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Abstract: Vietnamese is an under-resourced language. The requirement for a large-scale and high-
quality Vietnamese speech corpus increases on demand. We introduce a new large-scale Vietnamese
speech corpus with 100.5 h collected from various audio sources in the Internet. The raw collected
audio was processed to obtain clean speech. Transcription of the clean speech was made manually.
The new corpus was analyzed in terms of gender, topic and regional dialect. Results shows that the
new corpus has good diversity of genders, topics and regional dialects. We also evaluated the new
corpus using state-of-the-art automatic speech recognition models like LAS and Speech-Transformer
for multiple scenarios. This is the first time that these models have been applied to Vietnamese
speech recognition and obtained reasonable results. Simulation results showed that the new corpus
would be a good dataset for the Vietnamese ASR tasks because it reflected correctly difficulties in
recognizing speech from different dialects and topic domains.

Keywords: Vietnamese corpora; automatic speech recognition; LAS; transformer; SpecAugment

1. Introduction

Vietnamese is spoken by approximately 90 million speakers, primarily in Vietnam.
It serves as the official language for the majority of the country’s population. The dis-
tinctiveness of Vietnamese is that it is a monosyllabic and tonal language. Moreover, the
Vietnamese writing script is based on the Latin script with additional diacritics to represent
tones, consisting of 91 characters in total. Vietnamese belongs to under-resourced languages
since the Vietnamese resources that are publicly available are very limited. Additionally,
most public corpora of Vietnamese are constructed by recording speakers’ voices when
they read given texts [1–3]. This means that the available datasets might not be compatible
for realistic scenarios relating to spoken language, such as conversational and discussion
recognition [4]. Some Vietnamese speech corpora are generated by crawling speech from
the Internet or by combining reading text and crawling speech. Many current Vietnamese
corpora have a small size, around a few hours to tens of hours, such as VIVOS, VLSP 2018,
etc., [2,3,5]. The Vietnamese corpora of more than 100 h, such as VinBigdata-VLSP2020 and
corpora in [6,7], are rare, and most of them are not open-access, like the corpus collected
by FPT Technology Research Institute (FTRI), namely FTRI corpus, MICA VNSpeechCor-
pus [8], and the corpora in [6,7]. However, those corpora are not either high-quality sound
or open-access. Note that constructing a large-scale and high-quality corpus costs a lot
of time and effort. The demand for large-scale and high-quality Vietnamese corpora that
reflect real-life situations has increased for research purposes.

In this paper, we introduce a new large-scale corpus of Vietnamese with total of 100.5 h
of nearly clean speech. This corpus is constructed by crawling many audio resources in
the Internet and manually transcribing them. Unlike other Vietnamese corpora, the audio
files in our collected corpus are labeled not only by gender and regional dialect but also
by various topics such as news, reading, healthcare, tourism, sports, etc. Our new corpus
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is open-access and can be found at the link: https://drive.google.com/drive/folders/
1tiPKaIOC7bt6isv5qFqf61O_2jFK8ZOI?usp=sharing, accessed on 1 March 2024.

Most previous works for Vietnamese automatic speech recognition (ASR) tasks in-
vestigated traditional statistical ASR models like HMM/GMM, deep neural networks
(DNNs) or hybrid models—a combination of HMM/GMM and DNN models [3,6,7,9–11].
Recently, end-to-end (E2E) models in the field of automatic speech recognition have gained
considerable attention from both academic and industrial perspectives [12–17]. These
models integrate the components of traditional ASR systems—specifically, the acoustic
model (AM), pronunciation model (PM) and language model (LM)—into a unified neural
network. The optimization of these components is performed jointly within the E2E model.
This integration results in a simplified system architecture, facilitating ease of development
and maintenance. Among them, Listen, Attend and Spell (LAS) [18], Transformer [16] and
Speech-Transformer (sTransformer) [19] are state-of-the-art (SOTA) E2E models. To the best
of our knowledge, those SOTA approaches have been used for ASR on some rich-resourced
languages such as English and Mandarin, but not for Vietnamese, a low-resourced language
with monosyllables and six tones. Therefore, we propose to apply LAS, Transformer and
their variants for ASR tasks to evaluate the effectiveness of the collected corpus in multiple
scenarios. Simulation results showed that the behaviour of the new corpus was consistent,
and it would be a good dataset for the Vietnamese ASR tasks.

The contribution of this paper is twofold:

(i) To introduce a novel large-scale Vietnamese speech corpus (LSVSC);
(ii) To propose to use SOTA end-to-end automatic speech recognition approaches such

as LAS and sTransformer with/without the integration of advanced techniques (e.g.,
SpecAugment (SA) and adaptive SpecAugment (adaptSA)) on Vietnamese.

This paper is organized as follows. Section 2.1 describes the main characteristics of the
Vietnamese language. A review of previous Vietnamese speech corpora and ASR methods
has been mentioned in Section 3. Section 4 introduces a new large-scale Vietnamese speech
corpus that we collected. Section 5 represents the application of the SOTA end-to-end ASR
models such as LAS, sTransformer and their variants on the new corpus. Simulation results
are presented in Section 6, where we evaluate the LSVSC by using SOTA end-to-end ASR
models with multiple scenarios. Section 7 discusses the results and highlights future work.

2. Vietnamese Language
2.1. Characteristics of Vietnamese Language

Vietnamese is the official and national language of Vietnam, with about 90 million
native speakers. It serves as the primary language for the majority of the country’s popula-
tion, and it is also spoken as a first or second language by various ethnic minority groups
within Vietnam. Indeed, the Vietnamese language is known for its unique characteristics
that make it quite distinctive from many other languages. In particular, Vietnamese words
are often monosyllabic, i.e., each word consists of one syllable. Additionally, Vietnamese is
a tonal language, which means that the pitch or intonation used when pronouncing a word
can change its meaning. There are six tones in Vietnamese, each represented by a specific
diacritical mark or indicated by the absence of a mark, cf. Table 1. The differences among
tones in Vietnamese are illustrated in Table 2 [7]. The monosyllabic nature of Vietnamese,
combined with its tonal system, adds a layer of complexity to the language.

Table 3 shows the structure of Vietnamese syllables. The Vietnamese language has
22 initial phonemes and 16 final phonemes. Initials are the consonant sounds that begin
a syllable, while finals are the vowel sounds that follow the initial. While there is a total
of 19,000 unique possible syllables in Vietnamese, only around 6500 of them are used in
practical communication. This highlights the richness and variety of potential combinations
in the language.

The Vietnamese writing system is based on the Latin alphabet with additional diacritics
to represent tones, making it distinct from many other languages in the region that use
different scripts.

https://drive.google.com/drive/folders/1tiPKaIOC7bt6isv5qFqf61O_2jFK8ZOI?usp=sharing
https://drive.google.com/drive/folders/1tiPKaIOC7bt6isv5qFqf61O_2jFK8ZOI?usp=sharing
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Table 1. Tones in Vietnamese.

Tones Description

Low-Falling Tone Indicated by a grave accent
High-Broken Tone Indicated by a hook above the letter
Low-Rising Tone Indicated by a tilde
High-Rising Tone Indicated by an acute accent
Low-Broken Tone Indicated by a dot below the letter

Mid Tone No diacritical mark

Table 2. Structure of Vietnamese tones.

Pitch Contour Flat
Unflat

Broken Unbroken

High No mark High-broken High-rising

Low Low-falling Low-rising Low-broken

Table 3. Structure of Vietnamese syllables.

TONE

Initial
FINAL

Onset Nucleus Coda

2.2. Challenges in Developing Vietnamese ASR Systems

Developing Vietnamese ASR systems copes with some challenges [4]. Specifically,
the regional variations in pronunciation, vocabulary, and dialects in Vietnamese pose a
significant challenge for automatic speech recognition (ASR) systems. There are three main
regional dialects—Northern, Central and Southern—and each have distinct features that
can affect the way words are spoken and understood.

Here are some examples of regional differences:
Northern Dialect:
The pronunciation of “l” as “n” and vice versa is a notable characteristic in some

Northern regions. In addition, there are distinctive vocabulary and intonation patterns
compared to other regions.

Central Dialect:
Features that differentiate this from the Northern and Southern dialects include unique

vocabulary and pronunciation patterns.
Southern Dialect:
The pronunciation of ending consonants in “n” and “ng” may be similar in some

Southern regions. Moreover, there are vocabulary differences and unique intonation.
These regional variations can make it challenging for ASR systems to accurately

transcribe speech, especially when they are trained on data from one specific region but are
exposed to speech from another. The diversity in dialects and pronunciation within each
region further adds complexity.

Moreover, the variation in speaking style and the usage of different words to express
the same meaning in different regions are common challenges in natural language pro-
cessing, including the development of language models and automatic speech recognition
(ASR) systems. Recording environments also play a crucial role in the performance of
speech recognition systems. Different recording environments introduce various types and
levels of noise, which can significantly impact the accuracy of the recognition results.

To address these challenges, ASR systems for Vietnamese may need to be trained on
diverse datasets that represent the linguistic diversity across regions and are robust and
adaptable to various speaking styles. Furthermore, training speech recognition models
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on dataset that include a variety of recording environments to make the system more
adaptable to different acoustic conditions.

3. Previous Works
3.1. Previous Works on Vietnamese Speech Corpus

In this part, we conduct a survey about the Vietnamese speech corpora, cf. Table 4.
In [2], a Vietnamese corpus of reading speak was constructed by asking native speakers
from Hanoi and Ho Chi Minh City in Vietnam and 20 native speakers living in Karlsruhe,
Germany to read prompted sentences extracting from Vietnamese e-newspapers. As a
result, a speech corpus of 25 h spoken by 90 male speakers and 70 female speakers was
collected. VIVOS [3], an open-access Vietnamese speech corpus, was released by AILAB
of VNUHCM—University of Science (Vietnam) in 2017. It consists of 15 h of recording
speech with 12,420 utterances prepared for the ASR task. There are 65 speakers, among
them 34 are male and 31 are female speakers. In the same year, Viettel group—a Vietnamese
corporation of multinational telecommunications and technology—collected 85.8 h of
phone calls from the Viettel customer service call center [9]. The data were sampled by
8 kHz, with a resolution of 8 bits/sample.

Table 4. Summary of Vietnamese speech corpora.

Corpus Size Style Open/Close

Corpus in [2] 25 h Reading Close

VIVOS [3] 15 h Reading Open

Viettel corpus [9] 85.8 h Phone call Close

MICA
VNSpeechCorpus [8] 100 h Reading Close

FTRI corpus 2036 h Reading Close

Corpora in [7]:
2 small corpora 6 and 6.5 h Reading Close

1 large-scale corpus 900 h Spontaneous Close

VinBigdata-VLSP2020 20 h Reading Open
80 h Spontaneous Open

MICA VNSpeechCorpus [8], a large-scale corpus of reading speech, was constructed
in 2005. It contains about 100 h of audio recordings from 50 native speakers. Firstly, the
Vietnamese text corpus was prepared by collecting texts from various resources in the
Internet. Secondly, sentences from the text corpus were read by male and female speakers.
The recordings were carried out in both quiet and office environments. Another large-scale
corpus of Vietnamese speech with a total duration of 2036 h was collected by the FPT
Technology Research Institute (FTRI). The FTRI corpus consists of reading speech with
sentences extracted from daily news and forum websites. The corpus was constructed by
recording voice of 3059 male and female speakers. The speakers represented the Northern,
Central, and Southern dialects of Vietnam. All audio files were converted to the wave
format with a sampling frequency of 16 kHz and PCM 16 bits. In [7], three Vietnamese
speech corpora have been introduced. Those corpora include two small reading speech
corpora with a total of 6 h and 6.5 h, respectively, and a large-scale speech corpus with 900 h.
The large-scale speech corpus was collected by crawling untranscripted audio from various
resources, such as movies, YouTube movies, and electronic newspapers. Then, the audio
was stored in the format of PCM 16 bits, a sampling rate of 16 Khz and a mono channel.
To transcribe such a large number of audio files, a hybrid text transcription consisting
of an ASR system followed by manual verification and revision was employed. A large-
scale Vietnamese speech corpus that is open-access is VinBigdata-VLSP2020, released in
2020. This corpus consists of approximately 100 h of speech. Among them there are
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approximately 20 h of reading speech and 80 h of spontaneous speech. The reading speech
was recorded with a smartphone in various environments, while the spontaneous speech
was crawled from the Internet and manually transcribed. The corpus was developed for
the ASR task in VLSP-2020.

In the past twenty years, there have been a lot of efforts to increase the number of
Vietnamese speech corpora, but the number of large-scale Vietnamese speech corpora has
been limited. Most public corpora of Vietnamese speech are reading speech, like the FTRI
corpus and the corpora in [2,3,8], or part of reading speech, such as VinBigdata-VLSP2020
or two small corpora in [7]. Therefore, the available corpora might not be compatible with
real-life scenarios for spoken language, like conversational and discussion recognition.
Moreover, most Vietnamese speech corpora are not either free-access or high-quality.

3.2. Previous Works on Vietnamese ASR

Traditionally, the components of speech recognition systems include acoustic, pronun-
ciation, and language models. Those models were trained separately, each with its specific
objective. In the past, hidden Markov models (HMM) and Gaussian mixture models (GMM)
were commonly used for the acoustic model. These models are statistical in nature and have
been applied to capture the relationships between acoustic features and phonemes. With
the rise of deep learning, deep neural networks (DNNs) have become a popular choice for
the acoustic model in recent studies [6,7]. DNNs are capable of learning complex patterns
and representations from large amounts of data, making them well suited for acoustic
modeling in ASR. Some studies have explored hybrid models [3,9,10], combining elements
of both traditional statistical models (HMM/GMM) and DNNs. This combination lever-
ages the strengths of both approaches. DNNs also have shown significant improvements
in pronunciation models, particularly in mapping words to phoneme sequences. This is
crucial for accurate speech recognition, since it enhances the model’s ability to understand
and represent spoken language.

Many studies have traditionally used n-gram models for language modeling [3,6,7,9,10].
N-gram models estimate the probability of a word based on the context of the preceding n-1
words. While effective, these models have limitations in capturing long-range dependencies.
Some recent studies have explored the use of DNNs for language modeling. DNN-based
language models have advantage of capturing more complex relationships in the data
and performing well on tasks requiring context understanding. Recurrent models, a type
of neural network architecture designed to handle sequential data, have been employed
in language modeling. These models improve speech recognition accuracy by rescoring
n-best lists, contributing to more effective transcription.

Overall, the combination of acoustic, pronunciation and language models, along with
advancements in deep learning techniques, contributes to the continuous improvement of
ASR systems for the Vietnamese language.

Recent advancements focus on addressing the disjoint training issue by adopting
end-to-end training approaches [12,20–22]. In those approaches the functions of traditional
ASR components such as acoustic, pronunciation and language models are combined into
a single neural network. This means training models directly from speech to transcripts,
aiming for a more integrated and streamlined learning process. Two main approaches for
end-to-end training are highlighted: connectionist temporal classification (CTC) [20] and
sequence-to-sequence models with attention [18,23,24]. The CTC model is designed to han-
dle sequences of variable lengths and assumes conditional independence of label outputs.
The sequence-to-sequence with attention model has been successfully applied to phoneme
sequences, and trained end-to-end for speech recognition [17]. Attention mechanisms allow
the model to focus on relevant parts of the input sequence when generating the output.

4. New Large-Scale Vietnamese Speech Corpus

In this section, we introduce a new large-scale Vietnamese speech corpus (LSVSC)
crawled from various open sources in the Internet. We used Audacity software to extract a
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single channel of the recordings and remove all noisy segments from the raw data, and only
kept the nearly clean segments. In fact, to remove noisy segments, the guideline-trained
crowd workers played raw audio files, listened to recognize segments with audible noise,
marked those segments and then removed them. The rest contained only audio segments
without perceivable noise levels or with very low noise levels. We used the noise reduction
function of Audacity to further reduce noise for audio segments with very low noise
levels. As a result, we obtained nearly clean speech segments, which then were chopped
into shorter segments with a length not more than 13 s, corresponding to a simple or a
short-complexed sentence. The clean segments were saved, converted to a wave format
with PCM 16 bits and resampled by a sampling frequency of 16 kHz. Those clean speech
segments were double-checked by another group of the guideline-trained crowd workers
to ensure that all speech segments with perceivable noise had been removed. We chose a
manual way based on the subjective evaluation to prepare the corpus. Although this way
costs time and human effort, the high quality of the speech signal can be achieved.

The clean corpus consists of all audio files after being preprocessed as described
above. Specifically, the LSVSC consists of 100 h and 30 min of clean utterances, which
covers various topics such as news, reading, audio books, movies, sports, healthcare, traffic,
tourism, etc. Figure 1 illustrates the distribution of the LSVSC according to ten topics.
News is the dominant topic, comprising 78.5% of the total dataset. The topic of reading,
storytelling and audiobooks accounts for 9.41%. Health and Daily life topics represent
4.71% and 3.66%, respectively. Other topics collectively make up less than 1% each, with
tourism being the least at about 0.4%. The clean LSVSC is manually transcribed by a
group of crowd workers and double-checked by another group of crowd workers to ensure
that the errors in the transcription are corrected. Finally, the text is saved in file as the
UTF-8 format.

Figure 1. Voice distribution by topics in the collected clean corpus.

Figure 2 shows the voice distribution by gender in the LSVSC. The number of sentences
utterred by female and by male speakers are approximately equal. Figure 3 describes the
voice distribution by regional dialects in the LSVSC. The majority of the data in the corpus
are spoken by the Northern dialect speakers because the Northern dialect is the standard
dialect in Vietnam and very popular in the media. Central and Southern dialects account
for 7.65% and 3.54%, respectively. The Central highland dialect represents 0.66%, and
the minority ethnic group dialect is only 0.05%. The voice distribution by the length of
utterances is illustrated in Figure 4. In this corpus, most utterances have the length from 3 s
to 10 s. The longest utterances have a length of 13 s, whereas the length of the shortest ones
is about 1 s.
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Figure 2. Voice distribution by gender in the collected clean corpus.

Figure 3. Voice distribution by regional dialects in the collected clean corpus.

Figure 4. Voice distribution by length in the collected clean corpus.

5. End-to-End Vietnamese ASR Models

In this section, we propose to apply E2E state-of-the-art ASR models such as LAS,
Speech-Transformer and their variants to the LSVSC. It is the first time that these end-
to-end ASR models have been applied to the Vietnamese speech and showed reasonable
performance. We train, evaluate and compare those models in terms of character error rate
(CER) and word error rate (WER). Note that LAS and Transformer have been used for ASR
on some rich-resourced languages such as English and Mandarin, but not for Vietnamese, a
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low-resourced language with monosyllables and six tones. We also generated a vocabulary
for the LSVSC by scanning the transcription (text) corresponding to each audio sample in
the corpus. Then, each text was separated into words with a space between two words.
We compared those words to the words available in the vocabulary. If a word was not
shown in the vocabulary, it was added to the vocabulary. We repeated the process until
reaching the end of the corpus. Finally, we obtained a vocabulary of 6740 non-overlapping
words. The details of the above models, their setups and performance are described in
the following.

5.1. LAS Model

To address the limitations of CTC and sequence-to-sequence models with attention in
the field of speech recognition, the Listen, Attend and Spell (LAS) neural network has been
introduced in [18]. The LAS model is designed to transcribe an audio sequence signal into
a word sequence character by character. It is based on the sequence-to-sequence learning
framework with attention. LAS consists of an encoder recurrent neural network (RNN) and
a decoder RNN. The encoder RNN, called the listener, is described as a bidirectional long
short-term Memory RNN (BLSTM) with pyramidal structure. Its role is to convert low-
level speech signals into higher-level features, capturing hierarchical representations. The
decoder RNN (e.g., LSTM), called the speller, converts the higher-level features generated by
the listener into output utterances. It achieves this by specifying a probability distribution
over sequences of characters using the attention mechanism. The listener and the speller
are trained jointly, i.e., both components of the LAS network are optimized simultaneously
during the training process. In LAS, the elimination of independence assumptions and
the use of joint training contribute to a more integrated and effective approach for speech
recognition. This type of model is particularly well-suited for E2E training, where the
entire system is optimized for the specific task without relying on intermediate components
like HMMs.

In this work, we implemented LAS and LAS with SpecAugment models to recognize
Vietnamese speech automatically. We trained and evaluated those models on the LSVSC.
For the LAS model, we chose the number of encoders = 4, the number of decoders = 2,
dropout = 0.3; the size of both the encoder and decoder were 512. The sampling rate,
window size, window stride were 16 kHz, 400 samples and 160 samples, respectively.
The models were trained with an initial learning rate of 0.0003 and utilized the Linear
Warmup Scheduler with 7105 warm-up steps. We chose the Adam optimizer. The detail of
SpecAugment will be presented in Section 5.3.

5.2. Speech-Transformer Model

This is the first time that the Speech-Transformer (sTransformer) has been applied
to Vietnamese speech recognition tasks. The Speech-Transformer architecture [19] was
inspired by the original Transformer model [16], which has become foundational in natural
language processing tasks, including machine translation and language understanding.
Unlike traditional sequential models relying on recurrent neural networks (RNNs) or
convolutional neural networks (CNNs), Speech-Transformer dispenses with recurrence
and convolutions. Note that recurrent networks have limitations in parallelization due
to their sequential nature, while convolutional networks are designed for grid-like data
such as images. Speech-Transformer targeted to the ASR tasks is a modified version of the
Transformer model. Therefore, its architecture is based solely on attention mechanisms
which allow the model to focus on different parts of the input sequence when making
predictions, providing a more flexible and context-aware approach compared to fixed-
size convolutional filters or sequential recurrence. As a result, Speech-Transformer offers
advantages in terms of computational efficiency, parallelization, and the ability to capture
dependencies across long ranges in sequential data. It has become a cornerstone in the
development of SOTA models for ASR tasks.
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In this work, we deployed the Speech-Transformer model consisting of a three-layer
convolutional neural network (CNN) followed by a Transformer [25] on the LSVSC. The
convolutional layers were used to capture local patterns in the spectrogram, and strid-
ing was applied to handle the length difference between the input and output sequences.
For the three-layer CNN, the following parameters were chosen: CNN input shape = (8,
10, 80), CNN kernel size = (5, 5, 1), CNN stride = (2, 2, 1), CNN output shape = (64, 64,
64). We setup the Transformer with the following parameters: number of encoders = 12,
number of decoders = 4, ctc weight for decoder = 0.4, ctc weight for training = 0.3, Trans-
former dropout = 0.1, regular multihead attention (MHA) with number of heads = 4,
d-model = 144, sampling rate = 16 kHz, number of FFT-points = 400, hop length = 160.
The model used Noam annealing as learning rate scheduler with and initial learning
rate of 0.001 and the number of warmup steps being 25,000. The Adam optimizer was
also chosen. To further improve the performance of Speech-Transformer, SpecAugment
(cf. Section 5.3) and joint CTC-attention, joint CTC decoding loss (cf. Section 5.4) were
integrated. Table 5 summarizes the setup of the main hyper-parameters for the LAS and
Speech-Transformer models.

Table 5. Summary of hyperparameter setup for LAS and Speech-Transformer models.

Models LAS Speech-Transformer

No. of encoder layers 4 12
No. of decoder layers 2 4

Sampling rate 16 kHz 16 kHz
Window size 400 samples 400 samples

Window stride 160 samples 160 samples
Feature type log-Mel spectrogram log-Mel spectrogram

No. of Mel frequencies 80 80
Tokenizer type word word

Dropout 0.3 0.1
Learning rate scheduler Linear warmup Noam annealing

(7105 warm-up steps) (25,000 warm-up steps)
Initial learning rate 0.0003 0.001

Optimizer type Adam Adam
No. of epochs 50 100

5.3. SpecAugment

To improve the WER and CER of the LAS and Transformer models on our collected
Vietnamese speech corpus, we integrated the fixed SpecAugment technique [26] to the
input spectrogram, i.e., a fixed number of time masks and a fixed size of the time mask were
selected regardless the length of the input utterance. In our experience, time warping did
not contribute to the performance improvement, so we only used time masking, frequency
masking and skip time warping. SpecAugment helped to increase the diversity of the
dataset as well as the size of the dataset, contributing to solving the overfitting problem
that often occurs in deep neural networks.

Although the fixed SpecAugment can significantly improve the system performance of
the considered end-to-end ASR models, it may not be adequate for ASR tasks on large-scale
corpora that may have a large variance in the length of the input utterances. Therefore, the
performance can be further enhanced by using the adaptive SpecAugment technique [27],
where the number and size of time masks are adjusted based on the length of the input
sequence. Adaptive time masking can be implemented in various ways to adapt to the
length of the input spectrogram τ. Here are two different ways:

• Adaptive number of time masks: Adjusting the number of time masks (Nt−mask) based
on the length of the input spectrogram τ. For example, a rule such as assigning more
time masks for longer spectrograms and fewer time masks for shorter ones has been
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applied. By this way, the masking strategy adapts to the temporal characteristics of
the input.

Nt−mask = ⌊ρN .τ⌋, (1)

where ρN and τ denote the multiplicity ratio and the time dimension of the input
spectrogram, respectively.

• Adaptive size of time masks: Varying the size of the time masks based on the length
of the input spectrogram. Longer spectrograms might have larger time masks, while
shorter ones might have smaller masks. This adaptive resizing allows the model to
selectively focus on different temporal scales depending on the input length.

T = ⌊ρS.τ⌋, (2)

where ρS, T denote the size ratio and the time mask parameter, respectively.

For adaptive time masking, a constant C is used as a upper bound of the number of
time masks. Hence, the number of time masks is computed as

Nt−mask = ⌊C, ρN .τ⌋. (3)

5.4. CTC Joint Decoding

Additionally, we utilized a joint CTC-attention model [15] and a joint decoding loss [28]
to address the alignment problem, resulting in an enhancement in the system performance.
The joint loss function, a combination of connectionist temporal classification loss (Lctc)
and sequence-to-sequence loss (Lseq2seq), was employed for the training stage, i.e.,

Ltraining = α ∗ Lctc + (1 − α) ∗ Lseq2seq, (4)

where α was a tunable parameter 0 ≤ α ≤ 1. In our experiment, α = 0.3 was chosen.
At the inference stage, we applied a joint decoding loss that combined the CTC and

attention-based sequence probabilities [28]. The joint decoding loss is defined as follows:

Ldecoding = β ∗ Lctc + (1 − β) ∗ Lseq2seq, (5)

where β is a tunable parameter 0 ≤ β ≤ 1. In our experiment, firstly, β = 0.4 was chosen;
then, we evaluated the Speech-Transformer model with different β to find the value of β
giving the highest CER and WER (cf. Section 6.3).

6. Simulation Results

In this section, the effectiveness of the LSVSC is evaluated using the LAS and Speech-
Transformer (sTransformer) models described in Section 5. The LSVSC was randomly
separated into three subsets for training, validation and test, with a ratio of 80:10:10,
respectively. There was no overlap among the respective training, validation and test sets.
We adopted a log-Mel spectrogram as the input feature for all considered models; the
number of Mel frequencies was 80. The most suitable number of epochs for training each
model was chosen based on multiple experiments to find out the number that provides
the best WER. Therefore, LAS and its variants were trained for 50 epochs, whereas Speech-
Transformer and its variants were trained for 100 epochs. In practical terms, we realized that
ASR models using the word tokenizer obtained better performance than those using the
character tokenizer for Vietnamese speech. The reason is that Vietnamese is a monosyllabic
language. Therefore, we selected a word tokenizer instead of a character tokenizer for
those models.

6.1. Scenario 1: Evaluate the Mentioned Models for the ASR Tasks on the LSVSC

In this scenario, we compare the performance of LAS, LAS with fixed SpecAugment
(LAS + fixedSA), Speech-Transformer and Speech-Transformer with fixed SpecAugment
(sTransformer + fixedSA) in terms of CER and WER. For models using fixed SpecAugment,
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two time masks with time mask factor T = 40 and two frequency masks with frequency
mask factor F = 20 were chosen. Table 6 shows the CERs and WERs of the mentioned ASR
models for validation (val) and test. We observe that the LAS model obtains good CERs
and WERs for both validation and test sets. The CERs of LAS + fixedSA is reduced by
0.5% and 0.7% for the validation and test, respectively, compared to the LAS. The WERs of
LAS + fixedSA are also improved approximately 1–1.2%. As we expected, the Transformer
model outperforms the LAS models. For the validation and test sets, the Transformer +
fixedSA achieves CERs of 4.26% and 4.17%, and WERs of 7.37% and 7.24%, respectively. By
integrating fixed SpecAugment, the performance of both the LAS and Transformer models
is significantly improved on the LSVSC.

Table 6. Comparison of CER and WER of mentioned ASR models. The best values are highlighted
in bold.

Models CER Val (%) WER Val (%) CER Test (%) WER Test (%)

LAS 5.74 9.74 5.79 9.73
LAS + fixedSA 5.24 8.80 5.05 8.53
sTransformer 4.77 8.22 4.68 8.01

sTransformer +
fixedSA 4.26 7.37 4.17 7.24

6.2. Scenario 2: Evaluate the sTransformer Model with Different Hyperparameters of adaptSA
6.2.1. Different Hyperparameters for Adaptive Time Mask

We changed parameters such as ρN , ρS and C to obtain different adaptive time masks,
and then applied them to the input spectrogram of the sTransformer + adaptSA model. The
frequency mask factor F = 20 was kept unchanged. For simplicity, we chose ρN = ρS = ρ.
Table 7 shows the CERs and WERs of the sTransformer + adaptSA model with differ-
ent sets of time mask parameters. We see that the performance of this model can be
enhanced when we choose suitable parameters for time mask. With the parameter set
[ρ, C] = [0.04, 5] the Transformer + adaptSA model achieves the lowest CERs and WERs,
specifically CER = 4.08% and WER = 7.11% for the validation set and CER = 3.96% and
WER = 6.93% for the test set.

Table 7. Evaluation of sTransformer with different parameter sets of adaptive time mask. The best
values are highlighted in bold.

sTransformer +
adaptSA CER Val (%) WER Val (%) CER Test (%) WER Test (%)

ρ = 0.02, C = 10 4.22 7.36 4.11 7.17
ρ = 0.03, C = 10 4.18 7.28 4.06 7.06
ρ = 0.04, C = 10 4.10 7.16 3.97 6.96
ρ = 0.02, C = 5 4.24 7.33 4.09 7.14
ρ = 0.03, C = 5 4.20 7.32 4.09 7.09
ρ = 0.04, C = 5 4.08 7.11 3.96 6.93
ρ = 0.05, C = 5 4.11 7.16 3.97 6.95

6.2.2. Different Hyperparameters for Frequency Mask

We select the best parameters of time masks, i.e., ρ = ρN = ρS = 0.04, C = 5,
and keep those parameters unchanged. We change the parameter of frequency mask
(F) from 10 to 30 with a step of 5 to find out the value of F corresponding to the best
performance of the sTransformer + adaptSA model. Figure 5 illustrates CERs and WERs
of the sTransformer + adaptSA model with different values of frequency masks. It can be
seen that with F = 20, this model obtains the best CERs and WERs for both validation and
test sets.
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Figure 5. Performance of the sTransformer + adaptSA model with different values of frequency mask
(F): (a) CER; (b) WER.

6.3. Scenario 3: Evaluate sTransformer + adaptSA Model with Different Ctc Decoding Weight

In this scenario, we keep the best set of parameters for frequency mask and adaptive
time mask, i.e., ρ = ρN = ρS = 0.04, C = 5, F = 20 for the sTransformer + adaptSA model.
Then we evaluate this model with various values of ctc decoding weight (β), where the
ctc decoding weight (as in Equation (5)) is chosen in the range of [0, 1] with step 0.1. The
aim is to find the adequate value of β in order to achieve the best performance. Figure 6
shows the performance of the sTransformer + adaptSA model with different values of β.
It can be observed that the sTransformer + adaptSA model achieves the lowest CER and
WER for both validation and test sets when β = 0.5. Particularly, with β = 0.5, we achieve
CER = 4.04%, WER = 7.07% for validation and CER = 3.9%, WER = 6.85% for testing.

Figure 6. Performance of the sTransformer + adaptSA model with different values of ctc decoding
weight (β): (a) CER; (b) WER.

6.4. Scenario 4: Evaluate the sTransformer + adaptSA Model According to Different Categories
of LSVSC
6.4.1. Different Regional Dialects

In this part, we evaluate the best sTransformer + adaptSA model (ρ = ρN = ρS =
0.04, C = 5, F = 20, β = 0.5) on recognizing Vietnamese speech according to main regional
dialects such as the Northern, Central and Southern dialects. Table 8 shows the performance
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of the sTransformer + adaptSA model for each dialect. The recognition of Northern dialect
obtains the lowest CERs and WERs, i.e., CER (val) = 3.76%, WER (val) = 6.62% and CER
(test) = 3.65%, WER (test) = 6.47%. Recognizing the Central dialect is more difficult than
the Northern dialect but still easier than Southern dialect. The reason is that the prevalence
of the Northern dialect as the standard dialect and its widespread usage in the media
contribute to its dominance in the collected corpus, comprising approximately 88% of the
total data. Although the data of Southern dialect is double the data of the Central dialect, the
CERs and WERs in recognizing the Southern dialect are worse than the Central dialect. This
is understandable, because the Central dialect is quite similar to the Northern dialect, while
the Southern dialect is much different. In spite of difficulty in recognizing the Southern
dialect, the sTransformer + adaptSA model still obtains quite good CERs and WERs, for
example, CER (test) = 6.15%, WER (test) = 10.57% for the Southern dialect. This experiment
confirms that our new corpus has good linguistic diversity across regions. The results
correctly reflect the difficulties in recognizing different dialects in Vietnamese speech.

Table 8. Evaluation of sTransformer + adaptSA model according to regional dialects. The best values
are highlighted in bold.

Regional
Dialects CER Val (%) WER Val (%) CER Test (%) WER Test (%)

Northern 3.76 6.62 3.65 6.47
Central 5.85 9.23 5.43 8.98

Southern 5.96 10.71 6.15 10.57

6.4.2. Different Topics

In this part, we evaluate the best sTransformer + adaptSA model (ρ = ρN = ρS =
0.04, C = 5, F = 20, β = 0.5) on recognizing the different types of conversational topics. For
simplicity, we categorize the topics of reading (including storytelling and audio books) and
news into simple domain of topics, and the topics of healthcare, sports and tourism into the
complex domain of topics. The topics in the simple domain are quite popular, and often use
common words, but the topics in the complex domain are less common, and may contain
specialized terminologies. The simple and the complex domains account for approximately
88% and 5.9% of the our collected LSVSC, respectively. Table 9 demonstrates the CERs
and WERs of the sTransformer + adaptSA model according to the simple and complex
domains of topics. As expected, the samples in the simple domain of topics are recognized
more easily than those in the complex domain. For the simple domain, the sTransformer +
adaptSA model performs very well with CER (val) = 3.8%, WER (val) = 6.65% and CER
(test) = 3.65%, WER (test) = 6.47%. For the complex domain, the WER (val) and WER (test)
are approximately 2.6% and 3.4% higher than those in the simple domain, respectively.
This experiment confirms that our new corpus has good diversity in topics. The results
reflect the difficulties well in recognizing different domains of topics.

Table 9. Evaluation of sTransformer + adaptSA model according to two main domains of topics.

Domains of
Topics CER Val (%) WER Val (%) CER Test (%) WER Test (%)

Simple domain 3.80 6.65 3.66 6.46
Complex
domain 5.32 9.27 5.73 9.85

7. Discussion

In this study, we introduce a new large-scale Vietnamese speech corpus (LSVSC) with
100.5 h of clean speech and transcription. This corpus is open-access. This helps to increase
the number of large-scale Vietnamese speech corpora and would become a good dataset
for research purposes. Note that Vietnamese is an under-resourced language. The corpus
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was constructed by crawling untranscribed Vietnamese audio from various sources in
the Internet. Then, the raw collected data were preprocessed and transcribed manually
with a double check to ensure the high quality of both speech and transcription. In fact,
the analyzed results showed that the LSVSC had good diversity of gender and regional
dialects and covers multiple types of realistic topics. Moreover, we applied some SOTA
end-to-end ASR models like LAS, Speech-Transformer and their variants to evaluate the
new corpus. It is the first time those SOTA end-to-end models are used for Vietnamese ASR
tasks. Simulation results showed that the mentioned models worked well on the LSVSC
in multiple scenarios. The results reflected well the difficulties in recognizing different
domains of topics and regional dialects. This implies that the new corpus is a good dataset
for Vietnamese ASR tasks.

Actually, we used on-the-fly SpecAugment, i.e., the SpecAugment was applied to the
input spectrogram of the model when it was read. The augmented data were not saved
after the training stage. Therefore, the size of the training dataset was unchanged. However,
the time for training may increase a bit due to the masking process in the SpecAugment.
We used NVIDIA GeForce RTX 4090 GPU to compute the average time for training per
epoch that the sTransformer with and without SpecAugment require. The results show
that the sTransformer with and without SpecAugment need approximate 206.65 s and
200.28 s per epoch, respectively. It means the computational complexity of the sTransformer
with SpecAugment is about 3.18% higher than the one without SpecAugment. The time
for inference does not change because the SpecAugment is only applied to the input
spectrogram during the training stage.

To evaluate the performance of the model when encountering speech features or
dialects not present in the corpus, we conducted an experiment to test the sTransformer +
adaptSA model using the VIVOS dataset. We obtained CER = 9.25% and WER = 18.44%.
The decrease in accuracy was understandable for the unknown data.

In future work, we intend to build a language model (LM) based on the LSVSC.
We also want to extend this work by integrating an LM, then apply this model to various
applications such as Vietnamese speech-controlled robots, Vietnamese chatbots, Vietnamese
voice control in cars, etc.

The source code for implementing simulations in this manuscript can be found at https:
//github.com/daisankalaeral/VietnameseASR/tree/main, accessed on 1 March 2024.
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