
Citation: Liu, Y.; Zhang, Y.; Hao, X.;

Chen, L.; Ni, M.; Chen, M.; Chen, R.

Design of a Convolutional Neural

Network Accelerator Based on

On-Chip Data Reordering. Electronics

2024, 13, 975. https://doi.org/

10.3390/electronics13050975

Academic Editor: Sergey Y. Yurish

Received: 6 February 2024

Revised: 29 February 2024

Accepted: 1 March 2024

Published: 4 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Design of a Convolutional Neural Network Accelerator Based on
On-Chip Data Reordering
Yang Liu 1,2, Yiheng Zhang 1, Xiaoran Hao 1,*, Lan Chen 1,* , Mao Ni 1, Ming Chen 1 and Rong Chen 1

1 Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China;
liuyang2022@ime.ac.cn (Y.L.); zhangyiheng1@ime.ac.cn (Y.Z.); nimao@ime.ac.cn (M.N.);
chenming@ime.ac.cn (M.C.); chenrong@ime.ac.cn (R.C.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: haoxiaoran@ime.ac.cn (X.H.); chenlan@ime.ac.cn (L.C.)

Abstract: Convolutional neural networks have been widely applied in the field of computer vision. In
convolutional neural networks, convolution operations account for more than 90% of the total compu-
tational workload. The current mainstream approach to achieving high energy-efficient convolution
operations is through dedicated hardware accelerators. Convolution operations involve a significant
amount of weights and input feature data. Due to limited on-chip cache space in accelerators, there is
a significant amount of off-chip DRAM memory access involved in the computation process. The
latency of DRAM access is 20 times higher than that of SRAM, and the energy consumption of DRAM
access is 100 times higher than that of multiply–accumulate (MAC) units. It is evident that the
“memory wall” and “power wall” issues in neural network computation remain challenging. This
paper presents the design of a hardware accelerator for convolutional neural networks. It employs a
dataflow optimization strategy based on on-chip data reordering. This strategy improves on-chip
data utilization and reduces the frequency of data exchanges between on-chip cache and off-chip
DRAM. The experimental results indicate that compared to the accelerator without this strategy, it
can reduce data exchange frequency by up to 82.9%.

Keywords: hardware accelerator; convolutional neural networks (CNN); data reuse

1. Introduction

Convolutional neural networks (CNNs) have achieved outstanding predictive accu-
racy in a wide range of computer vision tasks, including image recognition [1–5], object
tracking [6,7], scene labeling [8,9], and detection [10–14], in recent years. Nevertheless, the
computation involved in convolutional neural networks necessitates billions of multiply–
accumulate operations and millions of data points (comprising weight data and feature
map data). The huge amount of computation and data means a huge cost of hardware
resources. How to utilize limited hardware resources to complete efficient neural network
calculations is the key to accelerator design. In the process of convolutional neural network
computation, the delay and power consumption of data transfer and memory access far
exceed that of logical computation [15,16]. Therefore, reducing unnecessary data transfer
and memory access without affecting normal calculations has become the key to improving
accelerator energy efficiency.

In recent years, many groups have proposed their architectural design ideas for the
design of CNN accelerators. The accelerator architecture proposed in [17] consists of a
processing engine (PE) array and a multi-level memory structure. Multi-level memory
structures include off chip DRAM, global buffer, on-chip network (NOC), and registers
in PE. In [7,18], a deep convolutional neural network (DCNN) acceleration architecture
called deep neural architecture (DNA) is proposed, providing reconfigurable computing
modes for different models. For different convolutional layers, DNA can reconfigure their
data paths to support mixed data reuse patterns. For different convolutional parameters,

Electronics 2024, 13, 975. https://doi.org/10.3390/electronics13050975 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13050975
https://doi.org/10.3390/electronics13050975
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8121-657X
https://orcid.org/0000-0002-7075-1657
https://doi.org/10.3390/electronics13050975
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13050975?type=check_update&version=2

Electronics 2024, 13, 975 2 of 17

DNA can reconfigure its computing resources to support highly scalable convolutional
mapping methods. The above CNN accelerator architectures are different, but they all
include PE arrays and various levels of memory for storing data. This is also the basic
design architecture followed by our designed accelerator.

In CNNs, convolutional computations constitute over 90% of the overall computa-
tions [19,20]. Therefore, accelerating convolutional computation is the key to improving
the computational speed of convolutional neural networks. Convolutional operations have
the characteristic of high data repetition between adjacent computations, which can be
utilized to achieve data reuse and improve computational efficiency. For this purpose,
researchers have proposed various data reuse schemes [21], including weight stationary
(WS) dataflow [17], input stationary (IS) dataflow, output stationary (OS) dataflow, and
no local reuse (NLR) dataflow. The WS/IS dataflow keeps the weight data/input feature
map data stationary on PE and reuses the weight data/input feature map data. Partial
sums (psums) flow and accumulate through neighboring PEs to obtain the final result.
In the output stationary (OS) dataflow, partial sums remain stationary while weight data
and feature map data are moved. The partial sums are continuously accumulated at their
original locations, resulting in the final computation result. The above three methods are
all to keep some data stationary, increase the reuse rate of this part of the data, but will
increase the number of data movements for the remaining parts. The no local reuse (NLR)
dataflow does not temporarily store any data on the PE. Instead, it utilizes the saved space
to increase the size of the global buffer, allowing it to store more data. This reduces the
frequency of data exchanges with the DRAM. However, it increases the number of data
exchanges between the global buffer and the PE, which typically results in higher power
consumption compared to the power consumed by data movement between PEs. In [21],
a dataflow called row stationary (RS) is introduced, where feature maps and weight data
are input to the PE in the form of row vectors. Each PE can independently perform a 1-D
convolution primitive and store partial sums in the spads within the PE. Partial sums can be
transmitted between neighboring PEs through the network on chip (NOC), which increases
data reuse and reduces the number of DRAM access operations. However, because a single
PE needs to complete complex tasks such as data storage, 1-D convolution operations, and
data transmission, the design of PE is relatively complex. The dataflow in this article adopts
the OS dataflow, which can greatly reduce the movement of partial sums and simplify the
PE function. Meanwhile, we design a data reuse module that improves the reuse rate of
feature maps and weight data, thereby reducing the data exchange with off-chip DRAM.

In this article, we designed a universal and configurable CNN hardware accelerator.
We have fully absorbed the experience of previous designs and focused on three main parts
in accelerator architecture design: memory, computing, and control. To optimize data reuse,
we adopted the OS dataflow proposed in [17]. We also designed the Data_reuse module,
which enabled on-chip data reordering based on hardware. This optimization improved
the dataflow, reduced the number of on-chip and off-chip communications, and further
enhanced the efficiency of the accelerator.

The main contributions of this article are as follows:

• We implemented a CNN accelerator and proposed a PE array structure with a higher
utilization rate of PE resources compared to the systolic array [22];

• We designed and implemented a data reuse module to improve the utilization of
on-chip data that can significantly reduce the number of communications between
on-chip and off-chip memory;

The remaining chapters of the article are organized as follows. Section 2 introduces
the overall architecture design of the accelerator. Section 3 describes the design of specific
modules in the accelerator. Section 4 discusses the key factors influencing the accelerator
design. Section 5 presents the design of the Data_reuse module. Section 6 provides an
analysis of the experimental results. The conclusions of the article are presented in Section 7.

Electronics 2024, 13, 975 3 of 17

2. The Accelerator Architecture

The overall structure of the CNN accelerator is shown in Figure 1, which consists
of three main components: memory, PE array, and control logic. The memory is used to
store input feature maps, weights, and output feature map data. The PE array is tasked
with executing the multiplication and accumulation computations involved in convolution
operations. The control logic is responsible for aligning and importing weight data and
feature map data inside the chip into the PE array. It is also responsible for exporting the
computed results from the PEs as output.

Electronics 2024, 13, x FOR PEER REVIEW 3 of 18

analysis of the experimental results. The conclusions of the article are presented in Section
7.

2. The Accelerator Architecture
The overall structure of the CNN accelerator is shown in Figure 1, which consists of

three main components: memory, PE array, and control logic. The memory is used to store
input feature maps, weights, and output feature map data. The PE array is tasked with
executing the multiplication and accumulation computations involved in convolution
operations. The control logic is responsible for aligning and importing weight data and
feature map data inside the chip into the PE array. It is also responsible for exporting the
computed results from the PEs as output.

Figure 1. The overall architecture of the CNN accelerator.

The relationship between the three components mentioned above is illustrated in
Figure 2. The control logic first reads off-chip data into the on-chip memory. Then, the
data are read from the on-chip memory into the PE array for computation. The computed
results are output to the on-chip memory for temporary storage and eventually
transferred to off-chip memory.

Figure 1. The overall architecture of the CNN accelerator.

The relationship between the three components mentioned above is illustrated in
Figure 2. The control logic first reads off-chip data into the on-chip memory. Then, the
data are read from the on-chip memory into the PE array for computation. The computed
results are output to the on-chip memory for temporary storage and eventually transferred
to off-chip memory.

Electronics 2024, 13, x FOR PEER REVIEW 3 of 18

analysis of the experimental results. The conclusions of the article are presented in Section
7.

2. The Accelerator Architecture
The overall structure of the CNN accelerator is shown in Figure 1, which consists of

three main components: memory, PE array, and control logic. The memory is used to store
input feature maps, weights, and output feature map data. The PE array is tasked with
executing the multiplication and accumulation computations involved in convolution
operations. The control logic is responsible for aligning and importing weight data and
feature map data inside the chip into the PE array. It is also responsible for exporting the
computed results from the PEs as output.

Figure 1. The overall architecture of the CNN accelerator.

The relationship between the three components mentioned above is illustrated in
Figure 2. The control logic first reads off-chip data into the on-chip memory. Then, the
data are read from the on-chip memory into the PE array for computation. The computed
results are output to the on-chip memory for temporary storage and eventually
transferred to off-chip memory.

Figure 2. Relationship between modules of the CNN accelerator.

Electronics 2024, 13, 975 4 of 17

3. Partial Module Design
3.1. PE Array

The PE array design is shown in Figure 3, and the array size is configurable. We
chose this array structure because compared to the systolic array (Figure 4b), our designed
array (Figure 4a) can enter full load operation immediately after data transmission starts,
while the systolic array needs to wait for several clocks before entering full load operation.
Our array has higher parallelism. The size is determined by the size of the input feature
map and the structure of the neural network. In this design, the PE array size is 32 rows
and 26 columns. The data input method in the array is such that different weight data
are input in different rows, and different tiles of the same feature map data are input in
different columns. In each computation round, 26 different data points from each of the
32 different output feature maps are obtained, resulting in a total of 832 output data points.
At 100 MHz, the throughput can reach 166.4 GOPS.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 18

Figure 2. Relationship between modules of the CNN accelerator.

3. Partial Module Design
3.1. PE Array

The PE array design is shown in Figure 3, and the array size is configurable. We chose
this array structure because compared to the systolic array (Figure 4b), our designed array
(Figure 4a) can enter full load operation immediately after data transmission starts, while
the systolic array needs to wait for several clocks before entering full load operation. Our
array has higher parallelism. The size is determined by the size of the input feature map
and the structure of the neural network. In this design, the PE array size is 32 rows and 26
columns. The data input method in the array is such that different weight data are input
in different rows, and different tiles of the same feature map data are input in different
columns. In each computation round, 26 different data points from each of the 32 different
output feature maps are obtained, resulting in a total of 832 output data points. At 100
MHz, the throughput can reach 166.4 GOPS.

Figure 3. PE Array.

(a) (b)

Figure 3. PE Array.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 18

Figure 2. Relationship between modules of the CNN accelerator.

3. Partial Module Design
3.1. PE Array

The PE array design is shown in Figure 3, and the array size is configurable. We chose
this array structure because compared to the systolic array (Figure 4b), our designed array
(Figure 4a) can enter full load operation immediately after data transmission starts, while
the systolic array needs to wait for several clocks before entering full load operation. Our
array has higher parallelism. The size is determined by the size of the input feature map
and the structure of the neural network. In this design, the PE array size is 32 rows and 26
columns. The data input method in the array is such that different weight data are input
in different rows, and different tiles of the same feature map data are input in different
columns. In each computation round, 26 different data points from each of the 32 different
output feature maps are obtained, resulting in a total of 832 output data points. At 100
MHz, the throughput can reach 166.4 GOPS.

Figure 3. PE Array.

(a) (b)

Figure 4. (a) The array we designed. (b) systolic array.

Electronics 2024, 13, 975 5 of 17

The structure of each PE unit in the PE array is shown in Figure 5. It mainly consists
of a multiplier, accumulator, and register. The input data S (16, x) is a 16-bit signed number,
where the fractional part width is x. Since the fractional part width varies for each layer, the
variable x is used here to represent it. The output result of the signed multiplier has a width
of 32 bits. To ensure that the addition result does not overflow, the accumulator is designed
with a width of 45 bits. Finally, the width is corrected back to 16 bits by truncation.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 18

Figure 4. (a) The array we designed. (b) systolic array.

The structure of each PE unit in the PE array is shown in Figure 5. It mainly consists
of a multiplier, accumulator, and register. The input data S (16, x) is a 16-bit signed
number, where the fractional part width is x. Since the fractional part width varies for
each layer, the variable x is used here to represent it. The output result of the signed
multiplier has a width of 32 bits. To ensure that the addition result does not overflow, the
accumulator is designed with a width of 45 bits. Finally, the width is corrected back to 16
bits by truncation.

Figure 5. Single PE Structure.

3.2. BUS Interface Module
The bus interface module is shown in Figure 6. This module is mainly responsible for

the data exchange between the on-chip memory (WBuf, InBuf, OutBuf, BiasBuf) and the
off-chip bus. This module is also responsible for receiving control signals from the CPU
and storing them in on-chip functional registers. These registers provide corresponding
control signals to the control module.

Figure 6. BUS Interface Module.

3.3. Cache and Register Access Control Module
The cache and register access control module, as shown in Figure 7, is responsible for

issuing address signals to various on-chip memory spaces, receiving the corresponding
data stored at the addresses, and then sending it to the computation units or off-chip

Figure 5. Single PE Structure.

3.2. BUS Interface Module

The bus interface module is shown in Figure 6. This module is mainly responsible for
the data exchange between the on-chip memory (WBuf, InBuf, OutBuf, BiasBuf) and the
off-chip bus. This module is also responsible for receiving control signals from the CPU
and storing them in on-chip functional registers. These registers provide corresponding
control signals to the control module.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 18

Figure 4. (a) The array we designed. (b) systolic array.

The structure of each PE unit in the PE array is shown in Figure 5. It mainly consists
of a multiplier, accumulator, and register. The input data S (16, x) is a 16-bit signed
number, where the fractional part width is x. Since the fractional part width varies for
each layer, the variable x is used here to represent it. The output result of the signed
multiplier has a width of 32 bits. To ensure that the addition result does not overflow, the
accumulator is designed with a width of 45 bits. Finally, the width is corrected back to 16
bits by truncation.

Figure 5. Single PE Structure.

3.2. BUS Interface Module
The bus interface module is shown in Figure 6. This module is mainly responsible for

the data exchange between the on-chip memory (WBuf, InBuf, OutBuf, BiasBuf) and the
off-chip bus. This module is also responsible for receiving control signals from the CPU
and storing them in on-chip functional registers. These registers provide corresponding
control signals to the control module.

Figure 6. BUS Interface Module.

3.3. Cache and Register Access Control Module
The cache and register access control module, as shown in Figure 7, is responsible for

issuing address signals to various on-chip memory spaces, receiving the corresponding
data stored at the addresses, and then sending it to the computation units or off-chip

Figure 6. BUS Interface Module.

3.3. Cache and Register Access Control Module

The cache and register access control module, as shown in Figure 7, is responsible for
issuing address signals to various on-chip memory spaces, receiving the corresponding
data stored at the addresses, and then sending it to the computation units or off-chip
memory. Moreover, it oversees the scheduling of control signals stored in diverse control
registers, efficiently managing the operations of the remaining modules.

Electronics 2024, 13, 975 6 of 17

Electronics 2024, 13, x FOR PEER REVIEW 6 of 18

memory. Moreover, it oversees the scheduling of control signals stored in diverse control
registers, efficiently managing the operations of the remaining modules.

Figure 7. Cache and Register Access Control Module.

4. Data Reusability Analysis
The convolution operation process is shown in Figure 8. The essence of convolution

is to multiply the corresponding position data between the input feature map and the
weights and then accumulate them [23]. For the input feature map, there is data
redundancy between adjacent convolution tiles. If data reuse is not considered, directly
inputting the data required for each convolution calculation in sequence would result in
multiple off-chip memory accesses for the same data, leading to a decrease in the
utilization of on-chip memory. Figure 9 shows the data reusability analysis of
convolutional operations. Taking a single-channel input feature map of size 13 × 13 as an
example, assuming a convolution kernel size of 3 × 3 and a stride of 1, the gray area
represents the zero-padding region. The numbers on each data element represent the
number of times each element is used after completing the convolution operation on the
entire feature map. If only the data involved in the computation is arranged in the
calculation order and input to the PE array for computation, it results in a high degree of
redundant off-chip data reading for the original data (excluding the data in the gray area).
The number of redundant readings for each element, as shown in Figure 8, increases for
elements closer to the center of the image. The maximum number of redundant readings
is 9, while the minimum is 4. Taking into account the number of redundant readings for
the gray area data (zero-padding data), it can be considered that each original datum is
read redundantly 9 times. This is a huge number, which is equivalent to expanding the
original data volume to 9 times the previous one. This results in a significant increase in
the number of data exchanges between on-chip memory and off chip DRAM, leading to a
decrease in accelerator speed and an increase in power consumption.

Figure 7. Cache and Register Access Control Module.

4. Data Reusability Analysis

The convolution operation process is shown in Figure 8. The essence of convolution is
to multiply the corresponding position data between the input feature map and the weights
and then accumulate them [23]. For the input feature map, there is data redundancy
between adjacent convolution tiles. If data reuse is not considered, directly inputting the
data required for each convolution calculation in sequence would result in multiple off-chip
memory accesses for the same data, leading to a decrease in the utilization of on-chip
memory. Figure 9 shows the data reusability analysis of convolutional operations. Taking a
single-channel input feature map of size 13 × 13 as an example, assuming a convolution
kernel size of 3 × 3 and a stride of 1, the gray area represents the zero-padding region.
The numbers on each data element represent the number of times each element is used
after completing the convolution operation on the entire feature map. If only the data
involved in the computation is arranged in the calculation order and input to the PE array
for computation, it results in a high degree of redundant off-chip data reading for the
original data (excluding the data in the gray area). The number of redundant readings for
each element, as shown in Figure 8, increases for elements closer to the center of the image.
The maximum number of redundant readings is 9, while the minimum is 4. Taking into
account the number of redundant readings for the gray area data (zero-padding data), it
can be considered that each original datum is read redundantly 9 times. This is a huge
number, which is equivalent to expanding the original data volume to 9 times the previous
one. This results in a significant increase in the number of data exchanges between on-chip
memory and off chip DRAM, leading to a decrease in accelerator speed and an increase in
power consumption.

Electronics 2024, 13, 975 7 of 17Electronics 2024, 13, x FOR PEER REVIEW 7 of 18

Figure 8. The convolution calculation process, where N represents the number of convolution
kernels.

Figure 9. Analysis of Repetitiveness in Convolutional Operations.The numbers represent the
number of times each data is reused. Different colors represent different categories. Gray
represents zero-padded data. White represents data from the original image corners. Blue
represents data from the original image edges. Green represents data from the original image
interior.

There are two approaches to storing and reading feature map data. The first approach
involves arranging the feature map data to be computed in the desired calculation order
using a software algorithm (which may result in a large amount of redundant data). These
arranged data are then stored off-chip and subsequently input into the on-chip memory.
Finally, the data are fed into the PE array for computation. This method, as shown in
Figure 10, results in a significant amount of redundancy in the data involved in adjacent
computations. As a result, the effective input data are reduced, leading to a significant
increase in the number of data transfers from off-chip to on-chip.

Another approach is to input the required original feature map data (without sorting
and without any redundant data) into the on-chip cache. Then, through the on-chip data
reuse module, the data are transformed into a stream that is arranged in the desired
calculation order and fed into the PE array for computation. Compared to the first
approach, this method utilizes on-chip hardware modules to perform data reordering,
significantly reducing the number of data transfers from off-chip to on-chip. As a result,
it improves the computational efficiency and energy efficiency of the system. The specific
circuit implementation of the second approach is presented in Section 5.

Figure 8. The convolution calculation process, where N represents the number of convolution kernels.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 18

Figure 8. The convolution calculation process, where N represents the number of convolution
kernels.

Figure 9. Analysis of Repetitiveness in Convolutional Operations.The numbers represent the
number of times each data is reused. Different colors represent different categories. Gray
represents zero-padded data. White represents data from the original image corners. Blue
represents data from the original image edges. Green represents data from the original image
interior.

There are two approaches to storing and reading feature map data. The first approach
involves arranging the feature map data to be computed in the desired calculation order
using a software algorithm (which may result in a large amount of redundant data). These
arranged data are then stored off-chip and subsequently input into the on-chip memory.
Finally, the data are fed into the PE array for computation. This method, as shown in
Figure 10, results in a significant amount of redundancy in the data involved in adjacent
computations. As a result, the effective input data are reduced, leading to a significant
increase in the number of data transfers from off-chip to on-chip.

Another approach is to input the required original feature map data (without sorting
and without any redundant data) into the on-chip cache. Then, through the on-chip data
reuse module, the data are transformed into a stream that is arranged in the desired
calculation order and fed into the PE array for computation. Compared to the first
approach, this method utilizes on-chip hardware modules to perform data reordering,
significantly reducing the number of data transfers from off-chip to on-chip. As a result,
it improves the computational efficiency and energy efficiency of the system. The specific
circuit implementation of the second approach is presented in Section 5.

Figure 9. Analysis of Repetitiveness in Convolutional Operations.The numbers represent the number
of times each data is reused. Different colors represent different categories. Gray represents zero-
padded data. White represents data from the original image corners. Blue represents data from the
original image edges. Green represents data from the original image interior.

There are two approaches to storing and reading feature map data. The first approach
involves arranging the feature map data to be computed in the desired calculation order
using a software algorithm (which may result in a large amount of redundant data). These
arranged data are then stored off-chip and subsequently input into the on-chip memory.
Finally, the data are fed into the PE array for computation. This method, as shown in
Figure 10, results in a significant amount of redundancy in the data involved in adjacent
computations. As a result, the effective input data are reduced, leading to a significant
increase in the number of data transfers from off-chip to on-chip.

Another approach is to input the required original feature map data (without sorting
and without any redundant data) into the on-chip cache. Then, through the on-chip
data reuse module, the data are transformed into a stream that is arranged in the desired
calculation order and fed into the PE array for computation. Compared to the first approach,
this method utilizes on-chip hardware modules to perform data reordering, significantly
reducing the number of data transfers from off-chip to on-chip. As a result, it improves
the computational efficiency and energy efficiency of the system. The specific circuit
implementation of the second approach is presented in Section 5.

Electronics 2024, 13, 975 8 of 17Electronics 2024, 13, x FOR PEER REVIEW 8 of 18

Figure 10. Original feature map storage method. The numbers represent the quantity of data tiles.
Blue represents the total image data. Orange, green, and purple represent different data tiles. Red
represents a complete three-dimensional tile of data.

From the characteristics of convolutional operations, it can be observed that the reuse
rate of the weight data is also very high. There are two methods for storing and accessing
weight data. The first method involves sorting the weight data in advance according to
the order of convolution calculations using software algorithms, storing them off-chip,
reading them from off-chip DRAM into on-chip caches, and finally, inputting them into
the PE array for computation. This method simplifies the design of the weight control
module but results in a significant amount of redundant weight storage and a high
number of data movements between off-chip and on-chip caches. The number of times
each weight datum is redundantly read equals the number of elements in a single-channel
output feature map. The second method, which is a proposed method, involves storing
non-redundant weight data in on-chip caches, and the weight control module controls the
readout of cache data. This allows the computation process that requires the same weight
data to repeatedly read the cache data until the weight data are no longer needed. The
second method ensures that the weight data are replaced only when they are fully
utilized, greatly reducing the number of data exchanges between on-chip caches and off-
chip weight data. The comparison of the two methods is shown in Table 1.The specific
design of the weight control module for the second method is provided in Section 5.

Table 1. Comparison between the first method and the second method.

 The First Method The Second Method
Do complex software sorting
algorithms need to be used? Yes No

Are there duplicate data in
on-chip memory space?

Yes No

Does a complete convolution
operation process require

exchanging weight data with
off-chip memory during the

process?

Yes No

Figure 10. Original feature map storage method. The numbers represent the quantity of data tiles.
Blue represents the total image data. Orange, green, and purple represent different data tiles. Red
represents a complete three-dimensional tile of data.

From the characteristics of convolutional operations, it can be observed that the reuse
rate of the weight data is also very high. There are two methods for storing and accessing
weight data. The first method involves sorting the weight data in advance according to the
order of convolution calculations using software algorithms, storing them off-chip, reading
them from off-chip DRAM into on-chip caches, and finally, inputting them into the PE
array for computation. This method simplifies the design of the weight control module
but results in a significant amount of redundant weight storage and a high number of data
movements between off-chip and on-chip caches. The number of times each weight datum
is redundantly read equals the number of elements in a single-channel output feature map.
The second method, which is a proposed method, involves storing non-redundant weight
data in on-chip caches, and the weight control module controls the readout of cache data.
This allows the computation process that requires the same weight data to repeatedly read
the cache data until the weight data are no longer needed. The second method ensures that
the weight data are replaced only when they are fully utilized, greatly reducing the number
of data exchanges between on-chip caches and off-chip weight data. The comparison of the
two methods is shown in Table 1.The specific design of the weight control module for the
second method is provided in Section 5.

Table 1. Comparison between the first method and the second method.

The First Method The Second Method

Do complex software sorting
algorithms need to be used? Yes No

Are there duplicate data in on-chip
memory space? Yes No

Does a complete convolution
operation process require exchanging

weight data with off-chip memory
during the process?

Yes No

Electronics 2024, 13, 975 9 of 17

5. Hardware Circuit Implementation of Data Reordering
5.1. Feature Map Data Reuse Module

The fundamental reason for the reuse of feature map data is determined by the
characteristics of convolutional operations. As shown in Figure 11, there are four tiles
involved in the convolution operation in the X and Y directions. Due to their adjacent
positions, there is data overlap between these tiles. If we do not consider reusing these
overlapping data, it would result in a significant increase in data volume. As shown in
Figure 11, the original data size is 4 × 5, totaling 20, while the actual amount of data input
from off-chip is 3 × 3 × 4, totaling 36. There are 16 data entries that have been duplicated.

Electronics 2024, 13, x FOR PEER REVIEW 9 of 18

5. Hardware Circuit Implementation of Data Reordering
5.1. Feature Map Data Reuse Module

The fundamental reason for the reuse of feature map data is determined by the
characteristics of convolutional operations. As shown in Figure 11, there are four tiles
involved in the convolution operation in the X and Y directions. Due to their adjacent
positions, there is data overlap between these tiles. If we do not consider reusing these
overlapping data, it would result in a significant increase in data volume. As shown in
Figure 11, the original data size is 4 × 5, totaling 20, while the actual amount of data input
from off-chip is 3 × 3 × 4, totaling 36. There are 16 data entries that have been duplicated.

Figure 11. Data_reuse module and the dataflows in the Data_reuse module. The letters A, B, C, D,
and E represent different types of registers. Registers A, B, and E are responsible for data
movement, while registers C and D are responsible for data storage.

To address this issue, we propose a configurable hardware circuit structure that
improves data reuse. As shown in Figure 11, we assume that the input feature map has 1
channel, the data size to be processed is 4 × 5, the convolution kernel size is 3 × 3, and the
stride is 1. Taking the example of four output ports, Out1, Out2, Out3, and Out4, each port
outputs the tiled data corresponding to the respective color. The original data only need
to be input once. Data reuse in the X direction is achieved through data shifting between
two sets of registers, A and B. Data reuse in the Y direction is achieved by delaying the
input using register E. The C and D sets of registers serve as temporary storage for data,
waiting to transfer the data to the B set of registers. This example demonstrates that there
are 2 convolution operation tiles in the X direction and 2 convolution operation tiles in the
Y direction. The flow of data in the Data_reuse module is shown in Figure 11. The number
of tiles determines the number of sets of registers in the circuit, namely, A, B, C, D, and E.

XRN represents the number of registers per group for A, B, C, and D. It can be calculated
using Equation (1), where KN represents the width of the convolution kernel, and XN
represents the number of tiles in the X direction. The number of registers in the E group
is determined by Equation (2), where ERN represents the number of registers per group
for the E group. The term “per group” is used because there may not be only one group

Figure 11. Data_reuse module and the dataflows in the Data_reuse module. The letters A, B, C, D,
and E represent different types of registers. Registers A, B, and E are responsible for data movement,
while registers C and D are responsible for data storage.

To address this issue, we propose a configurable hardware circuit structure that
improves data reuse. As shown in Figure 11, we assume that the input feature map has
1 channel, the data size to be processed is 4 × 5, the convolution kernel size is 3 × 3, and the
stride is 1. Taking the example of four output ports, Out1, Out2, Out3, and Out4, each port
outputs the tiled data corresponding to the respective color. The original data only need
to be input once. Data reuse in the X direction is achieved through data shifting between
two sets of registers, A and B. Data reuse in the Y direction is achieved by delaying the
input using register E. The C and D sets of registers serve as temporary storage for data,
waiting to transfer the data to the B set of registers. This example demonstrates that there
are 2 convolution operation tiles in the X direction and 2 convolution operation tiles in
the Y direction. The flow of data in the Data_reuse module is shown in Figure 11. The
number of tiles determines the number of sets of registers in the circuit, namely, A, B, C,
D, and E. RNX represents the number of registers per group for A, B, C, and D. It can be
calculated using Equation (1), where KN represents the width of the convolution kernel,
and NX represents the number of tiles in the X direction. The number of registers in the E
group is determined by Equation (2), where RNE represents the number of registers per
group for the E group. The term “per group” is used because there may not be only one
group of E registers. It is determined by the number of tiles in the Y direction, denoted

Electronics 2024, 13, 975 10 of 17

as NY. ENY represents the number of groups of E registers, and its size is determined by
Equation (3). The E registers serve as buffer storage and are positioned between the A and
B register classes.

RNX = KN + (NX − 1) (1)

RNE = 2 × NX (2)

ENY = NY − 1 (3)

Due to the requirement of 26 feature map data outputs as inputs to the PE array in this
design, it can be configured as NX = 13 and NY = 2. The computation order of the output
feature maps is shown in Figure 12. The new computation order also affects the storage
order of the original feature maps. The purpose of studying the new storage method is
to store the feature map data as continuously as possible on-chip, facilitating reading and
computation. Due to the limited on-chip memory space, the storage method for each
layer is influenced by factors such as the size of the input feature maps and the number
of channels. Taking an input feature map of size 104 × 104 × 32 as an example, where
104 represents the width and height of the input feature map, and 32 represents the number
of channels. Due to the on-chip memory space allocated for storing feature maps in this
design being 26 Kbyte, with each data size being 16 bits, it can be converted to a data
volume size of 13 × 210.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 18

of E registers. It is determined by the number of tiles in the Y direction, denoted as YN .

YEN represents the number of groups of E registers, and its size is determined by
Equation (3). The E registers serve as buffer storage and are positioned between the A and
B register classes.

)1(−+= XX NKNRN (1)

XE NRN ×= 2 (2)

1−= YY NEN (3)

Due to the requirement of 26 feature map data outputs as inputs to the PE array in
this design, it can be configured as XN = 13 and YN = 2. The computation order of the
output feature maps is shown in Figure 12. The new computation order also affects the
storage order of the original feature maps. The purpose of studying the new storage
method is to store the feature map data as continuously as possible on-chip, facilitating
reading and computation. Due to the limited on-chip memory space, the storage method
for each layer is influenced by factors such as the size of the input feature maps and the
number of channels. Taking an input feature map of size 104 × 104 × 32 as an example,
where 104 represents the width and height of the input feature map, and 32 represents the
number of channels. Due to the on-chip memory space allocated for storing feature maps
in this design being 26 Kbyte, with each data size being 16 bits, it can be converted to a
data volume size of 13 × 102 .

By utilizing Equation (4), where YS YS represents the maximum number of data
blocks that can be stored along the Y direction on-chip, and YS must be an integer, NC
represents the number of channels in the input feature map, and TOTAL represents the
total amount of data that can be stored on-chip, we can calculate that YS equals 12, and
each data block has a size of 15 × 4 × 32. Here, 15 is calculated from KNNX +−1 , and 4
is obtained from KNNY +−1 .The storage process described above is shown in Figure
13.

{ } TOTALNCSNKNKNN YYX ≤×−×+−+×+−)1(2)]1([])1[((4)

Figure 12. The calculation order of this design output feature map. Dashed boxes of different
colors represent different output data tiles. The numbers within the dashed boxes represent the
sequence of output data tiles, which are output in order. Dots indicate omissions. 32 represents the
number of channels for parallel output.

Figure 12. The calculation order of this design output feature map. Dashed boxes of different colors
represent different output data tiles. The numbers within the dashed boxes represent the sequence of
output data tiles, which are output in order. Dots indicate omissions. 32 represents the number of
channels for parallel output.

By utilizing Equation (4), where SYSY represents the maximum number of data blocks
that can be stored along the Y direction on-chip, and SY must be an integer, NC represents
the number of channels in the input feature map, and TOTAL represents the total amount
of data that can be stored on-chip, we can calculate that SY equals 12, and each data block
has a size of 15 × 4 × 32. Here, 15 is calculated from NX − 1 + KN, and 4 is obtained from
NY − 1 + KN.The storage process described above is shown in Figure 13.

[(NX − 1) + KN]× {[KN + (NY − 1)] + 2 × (SY − 1)} × NC ≤ TOTAL (4)

The circuit shown in Figure 11 corresponds to the FM_Reuse (FM stands for feature
map) module in Figure 14. FM_control is a control module used to control the data flow
within the FM_Reuse module and output the correct address signals to the FM BUFFER.
This enables the efficient transfer of on-chip stored feature map data to the FM Reuse
module. The Center_control module is responsible for connecting the FM_control and

Electronics 2024, 13, 975 11 of 17

WEIGHT_control modules, enabling them to exchange control signals with each other. This
ensures that the feature map and weight data can be input to the PE array in aligned order.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 18

Figure 13. New input feature map storage order. Dashed boxes of different colors represent
different input data tiles. The numbers within the dashed boxes represent the sequence of input
data tiles, which are input in order. Dots indicate omissions.

The circuit shown in Figure 11 corresponds to the FM_Reuse (FM stands for feature
map) module in Figure 14. FM_control is a control module used to control the data flow
within the FM_Reuse module and output the correct address signals to the FM BUFFER.
This enables the efficient transfer of on-chip stored feature map data to the FM Reuse
module. The Center_control module is responsible for connecting the FM_control and
WEIGHT_control modules, enabling them to exchange control signals with each other.
This ensures that the feature map and weight data can be input to the PE array in aligned
order.

Figure 14. Structural diagram of accelerator section.

Figure 13. New input feature map storage order. Dashed boxes of different colors represent different
input data tiles. The numbers within the dashed boxes represent the sequence of input data tiles,
which are input in order. Dots indicate omissions.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 18

Figure 13. New input feature map storage order. Dashed boxes of different colors represent
different input data tiles. The numbers within the dashed boxes represent the sequence of input
data tiles, which are input in order. Dots indicate omissions.

The circuit shown in Figure 11 corresponds to the FM_Reuse (FM stands for feature
map) module in Figure 14. FM_control is a control module used to control the data flow
within the FM_Reuse module and output the correct address signals to the FM BUFFER.
This enables the efficient transfer of on-chip stored feature map data to the FM Reuse
module. The Center_control module is responsible for connecting the FM_control and
WEIGHT_control modules, enabling them to exchange control signals with each other.
This ensures that the feature map and weight data can be input to the PE array in aligned
order.

Figure 14. Structural diagram of accelerator section.

Figure 14. Structural diagram of accelerator section.

5.2. Weight Data Reuse Module

The method of weight data reuse is significantly different from the method of feature
map reuse. The purpose of our design is to enable 32 different convolution kernels to
be simultaneously input to the PE array for parallel computation. If the on-chip weight
cache capacity is unable to store data for all 32 convolution kernels simultaneously, the
number of times the convolution kernel data needs to be read from off-chip memory
increases significantly. This number is proportional to the number of times the feature
map data are read. Considering the layer with the maximum number of channels in the

Electronics 2024, 13, 975 12 of 17

convolutional kernels in the neural network algorithm, the amount of data that the on-chip
weight cache should be able to accommodate is shown in Equation (5). NW represents the
maximum number of convolution kernel weights that can be stored on-chip, NP represents
the number of convolution kernels that are input in parallel, and NCmax represents the
maximum number of channels in the convolution kernel.

NW = NCmax × NP × KN × KN (5)

By using Equation (5) to calculate the maximum number of convolution kernels that
can be stored in on-chip memory, it can be determined that the on-chip memory space for
storing convolution kernels is 288 Kbytes after conversion. During the computation of an
input feature map, the same convolution kernel needs to be reused multiple times. Since
at least 32 complete convolution kernels are already stored on-chip, after completing one
convolution operation, the read data address only needs to be adjusted to the beginning
(for cases with only 32 convolution kernels) or jumped to the next set of 32 convolution
kernels (for cases with more than 32 convolution kernels). For cases where the number of
convolutional kernels is less than 32, the process is similar to when the number of kernels
is exactly 32. After completing all convolution operations, it directly returns to the initial
position. The above-mentioned storage and retrieval method of convolutional kernels is
illustrated in Figure 15. This allows for the continuation of a new round of convolution
operations. The control of the read address is performed by the WEIGHT_control module.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 18

Figure 15. Storage and retrieval method of convolutional kernels. Arrows represent the switching
of data blocks after the switch condition is met.

6. Experiment Result and Analysis
6.1. Verification of the Effectiveness of the Data Reordering Module

As shown in Figure 16, from the red arrow to the solid yellow line in the figure, a
total of nine clock cycles have passed (nine yellow arrows). The weight_re_data and a7_q
serve as the output ports for weight data and one feature map tile datum, respectively.
Assuming the initial nine feature map data range from decimal 1 to 9, and the weight data
also range from decimal 1 to 9. The output data sequence of theoretical analysis is as
follows: the weight data output is a 512-bit width ranging from 1 to 9, and one of the
output ports (The total number is 26) of the feature map data, port a7_q, outputs nine
numbers with a 16-bit width: 1, 0, 0, 0, 3, 0, 5, 0, 0. By combining the initially initialized
original feature map and weight data in the design, it can be observed that the reordering
module outputs correctly sorted data and completes data alignment. The above
simulation results are achieved using Vivado�s simulation tool.

Figure 15. Storage and retrieval method of convolutional kernels. Arrows represent the switching of
data blocks after the switch condition is met.

Electronics 2024, 13, 975 13 of 17

6. Experiment Result and Analysis
6.1. Verification of the Effectiveness of the Data Reordering Module

As shown in Figure 16, from the red arrow to the solid yellow line in the figure, a total
of nine clock cycles have passed (nine yellow arrows). The weight_re_data and a7_q serve
as the output ports for weight data and one feature map tile datum, respectively. Assuming
the initial nine feature map data range from decimal 1 to 9, and the weight data also range
from decimal 1 to 9. The output data sequence of theoretical analysis is as follows: the
weight data output is a 512-bit width ranging from 1 to 9, and one of the output ports (The
total number is 26) of the feature map data, port a7_q, outputs nine numbers with a 16-bit
width: 1, 0, 0, 0, 3, 0, 5, 0, 0. By combining the initially initialized original feature map and
weight data in the design, it can be observed that the reordering module outputs correctly
sorted data and completes data alignment. The above simulation results are achieved using
Vivado’s simulation tool.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 18

Figure 16. Simulation of the effect of data_reuse and weight_control modules. The red arrows
represent the start of the valid timing. The yellow arrows represent the following nine valid clock
cycles.

6.2. Analysis of the Reuse Effect of Input Feature Map Data
The accelerator with the added Data_reuse module is applied to the layers of the

YOLOv4 Tiny,VGG16, and MobileNet v1 with a stride size of 1, and the number of on-
chip and off-chip data exchanges for the input feature maps is obtained. The results are
shown in Figure 17. Compared to the design without the added Data_reuse module, the
number of data exchanges in each layer is significantly reduced. The reduction in the
number of exchanges is particularly noticeable in the earlier layers with a larger amount
of input feature map data. For YOLOv4 Tiny, the reduction rate of the maximum data
exchange times is 82.9%. For VGG16, it is 84.92%. For MobileNet v1, it is 84.13%.

The inference time mainly consists of PE computation time and off-chip DRAM
access time. The PE computation time equals the number of total multiply–accumulate
(MAC) operations divided by the number of PE units and then multiplied by the time of
one clock cycle. The DRAM access time equals the total amount of input data (stored in
DRAM, including weights and feature maps) divided by the DRAM data bus width and
then multiplied by the latency of a single DRAM access. The frequency of the accelerator
is 100 MHz, and the latency of a single DRAM access is 37.5 ns [24]. Therefore, the
inference time is 1.97 s without the on-chip data reordering module and 0.39 s with this
module, which achieves 80.14% inference time reduction.

(a) (b)

Figure 16. Simulation of the effect of data_reuse and weight_control modules. The red arrows
represent the start of the valid timing. The yellow arrows represent the following nine valid clock
cycles.

6.2. Analysis of the Reuse Effect of Input Feature Map Data

The accelerator with the added Data_reuse module is applied to the layers of the
YOLOv4 Tiny, VGG16, and MobileNet v1 with a stride size of 1, and the number of on-chip
and off-chip data exchanges for the input feature maps is obtained. The results are shown
in Figure 17. Compared to the design without the added Data_reuse module, the number
of data exchanges in each layer is significantly reduced. The reduction in the number of
exchanges is particularly noticeable in the earlier layers with a larger amount of input
feature map data. For YOLOv4 Tiny, the reduction rate of the maximum data exchange
times is 82.9%. For VGG16, it is 84.92%. For MobileNet v1, it is 84.13%.

The inference time mainly consists of PE computation time and off-chip DRAM access
time. The PE computation time equals the number of total multiply–accumulate (MAC)
operations divided by the number of PE units and then multiplied by the time of one clock
cycle. The DRAM access time equals the total amount of input data (stored in DRAM,
including weights and feature maps) divided by the DRAM data bus width and then
multiplied by the latency of a single DRAM access. The frequency of the accelerator is
100 MHz, and the latency of a single DRAM access is 37.5 ns [24]. Therefore, the inference
time is 1.97 s without the on-chip data reordering module and 0.39 s with this module,
which achieves 80.14% inference time reduction.

Electronics 2024, 13, 975 14 of 17

Electronics 2024, 13, x FOR PEER REVIEW 14 of 18

Figure 16. Simulation of the effect of data_reuse and weight_control modules. The red arrows
represent the start of the valid timing. The yellow arrows represent the following nine valid clock
cycles.

6.2. Analysis of the Reuse Effect of Input Feature Map Data
The accelerator with the added Data_reuse module is applied to the layers of the

YOLOv4 Tiny,VGG16, and MobileNet v1 with a stride size of 1, and the number of on-
chip and off-chip data exchanges for the input feature maps is obtained. The results are
shown in Figure 17. Compared to the design without the added Data_reuse module, the
number of data exchanges in each layer is significantly reduced. The reduction in the
number of exchanges is particularly noticeable in the earlier layers with a larger amount
of input feature map data. For YOLOv4 Tiny, the reduction rate of the maximum data
exchange times is 82.9%. For VGG16, it is 84.92%. For MobileNet v1, it is 84.13%.

The inference time mainly consists of PE computation time and off-chip DRAM
access time. The PE computation time equals the number of total multiply–accumulate
(MAC) operations divided by the number of PE units and then multiplied by the time of
one clock cycle. The DRAM access time equals the total amount of input data (stored in
DRAM, including weights and feature maps) divided by the DRAM data bus width and
then multiplied by the latency of a single DRAM access. The frequency of the accelerator
is 100 MHz, and the latency of a single DRAM access is 37.5 ns [24]. Therefore, the
inference time is 1.97 s without the on-chip data reordering module and 0.39 s with this
module, which achieves 80.14% inference time reduction.

(a) (b)

Electronics 2024, 13, x FOR PEER REVIEW 15 of 18

(c) (d)

(e) (f)

Figure 17. Comparison of on-chip FM BUFFER and off-chip data exchange times. (a,c,e) Comparison
of the number of data exchanges before and after the application of the Data_reuse module at
different layers. (b,d,f) Shows the variation curve of the reduction in the number of data exchanges
at different layers.

6.3. Analysis of the Reuse Effect of Weight Data
With the inclusion of the Weight_control module, the weight data stored on-chip can

be reused. Compared to the design without this module, the number of data exchanges
between on-chip and off-chip is significantly reduced. The experimental results
comparing YOLO v4 Tiny and VGG16 before and after the improvement are shown in
Figure 18. They were obtained through calculations. The exchange frequency is greatly
reduced, but this comes at the cost of increased on-chip storage space. The larger storage
capacity allows for multiple accesses of the same set of weight data without the need for
multiple transfers, thereby greatly reducing the number of data exchanges between on-
chip and off-chip.

Figure 17. Comparison of on-chip FM BUFFER and off-chip data exchange times. (a,c,e) Comparison
of the number of data exchanges before and after the application of the Data_reuse module at
different layers. (b,d,f) Shows the variation curve of the reduction in the number of data exchanges at
different layers.

6.3. Analysis of the Reuse Effect of Weight Data

With the inclusion of the Weight_control module, the weight data stored on-chip can
be reused. Compared to the design without this module, the number of data exchanges
between on-chip and off-chip is significantly reduced. The experimental results comparing
YOLO v4 Tiny and VGG16 before and after the improvement are shown in Figure 18. They
were obtained through calculations. The exchange frequency is greatly reduced, but this
comes at the cost of increased on-chip storage space. The larger storage capacity allows for
multiple accesses of the same set of weight data without the need for multiple transfers,
thereby greatly reducing the number of data exchanges between on-chip and off-chip.

Electronics 2024, 13, 975 15 of 17Electronics 2024, 13, x FOR PEER REVIEW 16 of 18

(a) (b)

Figure 18. Comparison of the number of on-chip weight BUFFER and off-chip data exchanges after
improvement (a) Yolo v4 tiny (b) VGG16.

6.4. Power Consumption Analysis
Table 2 presents a normalized comparison of the energy consumption for accessing

different levels of storage structures and performing MAC operations. It is evident that
the energy consumption for accessing external DRAM is significantly higher than the
energy consumed for data movement in other storage forms. Optimizing this part of
energy consumption is a key focus for accelerator energy optimization.

Table 2. Normalized energy cost relative to a MAC operation.

 DRAM Global Buffer Array Register File
Norm. Energy 200× 6× 2× 1×

Assuming that the power consumption for moving each datum from external DRAM
to on-chip memory is equal, Table 3 presents the total data movement volume before and
after the inclusion of the Data_reuse module. These data were obtained through statistical
calculations. It can be observed that the data movement volume significantly decreases
for different layers, with an average power reduction of 78.75%.

Table 3. Power consumption reduction rate of each layer.

Layer Number/Average Before/Number Of Data After/Number Of Data Reduce Rate
Layer 2 6,230,016 1,013,760 83.73%
Layer 4 3,115,008 499,200 83.97%
Layer 10 3,115,008 599,040 80.77%
Layer 12 1,557,504 276,480 82.25%
Layer 18 1,557,504 399,360 74.36%
Layer 20 785,408 161,280 79.47%
Layer 26 851,968 215,040 74.76%
Layer 28 425,984 107,520 74.76%
Layer 35 2,369,536 599,040 74.72%
Average 78.75%

7. Conclusions
This article presents the design and implementation of a configurable convolutional

neural network (CNN) hardware accelerator. We analyze the key factors influencing the
performance of the accelerator and propose an optimization scheme based on on-chip
data reordering. Circuit modules were designed and implemented for sorting feature map

Figure 18. Comparison of the number of on-chip weight BUFFER and off-chip data exchanges after
improvement (a) Yolo v4 tiny (b) VGG16.

6.4. Power Consumption Analysis

Table 2 presents a normalized comparison of the energy consumption for accessing
different levels of storage structures and performing MAC operations. It is evident that the
energy consumption for accessing external DRAM is significantly higher than the energy
consumed for data movement in other storage forms. Optimizing this part of energy
consumption is a key focus for accelerator energy optimization.

Table 2. Normalized energy cost relative to a MAC operation.

DRAM Global Buffer Array Register File

Norm. Energy 200× 6× 2× 1×

Assuming that the power consumption for moving each datum from external DRAM
to on-chip memory is equal, Table 3 presents the total data movement volume before and
after the inclusion of the Data_reuse module. These data were obtained through statistical
calculations. It can be observed that the data movement volume significantly decreases for
different layers, with an average power reduction of 78.75%.

Table 3. Power consumption reduction rate of each layer.

Layer Number/Average Before/Number of Data After/Number of Data Reduce Rate

Layer 2 6,230,016 1,013,760 83.73%
Layer 4 3,115,008 499,200 83.97%

Layer 10 3,115,008 599,040 80.77%
Layer 12 1,557,504 276,480 82.25%
Layer 18 1,557,504 399,360 74.36%
Layer 20 785,408 161,280 79.47%
Layer 26 851,968 215,040 74.76%
Layer 28 425,984 107,520 74.76%
Layer 35 2,369,536 599,040 74.72%
Average 78.75%

7. Conclusions

This article presents the design and implementation of a configurable convolutional
neural network (CNN) hardware accelerator. We analyze the key factors influencing the
performance of the accelerator and propose an optimization scheme based on on-chip data
reordering. Circuit modules were designed and implemented for sorting feature map and

Electronics 2024, 13, 975 16 of 17

weight data, which improved the utilization of on-chip data and reduced the number of
data exchanges between on-chip memory and off-chip DRAM. The experimental results
indicate that the power consumption is reduced on average by 78.75%. The number of
external memory accesses is reduced by up to 82.9%, resulting in a maximum reduction of
82.9% in external memory access latency.

Author Contributions: Conceptualization, Y.Z. and X.H.; methodology, Y.L.; validation, M.N.,
M.C. and R.C.; writing—original draft preparation, Y.L.; writing—review and editing, X.H. and Y.L.;
funding acquisition, L.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China under Grant
2022YFB4400400.

Data Availability Statement: The data presented in this study are available in this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zuo, C.; Qian, J.; Feng, S.; Yin, W.; Li, Y.; Fan, P.; Han, J.; Qian, K.; Chen, Q. Deep learning in optical metrology. Light Sci. Appl.

2022, 11, 39. [CrossRef] [PubMed]
2. Gulzar, Y. Fruit image classification model based on MobileNetV2 with deep transfer learning technique. Sustainability 2023,

15, 1906. [CrossRef]
3. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
4. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.
5. Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach.

Intell. 2012, 35, 221–231. [CrossRef] [PubMed]
6. Chen, Y.; Yang, X.; Zhong, B.; Pan, S.; Chen, D.; Zhang, H. CNNTracker: Online discriminative object tracking via deep

convolutional neural network. Appl. Soft Comput. 2016, 38, 1088–1098. [CrossRef]
7. Meimetis, D.; Daramouskas, I.; Perikos, I.; Hatzilygeroudis, I. Real-time multiple object tracking using deep learning methods.

Neural Comput. Appl. 2023, 35, 89–118. [CrossRef]
8. Cavigelli, L.; Magno, M.; Benini, L. Accelerating real-time embedded scene labeling with convolutional networks. In Proceedings

of the 52nd Annual Design Automation Conference (DAC’15), San Francisco, CA, USA, 7–11 June 2015; pp. 1–6.
9. Cheng, G.; Xie, X.; Han, J.; Guo, L.; Xia, G.-S. Remote sensing image scene classification meets deep learning: Challenges, methods,

benchmarks, and opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3735–3756. [CrossRef]
10. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition, localization and detection

using convolutional networks. arXiv 2013, arXiv:1312.6229.
11. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

12. He, T.; Huang, W.; Qiao, Y.; Yao, J. Text-attentional convolutional neural network for scene text detection. IEEE Trans. Image
Process. 2016, 25, 2529–2541. [CrossRef] [PubMed]

13. Li, H.; Lin, Z.; Shen, X.; Brandt, J.; Hua, G. A convolutional neural network cascade for face detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5325–5334.

14. Pang, G.; Shen, C.; Cao, L.; Van Den Hengel, A. Deep learning for anomaly detection: A review. ACM Comput. Surv. 2021, 54,
1–38. [CrossRef]

15. Chen, Y.H.; Emer, J.; Sze, V. Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks. ACM
SIGARCH Comput. Archit. News 2016, 44, 367–379. [CrossRef]

16. Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.A.; Dally, W.J. EIE: Efficient inference engine on compressed deep
neural network. ACM SIGARCH Comput. Archit. News 2016, 44, 243–254. [CrossRef]

17. Nabavinejad, S.M.; Baharloo, M.; Chen, K.C.; Palesi, M.; Kogel, T.; Ebrahimi, M. An overview of efficient interconnection networks
for deep neural network accelerators. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 10, 268–282. [CrossRef]

18. Tu, F.; Yin, S.; Ouyang, P.; Tang, S.; Liu, L.; Wei, S. Deep convolutional neural network architecture with reconfigurable
computation patterns. IEEE Trans. Very Large Scale Integr. Syst. 2017, 25, 2220–2233. [CrossRef]

19. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400.
20. Moini, S.; Alizadeh, B.; Emad, M.; Ebrahimpour, R. A resource-limited hardware accelerator for convolutional neural networks in

embedded vision applications. IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 1217–1221. [CrossRef]
21. Chen, Y.H.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural

networks. IEEE J. Solid-State Circuits 2016, 52, 127–138. [CrossRef]

https://doi.org/10.1038/s41377-022-00714-x
https://www.ncbi.nlm.nih.gov/pubmed/35197457
https://doi.org/10.3390/su15031906
https://doi.org/10.1109/TPAMI.2012.59
https://www.ncbi.nlm.nih.gov/pubmed/22392705
https://doi.org/10.1016/j.asoc.2015.06.048
https://doi.org/10.1007/s00521-021-06391-y
https://doi.org/10.1109/JSTARS.2020.3005403
https://doi.org/10.1109/TIP.2016.2547588
https://www.ncbi.nlm.nih.gov/pubmed/27093723
https://doi.org/10.1145/3439950
https://doi.org/10.1145/3007787.3001177
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1109/JETCAS.2020.3022920
https://doi.org/10.1109/TVLSI.2017.2688340
https://doi.org/10.1109/TCSII.2017.2690919
https://doi.org/10.1109/JSSC.2016.2616357

Electronics 2024, 13, 975 17 of 17

22. Shastri, B.J.; Tait, A.N.; Ferreira de Lima, T.; Pernice, W.H.P.; Bhaskaran, H.; Wright, C.D.; Prucnal, P.R. Photonics for artificial
intelligence and neuromorphic computing. Nat. Photonics 2021, 15, 102–114. [CrossRef]

23. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. In The Handbook of Brain Theory and Neural
Networks; MIT Press: Cambridge, MA, USA, 1995; p. 3361.

24. Du, H.; Qin, Y.; Chen, S.; Kang, Y. FASA-DRAM: Reducing DRAM Latency with Destructive Activation and Delayed Restoration.
ACM Trans. Archit. Code Optim. 2024, accepted. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41566-020-00754-y
https://doi.org/10.1145/3649135

	Introduction
	The Accelerator Architecture
	Partial Module Design
	PE Array
	BUS Interface Module
	Cache and Register Access Control Module

	Data Reusability Analysis
	Hardware Circuit Implementation of Data Reordering
	Feature Map Data Reuse Module
	Weight Data Reuse Module

	Experiment Result and Analysis
	Verification of the Effectiveness of the Data Reordering Module
	Analysis of the Reuse Effect of Input Feature Map Data
	Analysis of the Reuse Effect of Weight Data
	Power Consumption Analysis

	Conclusions
	References

