilated convolution into the hourglass network, utilizing it as a fundamental
unit. This modification aims to minimize down-sampling while preserving maximum
information. Zhang et al. [21] suggest that the design goal of dilated hourglass models
(DCM) is to make full use of different feature levels and reduce information loss. Traditional
methods tend to use up/down-sampling to expand the perception domain and obtain
high-level features. However, this up/down-sampling structure usually leads to the loss
of information and resolution; thus, it has a significant impact on the accuracy of the
determined target position. To address this limitation, dilated convolution is employed as
the fundamental component, enabling the expansion of the receptive field while preserving
the original resolution.

The DCM module consists of three layers, as shown in Figure 1. Skip connection con-
nects two ordinary convolution layers, and the output of the final module is the addition of
skip connection and the extended convolution layer output. The improved hourglass net-
work uses DCM to replace the residual module; this replacement reduces the subsampling
time and information loss. The relationship between the input size and output size of the
network with dilated convolution is described in Equation (1).

W2 =
W1 + 2p − d(k − 1)− 1

s
+ 1 (1)

where W1 is the input feature map size, W2 is the output feature map size, p is padding, d
is dilation, and k is the kernel size. In the proposed model, the dilation coefficient is the
cyclic structure of [1, 2, 5, 1, 2, 5]. The advantages of employing dilated convolution can be
summarized as follows: Firstly, it efficiently enlarges the receptive fields of the network.
Secondly, it mitigates gridding issues that arise from the stacking of multiple identical
dilated convolutions.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 17 
 

 

To correct this defect, our study improves the entire network and proposes HAR-Net for 
the detection of dangerous driving behavior. 

3. Related Improvements 
To improve the precision of the network, this study adopts some existing improve-

ment methods to improve the structures of the hourglass network and ResNet-50. 

3.1. Hourglass Network 
The hourglass network derives its name partly from its distinctive shape. During fea-

ture processing, the network initially down-samples the input, subsequently up-samples 
it, and finally incorporates skip connections to enhance its performance. In this study, we 
incorporate dilated convolution into the hourglass network, utilizing it as a fundamental 
unit. This modification aims to minimize down-sampling while preserving maximum in-
formation. Zhang et al. [21] suggest that the design goal of dilated hourglass models 
(DCM) is to make full use of different feature levels and reduce information loss. Tradi-
tional methods tend to use up/down-sampling to expand the perception domain and ob-
tain high-level features. However, this up/down-sampling structure usually leads to the 
loss of information and resolution; thus, it has a significant impact on the accuracy of the 
determined target position. To address this limitation, dilated convolution is employed as 
the fundamental component, enabling the expansion of the receptive field while preserv-
ing the original resolution. 

The DCM module consists of three layers, as shown in Figure 1. Skip connection con-
nects two ordinary convolution layers, and the output of the final module is the addition 
of skip connection and the extended convolution layer output. The improved hourglass 
network uses DCM to replace the residual module; this replacement reduces the subsam-
pling time and information loss. The relationship between the input size and output size 
of the network with dilated convolution is described in Equation (1). 𝑊 = 𝑊 + 2𝑝 − 𝑑 𝑘 − 1 − 1𝑠 + 1 (1)

where 𝑊  is the input feature map size, 𝑊  is the output feature map size, 𝑝 is padding, 𝑑 is dilation, and 𝑘 is the kernel size. In the proposed model, the dilation coefficient is 
the cyclic structure of [1, 2, 5, 1, 2, 5]. The advantages of employing dilated convolution 
can be summarized as follows: Firstly, it efficiently enlarges the receptive fields of the net-
work. Secondly, it mitigates gridding issues that arise from the stacking of multiple iden-
tical dilated convolutions. 

 
Figure 1. Dilated convolution analytic graph. (a) Ordinary convolution: 1-dilated convolution. (b) 
Dilated convolution: 2-dilated convolution. It is mainly composed of a 3 × 3 expanded convolution 
layer and two 3 × 3 ordinary convolution layers. The extended convolution layer is located between 
two ordinary convolution layers, and the expansion rate is 2. 

3.2. ResNet-50 Network 
In ResNet [22], the residual structure and cross-layer connection are added to the 

network to solve the problem of exploding gradient and degradation. 

Figure 1. Dilated convolution analytic graph. (a) Ordinary convolution: 1-dilated convolution.
(b) Dilated convolution: 2-dilated convolution. It is mainly composed of a 3 × 3 expanded convolution
layer and two 3 × 3 ordinary convolution layers. The extended convolution layer is located between
two ordinary convolution layers, and the expansion rate is 2.

3.2. ResNet-50 Network

In ResNet [22], the residual structure and cross-layer connection are added to the
network to solve the problem of exploding gradient and degradation.

The down-sampling block of ResNet has two paths: path A and path B. Path A has two
1 × 1 convolution layers and one 3 × 3 convolution layer; we call this a bottleneck structure.
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Path B has a 1 × 1 convolution layer in steps of 2. The output of the final down-sampling
block is the sum of the two paths’ outputs.

Through the ResNet structure described previously, it can be found that in the down-
sampling part (as shown in Figure 2), path A has the first convolution with a stride of
2 whose convolutional kernel is 1 × 1, so three-quarters of the characteristic information
is ignored. Similarly, the convolution layer in path B also ignores three-quarters of the
characteristic information. In [23], the authors adjust the stride of the two convolution
layers in path A to tackle these challenges. Specifically, they assign a stride of 2 to the
3 × 3 convolution layer while maintaining a stride of 1 for the remaining convolution
layers. Additionally, they enhance path B by setting the stride of the convolution layer to
1 and introducing a 2 × 2 average pooling layer with a stride of 2 before the convolution
layer. In our study, we apply this approach to refine ResNet-50. Our experimental results
indicate that this modification has minimal impact on computational cost while significantly
boosting accuracy.
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4. Proposed Method

In this study, we design an efficient and accurate target detection classifier based on
CenterNet [24] that improves the accuracy index and accelerates the network processing
speed. Compared with YOLO, SSD, and Fast R-CNN, the detection network relies on a
relatively large number of anchors. CenterNet does not need to distinguish whether the
anchor is an object or a background; each target corresponds to only one anchor, which is
extracted from the heatmap. In other words, it is an anchor-free target detection network,
which has advantages in terms of speed and accuracy.

4.1. Dataset

Before conducting the experiments, we gather and preprocess data to streamline the
design, training, and assessment of our model. To investigate driving behavior, we compile
information on various activities such as smoking, drinking, eating, talking on the phone,
and playing with a phone. Subsequently, we label and categorize the dataset, using it to
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evaluate our proposed network through both training and testing sets. In our study, we
adopt the Philips CVR300 automobile data recorder, which captures high-definition color
video streams at a rate of 30 frames per second, with a resolution of 1920 × 1080.

(1) Data Collection: As depicted in Figure 3, we position the automobile data recorder at
the top right corner of the steering wheel and on the passenger side window to capture
driving behavior videos of 14 drivers, 5 females and 9 males, ranging in age from 17 to
22 years old and with driving experience varying between 1 and 5 years. The driving
behaviors observed in our study encompass smoking, drinking, eating, talking on the
phone, and playing with a phone. Data are predominantly collected during daylight
hours but also include sequences in dark and complex lighting conditions. After
filtering the recorded video footage, we convert each frame into individual images
and save them for further analysis. Figure 4 provides an illustrative example of one
such saved image.

(2) Data Preprocessing: Incorporating optical flow into the model has been shown to
be an effective way to improve accuracy [25,26]. Optical flow is the instantaneous
speed of a spatially moving object moving in pixels, and it is a method used to
calculate the motion information of an object between adjacent frames. In general,
optical flow is the projection of the motion of an object in three-dimensional space
on a two-dimensional pixel plane, which is generated by the relative velocities of the
object and the camera. It reflects the moving direction and speed of the image pixels
corresponding to the object in a very small time. Therefore, the optical flow map
can unambiguously describe the short-term movements of the driver. In our study,
the method of [27] is adopted to obtain the optical flow for every video frame in the
dataset, as shown in Figure 5.
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Figure 5. Optical flow data of five dangerous driving behaviors. The optical flow is calculated using
the sequential frames in the driving video, and the color in the figure reflects the moving direction
and speed of the image pixels corresponding to the object in a very small timeframe.

We use depth data in the model based on prior knowledge to make better use of the
data. Depth images record the distance from the camera to points in the scene, reflecting
the geometry of objects in the scene. The depth data are obtained using the method of [28],
which is shown in Figure 6. Our model will jointly use optical flow information, depth
information, and raw video frames as the input data.
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4.2. Overall Framework

We introduce a sophisticated deep neural network architecture, named HAR-Net,
designed to detect dangerous driving behaviors. Our innovative approach involves lever-
aging multichannel input data of various types, including optical flow, RGB, and depth
information. By integrating temporal and spatial details through fusion layers, our model
enhances data utilization, leading to improved performance. The comprehensive structure
of HAR-Net is depicted in Figure 7.

Considering the need for temporal fusion of RGB features and optical flow features,
we choose to use the same ResNet50 in the RGB channel and the optical flow channel.
After the features’ temporal fusion, they are fused with the RGBD features extracted by the
hourglass network in the spatial domain and output. The above is the overall framework
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of our model, and the detailed structure of each component of the HAR-Net model will be
described in subsequent chapters.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 5. Optical flow data of five dangerous driving behaviors. The optical flow is calculated using 
the sequential frames in the driving video, and the color in the figure reflects the moving direction 
and speed of the image pixels corresponding to the object in a very small timeframe. 

 
Figure 6. Depth data of five dangerous driving behaviors. 

4.2. Overall Framework 
We introduce a sophisticated deep neural network architecture, named HAR-Net, 

designed to detect dangerous driving behaviors. Our innovative approach involves lever-
aging multichannel input data of various types, including optical flow, RGB, and depth 
information. By integrating temporal and spatial details through fusion layers, our model 
enhances data utilization, leading to improved performance. The comprehensive struc-
ture of HAR-Net is depicted in Figure 7. 

 
Figure 7. Overall process of the network. 

Considering the need for temporal fusion of RGB features and optical flow features, 
we choose to use the same ResNet50 in the RGB channel and the optical flow channel. 
After the features’ temporal fusion, they are fused with the RGBD features extracted by 

Figure 7. Overall process of the network.

4.3. Network Fusion

The original CenterNet network has three backbones for target detection: ResNet-18,
Hourglass-104, and DLA-34. ResNet50 has been widely used in recent years. However, with
an increase in the feature layer, the context information and global relationship gradually
decreases, which may greatly reduce the performance of the model. On the other hand,
the resolution of the feature map cannot meet the pixel-level requirements. We combine
ResNet-50 and the hourglass network as the backbone of CenterNet because the hourglass
network has a greater advantage in this regard. In this paper, we propose two network
combination methods, as follows.

(1) Loss value combination: The loss value represents the distance between the model
output and the real result. The calculation method for this distance is defined by the
loss function. This combination method, based only on the loss value, is the most basic
combination method. The data pass through ResNet-50 and the hourglass network
in parallel, and features are extracted to obtain the corresponding loss value and
combine it. The combination method is obtained as follows:

L = L1 + L2 (2)

where L is the loss value after the combination, and L1 and L2 are the loss values
through ResNet-50 and the hourglass network, respectively.

(2) Feature map combination: According to the above introduction, ResNet-50 loses a
large amount of information as the number of network layers increase. Thus, the size
of the feature map will be reduced. In this case, to combine the feature maps of the
two networks, the first task is to populate the feature maps’ output by ResNet-50. For
example, the size of the data input to the model is 512 × 512, the size of the feature
map A output by the hourglass network is also 512 × 512, and the feature map B
output by ResNet-50 is only 16 × 16. Therefore, we should first pad feature map B to
a size of 512 × 512 and then combine it with feature map A to obtain feature map C
for the detection and recognition. Figure 8 shows the framework of the combination
of the two networks.

The advantage of the feature graph combination method is that it does not simply
combine the results of the two networks, but combines the extracted feature graphs of the
two networks. This is equivalent to combining good features and removing bad features to
achieve better recognition and classification results.
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4.4. Attention Mechanism

The attention mechanism mentioned in this study is the squeeze-and-excitation net-
work (SENet), which filters the attention of the channel by learning the correlation between
channels. The increased computational workload can be negligible [29]. The core idea of
SENet is to learn the feature weights through network loss. The weight of an effective
feature map is large, and the weight of an invalid feature map is small; thus, good results
can be achieved. Certainly, the SE block embedded in some original classification networks
inevitably increases the number of parameters and the computation, but this increase is
acceptable considering the obtained effect.

The general principle of the module is as follows: The SE block processes the feature
map and obtains a one-dimensional vector as the evaluation score. The score is then applied
to the corresponding channel, and only one block is added to the original basis. In the
proposed model, an attention mechanism is added to the last layer of the ResNet-50 and
hourglass networks.

4.5. Loss Function Reconstruction

The loss function serves as a metric to quantify the discrepancy between the model’s
predictions and the actual values. Its purpose is to establish a benchmark that facilitates
the optimization of parameters during the training phase, ultimately aiming to attain the
highest possible accuracy for the network. This concept is intuitively understandable and
akin to many real-life scenarios. For instance, when parking a car, we rely on the rear-view
mirror and adjust the steering wheel based on the parking lines visible. These lines serve as
a reference, analogous to the loss function in machine learning, guiding the model toward
convergence during training.

After the above improvements, the accuracy is significantly improved. However,
in terms of model complexity, even if each improvement adds only a small amount of
calculation, the impact on model speed is evident. Therefore, we improve the running
speed of the model from the perspective of loss function reconstruction. In this study, we
propose the use of both SoftMax loss and center loss. First, SoftMax loss is used to separate
different categories, and then center loss is used to compress the same category and finally
obtain discriminative features.
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SoftMax loss is one of the most common loss functions. It is a combination of SoftMax
loss and cross-entry loss. The formula is as follows:

Ls =
T

∑
j=1

yjlogSj (3)

where Ls is the SoftMax loss. Sj is the j-th value of the output vector S of SoftMax, which
represents the probability that this sample belongs to the j-th category. y is a 1 × T vector
(only the value of the position corresponding to the real label is 1, and the other T − 1
values are 0). Therefore, this formula has a simpler form:

Ls = −logSj (4)

The principle of center loss is to set several center points for classification so features
of different categories are as close to their center points as possible. In other words, it is
hoped that the within-class distance will become smaller and the between-class distance
will become larger. The formula is as follows:

LC =
1
2

m

∑
i=1

∥ xi − C(yi) ∥2
2 (5)

where x refers to the feature, and C is the category center corresponding to each sample
in each batch. Similar to the dimension of feature x, it is updated with model training. It
should be noted that the change in each category center is calculated only by the picture
characteristics belonging to this category.

The SoftMax loss and center loss are used together in the model to obtain L1 and L2 in
(2), i.e., k = 1 or 2 in (6). And λ is the weight, which is the best parameter obtained from
multiple experiments and prior knowledge. It can be formulated as follows:

Lk = LS + λLC (6)

After the experiment, the effect of the improved loss function on the accuracy level is
not obvious, but the speed is significantly affected.

5. Experiments
5.1. Evaluation Metrics

To evaluate the performance of our proposed method, we use evaluation metrics com-
monly used in classification tasks: macro-average, micro-average, and mAP. Macro-average
is used to calculate the index value of each class first and then calculate the arithmetic mean
of all classes. Equations (7)–(9) represent the calculations of macro-precision, macro-recall,
and macro-average, respectively.

Macro_P =
1
n

n

∑
i=1

Pi (7)

Macro_R =
1
n

n

∑
i=1

Ri (8)

Macro_F =
2 × Macro_P × Macro_R

Macro_P + Macro_R
(9)

Micro-average is used to establish a global confusion matrix for each instance in the
dataset regardless of category and then calculate the corresponding indicators.
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Equations (10)–(12) represent the calculations of micro-precision, micro-recall, and micro-
average, respectively.

Micro_P =

n
∑

i=1
TPi

∑n
i=1 TPi + ∑n

i=1 FPi
(10)

Micro_R =

n
∑

i=1
TPi

∑n
i=1 TPi + ∑n

i=1 FNi
(11)

Micro_F =
2 × Micro_P × Micro_R

Micro_P + Micro_R
(12)

The evaluation index in this study is the mean average precision (mAP) [30]. The
principle is used to calculate the AP of each category and take the average value. AP is
measured for a single category, and mAP is measured for all categories.

In our study, we conduct experiments based on Python 3.8 and PyTorch 1.8, using a
NVIDIA RTX2080 with 12 GB memory machine. Our model is trained with 70 epochs, and
the batch size is 8. It takes about 53 min to train an epoch.

5.2. Ablation Experiment

To test the performance of the HAR-Net, we first complete an overall experiment using
the dataset as described. Figure 9 shows the results of the overall network experiment.
Figure 10 shows the performance of various driving behaviors. As shown in the figure, our
network performs well for smoking, drinking, and phone talking, but there are also some
errors for the eating and phone-playing behaviors.

In this study, we introduce several enhancements to various network modules. While
the overall network experiments demonstrate improved performance, the specific contribu-
tions of individual modules remain unclear. To address this, we undertake ablation studies
on each module, aiming to assess its impact on the overall network performance. The pri-
mary modules under investigation include the hourglass network, ResNet-50, and attention
modules, which are systematically arranged and combined for the ablation tests. Table 1
presents a comparative analysis of the mean average precision (mAP) results obtained from
these ablation experiments.
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Table 1. Results of ablation experiments.

Networks Modification Method mAP (%)

Original hourglass network — 88.17
Original ResNet-50 — 93.25

Modified hourglass network Using extended convolution 92.14
Modified ResNet-50 Modified down-sampling 94.75

Attention mechanism CenterNet + SE block 96.56

Loss combined network Combine hourglass and
ResNet-50 with loss value 98.72

HAR-Net Combine hourglass and
ResNet-50 at feature map 98.61

Lines 1 and 2 in Table 1 are the original hourglass network and ResNet-50 network,
and lines 3 and 4 are the improved hourglass network and ResNet-50 network, respectively.
It can be observed that the mAP is improved compared with the original networks. Line
5 represents the network with a separate attention mechanism [31], and lines 6 and 7 are
the result of the two network combination methods. Specific results are shown in the
tables. The ablation experiments demonstrate that the enhancements we introduced in
each module result in improvements in mean average precision (mAP). The feature map
combination method is better than the loss value combination method. This is because
the feature map combination method does not simply combine the results of the two
networks but combines the extracted feature maps of the two networks; this is equivalent
to combining the useful features. Simultaneously, bad features are removed to achieve
better recognition and classification results.

5.3. Comparative Experiment

After the ablation experiment, we compare HAR-Net with traditional target detection
and several networks that have been reported in other papers. To compare the network
comprehensively, we also process the CVPR-Hands 3D dataset [32] and StateFarm dataset,
which are captured in dynamic driving environments, and utilize them for network training
and testing with our dataset. During processing, the CVPR-Hands 3D dataset is classified
into six types: normal driving, console manipulation, eating, texting, drinking, and reading.
The StateFarm dataset is classified into five types: talking on the phone, playing with a
phone, drinking, touching the face, and console manipulation.
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The networks used in the comparative experiments are as follows: RetinaNet-101 [33],
YOLOv3 [10], YOLOv4 [11], DDGNet-YOLO [34], Ensemble Inception V3 [35], and C-
SLSTM [36]. Among them, RetinaNet-101, YOLOv3, and YOLOv4 are commonly used
target detection networks. DDGNet-YOLO, C-SLSTM, and Ensemble Inception V3 are the
networks mentioned in other papers related to dangerous driving behavior. Tables 2–4
show the experimental results on the three datasets.

Table 2. Results of comparative experiments on CVPR-Hands 3D dataset.

Network
CVPR-Hands 3D Dataset

Macro-Average Micro-Average mAP (%)

RetinaNet-101 0.76 0.77 75.7
YOLOv3 0.84 0.85 85.1
YOLOv4 0.85 0.87 87.3

DDGNet-YOLO 0.84 0.83 83.8
Ensemble Inception V3 0.81 0.82 81.22

C-SLSTM 0.82 0.83 82.59
HAR-Net 0.86 0.87 87.93

Table 3. Results of comparative experiments on StateFarm dataset.

Network
CVPR-Hands 3D Dataset

Macro-Average Micro-Average mAP (%)

RetinaNet-101 0.87 0.88 87.39
YOLOv3 0.95 0.95 96.10
YOLOv4 0.96 0.97 97.28

DDGNet-YOLO 0.96 0.96 96.52
Ensemble Inception V3 0.92 0.92 92.06

C-SLSTM 0.93 0.93 93.17
HAR-Net 0.97 0.97 97.23

Table 4. Results of comparative experiments on our dataset.

Network
CVPR-Hands 3D Dataset

Macro-Average Micro-Average mAP (%)

RetinaNet-101 0.88 0.88 88.15
YOLOv3 0.96 0.96 96.41
YOLOv4 0.97 0.97 97.79

DDGNet-YOLO 0.97 0.98 97.21
Ensemble Inception V3 0.91 0.92 92.32

C-SLSTM 0.92 0.93 93.06
HAR-Net 0.98 0.98 98.61

Upon analyzing Tables 2–4, it is evident that HAR-Net exhibits strong performance on
our dataset, while YOLOv3 and YOLOv4 also achieve impressive results, surpassing 90%
accuracy. However, when tested on the CVPR-Hands 3D dataset, all networks experience a
decrease in mAP by less than 10%. We hypothesize that this discrepancy is primarily due
to differences in data collection angles. Specifically, our dataset and the StateFarm dataset
are captured from frontal and side perspectives, whereas the CVPR-Hands 3D dataset is
predominantly collected from behind, making it more susceptible to sunlight interference.
Additionally, the CVPR-Hands 3D dataset introduces a higher level of complexity with
more classes, a wider range of motions, and more intricate actions, thus posing a greater
challenge for target identification.

Despite these challenges, our HAR-Net maintains satisfactory performance, indi-
cating the effectiveness of our implemented improvements in enhancing network per-
formance. Nevertheless, when compared to the widely adopted YOLO networks, the
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robustness of HAR-Net still has room for improvement, necessitating further research in
this area. Figures 10–13 provide visualizations of HAR-Net’s detection results across the
three datasets.
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In terms of model speed, we utilize frames per second (FPS) as the evaluation metric.
Following the refinement of the loss function, our proposed model achieves an FPS of 40,
demonstrating its capability in real-time applications.

To more intuitively show the performance of the network, we draw the cumulative
match characteristic (CMC) curve of these methods, as shown in Figure 14. The purpose of
the CMC curve is to calculate a top-k hit probability, which is mainly used to evaluate the
accuracy of the rank in the closed set. It can be observed from the curves that although all
methods have similar detection results after rank 5, our method has a higher matching rate
when the rank value is small.
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6. Conclusions

In this paper, we introduce HAR-Net, a deep learning-based network designed specifi-
cally for detecting dangerous driving behaviors. Our approach involves separately feeding
optical flow, RGB, and depth data into the network for spatial–temporal fusion. For spatial
fusion, we integrate ResNet-50 and the hourglass network as the foundation of CenterNet.
The key findings from our research are summarized as follows:

1. To assess the network’s performance, we construct a dataset featuring dangerous
driving behaviors captured under natural conditions. The experimental results demon-
strate that enhancements made to each module positively impact the model’s over-
all performance.

2. To validate the efficacy of HAR-Net and mitigate any potential biases, we conduct
a comparative analysis against traditional target detection methods and various
networks mentioned in prior studies. We process and combine data from the CVPR-
Hands 3D and StateFarm datasets with our own dataset for comprehensive network
training and testing. HAR-Net achieves an impressive mAP of 98.84% on our dataset,
surpassing the performance of other networks. However, we acknowledge some
limitations in terms of robustness when applied to other datasets, an area we intend
to focus on in future research.
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