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Abstract: The distinctive feature of hyperspectral images (HSIs) is their large number of spectral
bands, which allows us to identify categories of ground objects by capturing discrepancies in spectral
information. Convolutional neural networks (CNN) with attention modules effectively improve the
classification accuracy of HSI. However, CNNs are not successful in capturing long-range spectral–
spatial dependence. In recent years, Vision Transformer (VIT) has received widespread attention due
to its excellent performance in acquiring long-range features. However, it requires calculating the
pairwise correlation between token embeddings and has the complexity of the square of the number
of tokens, which leads to an increase in the computational complexity of the network. In order to cope
with this issue, this paper proposes a multi-scale spectral–spatial attention network with frequency-
domain lightweight Transformer (MSA-LWFormer) for HSI classification. This method synergistically
integrates CNN, attention mechanisms, and Transformer into the spectral–spatial feature extraction
module and frequency-domain fused classification module. Specifically, the spectral–spatial feature
extraction module employs a multi-scale 2D-CNN with multi-scale spectral attention (MS-SA) to
extract the shallow spectral–spatial features and capture the long-range spectral dependence. In
addition, The frequency-domain fused classification module designs a frequency-domain lightweight
Transformer that employs the Fast Fourier Transform (FFT) to convert features from the spatial
domain to the frequency domain, effectively extracting global information and significantly reducing
the time complexity of the network. Experiments on three classic hyperspectral datasets show that
MSA-LWFormer has excellent performance.

Keywords: hyperspectral image classification; multi-scale spectral attention; Transformer; long-range
spectral dependence

1. Introduction

The accelerated progress in satellite remote sensing technology has made HSI a com-
pelling area of research [1]. Unlike traditional natural images, HSIs continuously record
spectral responses in numerous narrow and uninterrupted bands, thereby achieving the
ability to accurately identify and differentiate materials with small spectral changes [2]. HSI
classification achieves the allocation of pixels within HSI data to distinct land cover types,
facilitating the precise categorization and identification of surface features like farmland,
forest, and water. This classification technique has extensive application in diverse fields,
including agriculture [3], environmental monitoring [4], urban planning [5], and geological
exploration [6].

HSI classification uses a variety of methods in the field of traditional machine learning.
Some commonly used methods include random forest [7], the minimum distance classi-
fier [8], support vector machine (SVM) [9], the K-nearest neighbor algorithm (KNN) [10],
and the Bayesian classifier [11]. In addition, because of the high-dimensional nature of
HSI, a variety of dimensionality reduction methods have also been widely used, including
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principal component analysis (PCA) [12], isometric mapping (Isomap) [13], and local linear
embedding (LLE) [14]. However, traditional methods often rely on manually extracting
spatial and spectral features from HSI and struggle to capture complex non-linear rela-
tionships and high-order correlations in the data. This limitation results in a reduction in
performance when dealing with complex datasets.

With the advancement of deep learning methods, its widespread application in various
computer vision (CV) tasks has become increasingly evident in recent years [15,16]. These
tasks include, but are not limited to, denoising [17,18], target detection [19,20], change de-
tection [21,22], and classification [23–25]. Numerous research findings consistently demon-
strate the superior performance of deep learning methods over traditional approaches in
extracting high-level features. These features extracted by deep networks exhibit enhanced
proficiency in capturing intricate and abstract information, contributing to a substantial
improvement in the accuracy of HSI classification. Consequently, a range of deep learning
methods have been proposed, encompassing recurrent neural networks (RNNs) [26], deep
belief neural networks (DBNs) [27], stacked autoencoders (SAEs) [28], and more. However,
these HSI classification methods often overlook spatial information, focusing solely on
spectral details. This oversight may lead to challenges such as differentiating between
spectral of the same substance and attributing the same spectrum to distinct substances.

To tackle the mentioned problems, various deep learning methods utilizing CNNs
have been suggested to effectively extract spectral–spatial features in HSI classification. Yu
et al. introduced a dedicated one-dimensional CNN (1D-CNN) to capture spectral correla-
tions between spectral bands [29]. Gao et al. proposed a two-dimensional CNN (2D-CNN)
to efficiently capture the spatial structure and texture information in images, thereby en-
hancing spatial feature extraction [30]. Meanwhile, Xu et al. introduced a three-dimensional
CNN (3D-CNN) to capture both spectral and spatial characteristics in HSI, as well as their
interactions with each other [31]. Roy et al. suggested the HybridSN network, a combina-
tion of a 2D-CNN and 3D-CNN, for the simultaneous extraction of spatial and spectral
features [32]. Given the varied sizes of targets in HSI, researchers commonly explore feature
extraction across multiple scales. He et al. introduced a multi-scale 3D-CNN capable of ex-
tracting spectral–spatial information from images at four different scales [33]. Hu et al. put
forward a hybrid convolutional network that combined multi-scale 2D and 3D depthwise
separable convolution [34]. Recognizing the great importance of information at different
scales for specific tasks, many researchers have incorporated attention mechanisms into
deep learning models. Mou et al. integrated an attention module into the spectrum, utiliz-
ing a gating mechanism to selectively emphasize frequency bands rich in information and
adaptively recalibrate the spectral bands [35]. Cui et al. devised a network that combined
multi-scale feature aggregation with a dual-channel spectral–spatial attention mechanism,
aiming to adeptly capture local contextual information [36]. To enhance the extraction
of long-range features, researchers have been progressively utilizing Transformers in the
classification of HSI. Hong et al. introduced the SpectralFormer model, which incorporates
a Transformer module that merges contextual information from neighboring frequency
bands, capturing both local and spectral sequence information [37]. Sun proposed a method
named the Spectral–Spatial Feature Tokenization Transformer (SSFTT), designed to capture
both high-level semantic features and spectral–spatial features [38].

While the deep learning methods mentioned above have found extensive application
in HSI classification, there are still some key obstacles, which can be summarized as follows.

(1) These approaches fail to effectively leverage the multi-scale features presenting in
HSI and neglect to establish strong dependencies among spectral bands. Consequently,
their capacity to distinguish long-range spectral disparities within HSI is limited.

(2) Existing Transformer-based HSI classification methods capture the contextual
relationships among all input embeddings via the multi-head self-attention (MHSA) mech-
anism. However, it requires the correlation calculation of the square scale of the number of
tokens, which results in an increase in computational complexity within the network.



Electronics 2024, 13, 949 3 of 21

In order to tackle the above difficulties, we propose a multi-scale spectral–spatial
attention network with a frequency-domain lightweight Transformer. Specifically, we use a
spectral–spatial feature extraction module to effectively extract the spectral–spatial features
and capture the long-range spectral dependence of HSI. In addition, the frequency-domain
lightweight Transformer applies the FFT to convert features from the spatial domain to the
frequency domain, effectively extracting global information and significantly reducing the
time complexity of the network. Our main contributions are as follows.

(1) MSA-LWFormer proposes a spectral–spatial feature extraction module aimed at
extracting shallow spectral–spatial features and capturing long-range spectral dependen-
cies. This module emphasizes cross-channel and multi-scale features by integrating the
multi-scale 2D-CNN and MS-SA techniques. These designs enhance the model’s ability to
accurately capture and interpret complex spectral information.

(2) Applying the FFT to the query, key, and value matrices within a frequency-domain
lightweight Transformer reduces the time complexity of the network. This transformation
process serves to convert features from the spatial domain to the frequency domain, thereby
enhancing the extraction of comprehensive global information and reducing the time
complexity of the network.

(3) Our proposed network demonstrates good classification results across three classic
HSI datasets, providing compelling evidence for the effectiveness of our approach.

The succeeding sections of this manuscript are organized as follows. Section 2 presents
a comprehensive examination of the overall structure of the MSA-LWFormer and the design
specifics of each sub-module. Section 3 presents the details of the experiments conducted
and the corresponding experimental results. Section 4 is devoted to the discussion of the
ablation experiments, time complexity analysis, and hyperparameter analysis of MSA-
LWFormer. Lastly, Section 5 summarizes the study’s conclusions and outlines prospects for
future work.

2. Materials and Methods

Figure 1 depicts the overall framework of the MSA-LWFormer network. It consists
of two parts: a spectral–spatial feature extraction module and a frequency-domain fused
classification module.
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Figure 1. The overall architecture of the MSA-LWFormer network.

2.1. Spectral–Spatial Feature Extraction Module

The initial HSI is denoted as I ∈ Rm×n×l , where m and n represent their height and
width, respectively, and l represents the number of spectral bands. Despite the valuable
spectral information carried by these l bands, they concurrently yield high-dimensional
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data, leading to a substantial computational burden. Consequently, we utilize the PCA
technique to reduce the spectral dimension, being beneficial in mitigating the computational
complexity. This approach preserves the crucial elements of HSI while removing redundant
and ineffective spectral bands. While preserving the spatial dimensions, the number of
bands in HSI data is reduced from l to b, resulting in a transformed dataset denoted as
Ipca ∈ Rm×n×b.

Subsequently, a 3D convolution layer is used to convolve the HSI data across the
entire spectral domain, aiming to extract multi-channel features. Within the 3D convolution
layer, the output value vxyz

ij of the jth feature cube in the ith layer at the (x, y, z) position is
calculated as follows:

vx,y,z
i,j = Φ

(
S

∑
s=1

z
Hi−1

∑
h=0

Wi−1

∑
w=0

Di−1

∑
d=0

ωh,w,d
i,j,m · v(x+h),(y+w),(z+d)

(i−1),m + bi,j

)
(1)

where Φ denotes the activation function, S is the total number of spectral bands, and s
represents the sth channel among S channels. The parameters Hi, Wi, and Di denote the
dimensions of the 3D convolution kernel, specifically referring to its width, height, and
band number, respectively. The weight parameter ωh,w,d

i,j,m is linked to the position (h, w, d)
and is intricately connected to the sth feature cube, while bi,j signifies the bias term.

As depicted in Figure 2, we propose an efficient MS-SA aimed at capturing long-
range spectral dependencies. Given the significant spatial similarities and subtle spectral
differences between different spectral groups, we employ multi-scale 2D convolution
layers to extract spatial information from the input feature map. The input HSI composed
of b spectral bands, is uniformly partitioned into four groups, effectively reducing the
spectral dimension of the input tensor. This division facilitates the extraction of spectral
features with spatial information at different scales. Each set of feature maps, denoted as
Fi ∈ Rm×n×c, shares a common channel dimension c = b

4 , where i = 1, . . . , 4. However, the
augmentation of the convolution kernel size leads to a significant increase in the number of
parameters. To address this challenge and efficiently process feature maps across different
convolution kernel scales, we employ a group convolution method. Notably, this method
is implemented without an increase in parameters, and the choice of an appropriate group
size depends on the kernel size of each scale. The relationship between the multi-scale 2D
convolution kernel size and the group size can be expressed as

n = 2
1
2 (m−1) (2)

where m represents the kernel size and n signifies the group size. Fi can be expressed
as follows:

Fi = 2DConv(mi × mi, ni)(X) i = 1, 2, 3, 4 (3)

where the ith kernel size is defined as mi = 2(i + 1) + 1, the ith group size is calculated as
ni = 2

1
2 (mi−1), and Fi ∈ Rm×n×c represents feature maps corresponding to different scales.

Moreover, to enhance the utilization of spectral similarities, an efficient spectral attention
mechanism is employed to distinguish spectral features across various scales. We adopt
the ECAWeight module to obtain spectral attention weight vectors across different scales
from the derived multi-scale feature maps. As depicted in Figure 3, the ECAWeight module
initiates the aggregation of global spatial features for each channel using Global Average
Pooling (GAP). The calculation formula for GAP can be articulated as follows:

Gi =
1

m × n

m

∑
x=1

n

∑
y=1

Fi(x, y) i = 1, 2, 3, 4 (4)
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where Fi(x, y) represents the values across all channels of Fi at the (x, y) position. The
attention weight across all channels can be expressed as

Yi = σ(C1D(Gi, k)) i = 1, 2, 3, 4 (5)

Here, the term C1D denotes 1D convolution. The symbol σ signifies the Sigmoid activation
function. The variable k denotes the number of neighbors surrounding a specific channel in
Gi, and it can be determined by the channel dimension c. Consequently, for a given channel
dimension c, k can be expressed as

k =

∣∣∣∣ log2(c)
γ

+
o
γ

∣∣∣∣
odd

(6)

The notation |t|odd represents the nearest odd number to t. In this study, we set γ to 2 and o
to 1 in the experiments.
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Figure 2. The architecture of the multi-scale spectral attention. Multi-scale spectral attention employs
an effective channel attention mechanism and softmax operation to obtain feature maps at four scales
at the spectral level, aiming to capture long-range spectral dependencies.
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Figure 3. The architecture of the ECA weight. k0 to k4 denote the neighbors surrounding a certain
channel in Gi, and its adaptive determination is contingent on the mapping of the channel dimension
c, which is calculated according to Formula (7).

Therefore, the multi-scale 2D convolution layers effectively incorporate contextual
information from each scale, thereby enhancing the pixel-level attention within the feature
map. The introduction of long-range spectral attention is seamlessly achieved without alter-
ing the original spectral attention vector. This process culminates in the establishment of a
comprehensive MS-SA vector. The attention weights for the multi-scale spectrum, derived
from the softmax operation, are subsequently applied by element-wise multiplication with
the feature map corresponding to the scale Fi, as formally articulated below:

Xi = Fi ⊙ so f tmax(Yi) i = 1, 2, 3, 4 (7)
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where Yi signifies the attention value derived from Fi. The symbol ⊙ denotes element-wise
multiplication, and Xi denotes the resulting MS-SA feature map.

By employing the spectral–spatial feature extraction module, we investigate the re-
liance on extended spectral ranges in capturing spectral–spatial information across various
scales. However, there are inherent limitations in comprehensively representing global
features. Consequently, we introduce a frequency-domain lightweight Transformer. Its
goal is to improve the extraction of global features, leading to a substantial enhancement in
the representation of spectral–spatial information.

2.2. Frequency-Domain Fused Classification

The research conducted by [39] redefined the challenge of spatial feature extraction
in high-resolution images by framing it as the extraction of spatial frequency-domain
sequences within the domain of natural images. This innovative approach resulted in a
noteworthy reduction in computational complexity. In the context of high-dimensional and
large-scale HSI, the extraction of frequency-domain features emerges as a more effective
strategy in enhancing the representation of global information. Through the utilization
of the FFT, spatial-domain features are transformed into their frequency-domain counter-
parts, facilitating the efficient integration of global information during the self-attention
calculation stage. This advancement not only improves the extraction of global features
but also, in contrast to the original MHSA, significantly reduces the time complexity of the
frequency-domain self-attention from O(N2) to O(N logN).

As illustrated in Figure 1, the feature map obtained through the preceding MS-SA
is partitioned based on the channel dimension. Each channel is treated as a patch, with
each patch p1 ∈ Rw×h×1 being flattened into a token t1 ∈ Rwh×1, where w represents the
width, and h represents the height. Consequently, the feature map produced by MS-SA is
flattened into a token sequence T ∈ Rn×c, where c is the number of tokens. To facilitate
classification, we introduce an additional learnable classification token tclass (denoted as
the number zero), positioned at the sequence’s outset. To preserve positional information, a
position embedding Tpe ∈ Rn×(c+1) is introduced. The input of Tin this frequency-domain
lightweight Transformer is formulated as

Tin = [tclass; T] + Tpe (8)

Following this, the resulting token is fed into the frequency-domain lightweight
Transformer. As illustrated in Figure 4a, this module contains frequency self-attention,
a gated-conv feed-forward network (GCFN) layer, and layer normalization. Frequency
self-attention employs three weight matrices (Wq, Wk, and Wv) for the input Tin. Through a
linear transformation, each token is systematically mapped to three respective learnable
parameter matrices, denoted as the query (Fq), key (Fk), and value (Fv). This process can be
expressed as

Fq = WqTin

Fk = WkTin

Fv = WvTin

(9)

Next, apply the FFT to the features Fq and Fk to compute their correlation in the frequency
domain. This process can be expressed as

A = FFT−1
(

FFT
(

Fq
)
⊙ FFT(Fk)

)
(10)

where FFT−1(·) represents the inverse FFT, and FFT(·) represents the conjugate of FFT.
The notation ⊙ represents element-wise multiplication. Finally, the feature representa-
tion, acquired through the utilization of frequency-domain self-attention, is articulated
as follows:

Yatt = LN(so f tmax(A)⊙ Fv) (11)
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The term LN denotes the linear layer within the network architecture. Figure 4b visually
illustrates the specific structure of the frequency self-attention mechanism.
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Figure 4. (a) The architecture of the frequency-domain lightweight Transformer. (b) Frequency
self-attention. (c) Gated-conv feed-forward network.

In Figure 4c, the specific architecture of the GCFN layer is portrayed. GCFN conducts
non-linear transformations and feature extraction on the attention values received from fre-
quency self-attention, aiming to convert them into a more expressive feature representation.
The GCFN layer employs a gate mechanism to obtain an element-wise dot product of the
attention values from two parallel channels. Both channels utilize a 3 × 3 convolution to
capture spatially adjacent pixel information, effectively extracting local structural details.
The application of ReLU to one channel imparts non-linear characteristics to the GCFN
layer. The expression for the GCFN layer’s output is stated as follows:

GCFN(X) = Conv1×1(Conv3×3(Conv1×1(X)))⊙ ΦR(Conv3×3(Conv1×1(X)))) (12)

where ΦR represents the ReLU non-linear activation function, and Conv3×3 and Conv1×1
represent the 3 × 3 convolution and 1 × 1 convolution, respectively. The details of the
architecture of the frequency-domain lightweight Transformer are described in Table 1.

Table 1. The details of the architecture of the frequency-domain lightweight Transformer.

LayerName Operations Paramaters

Norm Norm dim = 64

Frequency Self-Attention

Linear dim = 64, head = 8
FFT s = 64, dim = (−2, −1), norm = backward
IFFT s = 64, dim = (−2, −1), norm = backward

softmax dim = −1
Linear dim = 64

Norm Norm dim = 64

GCFN
2dConv kernel size = 1, stride = 1, padding = 1
2dConv kernel size = 3, stride = 1, padding = 1
2dConv kernel size = 1, stride = 1, padding = 1
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The frequency-domain lightweight Transformer ensures that the input size Tin matches
the output size Tout. To perform classification, we have generated a dedicated learning
vector for classification, denoted as tclass, which is input into the linear layer to obtain
the final classification result. Using the softmax function, this linear layer computes the
probabilities associated with specific categories based on the input. The assigned category
for a sample corresponds to the label with the highest probability value.

2.3. Network Parameters Learning

MSA-LWFormer employs a multi-label cross-entropy loss function to constrain the
learning of network parameters. This specific loss function calculates the cross-entropy loss
independently for each category and sample and subsequently computes the average loss
across all samples. It enables the assignment of multiple categories to each sample, consid-
ering both positive and negative categories. If we consider N samples, each categorized
into K classes, the expression for the multi-label cross-entropy loss function is outlined
as follows:

Loss = − 1
N

N

∑
i=1

K

∑
j=1

(
yi,j · log(pi,j) + (1 − yi,j) · log(1 − pi,j)

)
(13)

where N denotes the number of samples, K represents the number of categories, yi,j signifies
the actual label of sample i in the category j, and pi,j denotes the predicted probability by the
model for the same sample and category. The terms yi,j · log(pi,j) and (1− yi,j) · log(1− pi,j)
correspond to the loss associated with treating the actual label as a positive and a negative
category, respectively.

The comprehensive procedure of the MSA-LWFormer network is illustrated in
Algorithm 1.

Algorithm 1 MSA-LWFormer Overall Network

Input: HSI data I ∈ Rm×n×l , ground truth Y ∈ Rm×n; patch size s; PCA band number b;
epoch number a; training sample rate µ%.

Output: Predicted labels for the testing phase.
1: Retrieve the Ipca following PCA transformation
2: Partition the sample patches within Ipca into distinct sets for training and testing,

thereby creating datasets for training load and test load.
3: for i from 1 to a do
4: Perform 3D convolution layer.
5: Perform multi-scale 2D convolution layers.
6: Perform MS-SA to obtain the multi-scale spectral attention feature map.
7: Perform lightweight Transformer module.
8: end for
9: Input the feature to the linear layer.

10: Apply softmax function for label identification.
11: The trained model predicts labels for the test dataset.
12: return predicted labels

3. Results
3.1. Dataset Description

The Indian Pines (IP) HSI dataset, collected by the United States Department of
Agriculture (USDA) through the AVIRIS sensor, is situated in the southwestern region of
Indiana, USA. It has a spatial resolution of 20 × 20 m, covers 224 spectral bands, and has
a total pixel count of 21,025. After eliminating noise, which involves removing 24 bands
and 10,776 pixel samples, 200 bands and 10,249 pixel samples are retained for classification
purposes. The detailed distribution of the samples across each category is presented in
Table 2. The false color map image is depicted in Figure 5a, while the ground truth map is
presented in Figure 5b.
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The Pavia University (UP) HSI dataset, affiliated with the University of Pavia, forms a
component of an environmental monitoring initiative for the city of Pavia, Italy, employing
the Reflective Optics System Imaging Spectrometer(ROSIS-3) sensor jointly developed
by Dornier Satellite Systems, the GKSS Research Center and the German Aerospace Cen-
ter. Comprising 115 continuous spectral bands, the dataset retains 103 spectral bands for
classification following the removal of 12 bands affected by noise, as detailed in Table 3.
Encompassing 42,776 pixel samples distributed across nine distinct categories, the false
color map and ground truth map of the dataset are depicted in Figure 6a,b, respectively.

Table 2. The land cover categories in the IP dataset, along with the total number of samples for each
category, are specified, including counts for both training and testing samples.

No. Land Cover Categories Total Training Test

1 Alfalfa 46 5 41
2 Corn-notill 1428 143 1285
3 Corn-mintill 830 83 747
4 Corn 237 24 213
5 Grass-pasture 483 48 435
6 Grass-trees 730 73 657
7 Grass-pasture-mowed 28 3 25
8 Hay-windrowed 478 48 430
9 Oats 20 2 18

10 Soybean-notill 972 97 875
11 Soybean-mintill 2455 245 2210
12 Soybean-clean 593 59 534
13 Wheat 205 20 185
14 Woods 1265 126 1139
15 Buildings-grass-trees-drives 386 39 347
16 Stone-steel-towers 93 9 84

Table 3. The land cover categories in the UP dataset, along with the total number of samples for each
category, are specified, including counts for both training and testing samples.

No. Land Cover Classes Total Training Test

1 Asphalt 6631 332 6299
2 Meadows 18,649 932 17,717
3 Gravel 2099 105 1994
4 Trees 3064 153 2911
5 Painted metal sheets 1345 67 1278
6 Bare soil 5029 251 4778
7 Bitumen 1330 67 1263
8 Self-blocking bricks 3682 184 3498
9 Shadows 947 47 900

Ultimately, the Salinas (SA) HSI dataset was obtained by NASA through the AVIRIS
sensor, capturing imagery of the Salinas Valley region in Central California, USA. The
dataset boasts an image resolution of 3.7 m. As outlined in Table 4, it comprises
54,129 samples categorized into 16 distinct land cover types. Following adjustments, the
dataset is composed of 204 bands available for classification. Figure 7 visually illustrates
the false color representation and ground truth representation of this dataset.
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Table 4. The land cover categories in the SA dataset, along with the total number of samples for each
category, are specified, including counts for both training and testing samples.

No. Land Cover Classes Total Training Test

1 Broccoli-green-weeds_1 2009 223 1786
2 Broccoli-green-weeds_2 3726 366 3360
3 Fallow 1976 187 1789
4 Fallow_rough_plow 1394 145 1249
5 Fallow_smooth 2678 272 2406
6 Stubble 3959 401 3558
7 Celery 3579 362 3217
8 Grapes_untrained 11,271 1138 10,133
9 Soil_vinyard_develop 6203 618 5585
10 Corn_senesced_green_weeds 3278 336 2942
11 Lettuce_romaine_4wk 1068 105 963
12 Lettuce_romaine_5wk 1927 201 1726
13 Lettuce_romaine_6wk 916 103 813
14 Lettuce_romaine_7wk 1070 104 966
15 Vinyard_untrained 7268 741 6527
16 Vinyard_vertical_trellis 1807 179 1628

(a) (b)

Alfalfa
Corn-notill
Corn-mintill
Corn
Grass-pasture
Grass-trees
Grass-pasture-mowed
Hay-windrowed
Oats
Soybean-notill

Soybean-mintill

Soybean-clean
Wheat
Woods
Buildings-Grass-Trees-Drives
Stone-Steel-Towers

Figure 5. IP dataset. (a) False color map. (b) Ground truth map.
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Figure 6. UP dataset. (a) False color map. (b) Ground truth map.
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(a) (b)

Figure 7. SA dataset. (a) False color map. (b) Ground truth map.

3.2. Experimental Configuration

All methods are tested on a server equipped with an NVIDIA GeForce RTX 3090 GPU.
In terms of software, we use the Pycharm compiler on the Windows system, where the
Python version is 3.7.12 and the Pytorch version is 1.10.1. The initial learning rate and
training batch size are set to 0.001 and 64, respectively. The algorithm optimizer is the
Adam optimizer. The training process for each dataset comprises 100 epochs.

3.3. Comparative Experiments

In this research, we utilize three classic HSI datasets for a comprehensive comparative
analysis. The assessment of model performance encompasses four metrics: overall accuracy
(OA), average accuracy (AA), kappa, and the accuracy of classification for individual land
cover categories. We allocate 10% of each dataset for training purposes, reserving 90% for
testing. Our proposed MSA-LWFormer is systematically compared with seven methods,
including the traditional support vector machine (SVM) [9] and the deep learning methods
2D-CNN [30], 3D-CNN [31], HybridSN [32], SSFTT [38], and MDRDNet [34]. Tables 5–7
display the OA, AA, and kappa values for the IP, UP, and SA datasets. SVM depends on
manually extracting spectral–spatial features from HSI and struggles to capture complex
non-linear relationships. This limitation results in a reduction in performance when dealing
with complex datasets. The 2D-CNN focuses on capturing the spatial structure and text
information of HSI and ignores the extraction of spectral information. The 3D-CNN
captures shallow spectral–spatial features but is at a disadvantage when processing complex
information. HybridSN combines a 1D-CNN, 2D-CNN, and 3D-CNN to extract spectral–
spatial features, but ignores the extraction of global features. SSFTT captures high-level
semantic features but does not consider multi-scale feature extraction, which will cause
insufficient feature extraction. MDRDNet considers the multi-scale spectral spatial features
of HSI but does not consider the extraction of cross-channel features. MSA-LWFormer
constructs the long-range spectral dependence of HSI, emphasizes the extraction of multi-
scale and cross-channel features, and enhances the extraction of global information through
the frequency-domain lightweight Transformer.
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Table 5. Comparison of classification accuracy of different methods on the IP dataset (%).

NO. SVM 2D-CNN 3D-CNN HybridSN SSFTT MDRDNet MSA-
LWFormer

1 83.16 48.78 87.80 75.60 95.34 100 100
2 66.73 93.30 93.61 93.30 95.33 96.49 96.90
3 76.25 86.61 97.59 99.46 99.22 100 100
4 80.64 98.59 89.67 86.38 95.45 99.54 100
5 85.89 97.7 99.31 100 97.32 98.87 97.65
6 92.41 99.69 99.08 99.23 98.23 99.70 100
7 52.32 96 100 80 100 100 100
8 59.24 100 100 100 100 100 99.29
9 62.24 100 100 55.55 47.36 72.22 83.33
10 82.73 97.94 95.65 98.17 96.46 98.43 98.25
11 84.47 95.65 97.60 98.32 99.69 99.73 99.77
12 66.11 90.44 91.38 89.32 90.39 94.32 95.98
13 89.68 99.45 98.91 100 97.38 100 100
14 84.87 97.71 99.73 98.94 100 100 99.82
15 82.59 100 92.79 99.71 96.37 99.71 100
16 86.57 98.80 100 98.80 81.39 97.64 95.12

OA (%) 84.12 94.86 96.25 97.06 97.48 98.80 98.87
AA (%) 82.76 95.49 96.71 92.05 96.22 98.63 98.68
Kappa 0.8234 0.9379 0.9644 0.9664 0.9712 0.9729 0.9871

Table 6. Comparison of classification accuracy of different methods on the UP dataset (%).

NO. SVM 2D-CNN 3D-CNN HybridSN SSFTT MDRDNet MSA-
LWFormer

1 92.27 95.44 95.75 98.88 98.38 99.38 100
2 99.82 99.11 99.93 99.87 99.85 100 99.97
3 64.77 72.56 79.69 91.94 96.30 99.10 99.31
4 89.02 92.41 92.77 97.00 94.43 99.21 98.94
5 100 100 100 100 99.62 99.38 100
6 81.46 86.80 94.91 99.56 100 100 100
7 96.81 92.17 96.50 99.14 99.92 100 100
8 93.11 78.68 88.23 96.24 99.02 99.34 99.09
9 79.82 98.50 90.18 99.45 97.84 97.24 99.88

OA (%) 92.89 93.35 95.86 98.74 98.96 99.66 99.79
AA (%) 88.56 90.63 93.11 98.01 98.37 99.29 99.68
Kappa 0.9046 0.9113 0.9448 0.9834 0.9862 0.9956 0.9973

Table 7. Comparison of classification accuracy of different methods on the SA dataset (%).

NO. SVM 2D-CNN 3D-CNN HybridSN SSFTT MDRDNet MSA-
LWFormer

1 100 100 100 100 99.94 100 99.89
2 100 100 100 100 100 100 100
3 99.79 97.95 100 99.69 100 100 100
4 99.71 99.85 99.42 99.63 99.42 99.78 99.92
5 98.56 98.67 97.62 98.86 99.09 99.96 99.59
6 100 100 100 100 99.38 98.97 100
7 99.18 100 99.88 99.66 99.94 99.94 99.88
8 94.04 97.19 98.55 96.68 99.70 99.47 99.98
9 100 100 100 99.86 99.95 100 100
10 97.96 99.96 99.96 98.05 99.90 99.84 99.97
11 97.91 89.30 99.43 98.95 100 99.90 100
12 100 100 96.69 100 99.89 99.63 100
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Table 7. Cont.

NO. SVM 2D-CNN 3D-CNN HybridSN SSFTT MDRDNet MSA-
LWFormer

13 75.74 96.69 67.25 96.03 95.25 99.00 100
14 96.03 85.55 97.63 99.05 99.43 99.81 100
15 85.24 94.03 90.13 91.02 98.40 99.04 100
16 99.10 94.13 98.15 99.44 100 99.77 100

OA(%) 95.95 97.72 97.44 97.74 99.50 99.62 99.96
AA(%) 96.45 97.08 96.54 98.56 99.39 99.69 99.95
Kappa 0.9549 0.9746 0.9714 0.9749 0.9945 0.9958 0.9995

3.3.1. Classification Results of IP

Table 5 offers a thorough summary of the performance demonstrated by the seven
distinct algorithms when applied to the IP dataset. Of particular note is MSA-LWFormer,
the novel algorithm introduced in this study, which demonstrates superior performance
compared to its counterparts. Remarkably, MSA-LWFormer attains notable classification
accuracy, achieving OA of 98.87% and AA of 98.68%. MSA-LWFormer surpasses its nearest
competitor by 0.07% in OA and surpasses the best AA score by 0.05%.

These notable improvements in the classification metrics underscore the remarkable ef-
ficacy of MSA-LWFormer. A visual representation of the IP dataset’s classification outcomes
is illustrated in Figure 8.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Classification maps for the IP dataset under seven methods. (a) Ground truth, (b) SVM,
(c) 2D-CNN, (d) 3D-CNN, (e) HybridSN, (f) SSFTT, (g) MDRDNet, (h) MSA-LWFormer.

3.3.2. Classification Results of UP

In Table 6, the results of a comparative experiment are displayed, showcasing the
application of the seven methods on the UP dataset. Consistently surpassing the alternative
methods, MSA-LWFormer attains superior classification accuracy, achieving the highest
scores in OA, AA, and kappa. It is noteworthy that MSA-LWFormer achieves OA of 99.66%
and AA of 99.68%, surpassing the second-best performance by 0.7% and 0.39%, respectively.

Figure 9 shows the classification map of the seven methods on the UP dataset. Upon
initial examination, the traditional SVM method demonstrates sensitivity to substantial
speckle noise, resulting in OA and AA values of only 92.89% and 88.56%, respectively. The
observed performance can be attributed to the limitations of SVM, specifically focusing on
the spectral characteristics of individual pixels while neglecting the spatial dependencies
among pixels.
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In contrast, techniques based on deep learning proficiently harness both spectral and
spatial features, leading to substantial enhancements in classification outcomes. Nonethe-
less, certain approaches like the 2D-CNN, 3D-CNN, and HybridSN encounter challenges
related to misclassification, arising from the inadequate extraction of spectral–spatial fea-
tures. In contrast, MSA-LWFormer exhibits precise classification outcomes, achieving
optimal results in OA, AA, and kappa.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Classification maps for the UP dataset under seven methods. (a) Ground truth, (b) SVM,
(c) 2D-CNN, (d) 3D-CNN, (e) HybridSN, (f) SSFTT, (g) MDRDNet, (h) MSA-LWFormer.

3.3.3. Classification Results of SA

The performance metrics for the SA dataset, as obtained by the seven different meth-
ods, are presented in Table 7. It is noteworthy that the SA dataset has a larger overall
sample size compared to the IP and UP datasets, resulting in a larger number of training
labels for each category. This inherent characteristic contributes to a comparatively higher
level of classification accuracy.

MSA-LWFormer attains 100% classification accuracy across the 10 sample classes
in the SA dataset, demonstrating outstanding results with accuracy rates of 99.96% for
OA and 99.95% for AA. For improved visualization, Figure 10 illustrates the classifi-
cation outcomes derived from the SA dataset, highlighting the evident excellence in
MSA-LWFormer’s performance.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Classification maps for the SA dataset under seven methods. (a) Ground truth, (b) SVM,
(c) 2D-CNN, (d) 3D-CNN, (e) HybridSN, (f) SSFTT, (g) MDRDNet, (h) MSA-LWFormer.

3.3.4. Experimental Results of Several Methods Using Varied Ratios of Training Samples

Figure 11 illustrates the classification accuracy of each approach across varying pro-
portions of training samples. Labeled samples, constituting 1%, 3%, 5%, 7%, and 10% of the
total samples, are chosen for training on the IP, UP, and SA datasets. The distinction in clas-
sification performance among different methods diminishes progressively with an increase
in the number of training samples. Remarkably, our approach consistently demonstrates
commendable performance, even when confronted with a limited sample size.
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Figure 11. OA of different methods when using different ratios of training samples. (a) IP dataset.
(b) UP dataset. (c) SA dataset.
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4. Discussion
4.1. Ablation Experiment
4.1.1. Ablation Experiment Results of MSA-LWFormer on the UP Dataset

To thoroughly showcase the effectiveness of the proposed methodology, we performed
ablation experiments on the UP dataset by testing different combinations of distinct com-
ponents. Six specific combinations were systematically designed, and their impact on
MSA-LWFormer was analyzed concerning the classification accuracy. The experimental
outcomes are meticulously detailed and presented in Table 8. In particular, the overall
model was deconstructed into four components, namely the 3D convolution layer (3D
Conv), multi-scale 2D convolution layers (2D Conv), MS-SA, and a Transformer encoder
based on frequency-domain attention (FDATE).

As presented in Table 8, the model without a multi-scale 2D convolution layer exhib-
ited the lowest classification accuracy. In the absence of MS-SA, the model outperformed
the second scenario. Specifically, in the first case, accuracy of 94.21% was achieved. In the
fifth case, where two convolution layers were omitted to maintain a lightweight frequency
attention Transformer and MS-SA, the classification accuracy reached 97.21%. While this
performance is noteworthy, it is slightly inferior to that of our proposed method. The fifth
case yielded classification accuracy of 90.88% for spectral–spatial features, obtained solely
through two convolution layers. This underscores the significance of feature processing by
the MSSA and FDATE modules in enhancing the performance. In conclusion, a thorough
examination of the collective experimental results provides additional support for the
effectiveness of our model.

Table 8. Ablation experiment results of MSA-LWFormer on the UP dataset.

Datasets Case
Component Indicator

3D Conv 2D Conv MS-SA FDATE OA (%) AA (%) Kappa

UP

case1 ✗ ✓ ✓ ✓ 92.88 90.77 0.9121
case2 ✓ ✗ ✓ ✓ 97.21 94.51 0.9538
case3 ✓ ✓ ✗ ✓ 94.21 92.72 0.9308
case4 ✓ ✓ ✓ ✗ 90.66 91.11 0.9021
case5 ✗ ✗ ✓ ✓ 88.68 89.72 0.8866
case6 ✓ ✓ ✓ ✓ 99.79 99.68 0.9973

4.1.2. Ablation Experiment Results for Transformer on the SA Dataset

We performed an additional ablation experiment on the Transformer encoder us-
ing a 10% sampling rate with the SA dataset. As illustrated in Table 9, the lightweight
frequency-domain self-attention Transformer (Light-Transformer) achieves superior clas-
sification accuracy when compared to both the multi-head self-attention Transformer
(MSA-Transformer) and the original softmax classifier. Additionally, in the testing phase,
the Light-Transformer demonstrates the shortest running time. It is worth noting that
optimal results were attained in terms of floating-point calculations/s (FLOPs) and param-
eter numbers. This outcome substantiates the claim that the Light-Transformer effectively
mitigates the time complexity of the network.

Table 9. Ablation experiment results for Transformer on the SA dataset.

Methods
Accuracy Indicator Efficiency Indicator

OA (%) AA (%) Kappa Test Time (s) Parameters (MB) FLOPs (MB)

Softmax 98.91 99.07 0.9887 9.89 0.342773 1892.97
MSA-Transformer 99.72 99.63 0.9971 10.66 0.328125 1870.95
Light-Transformer 99.96 99.95 0.9995 9.48 0.310546 1841.97
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4.2. Time Complexity and Parameter Count Analysis

In this section, we present a comparative analysis of the parameter quantities and test
times for various innovative methods on the IP dataset. As depicted in Table 10, HybridSN
incorporates multiple 3D convolutions, resulting in the highest parameter count and longest
testing time. MDRDNet utilizes 3D depthwise separable convolutions, leading to a reduced
time and parameter volume compared to HybridSN. SSFTT adopts a Transformer structure
to alleviate the computational load. Our proposed MSA-LWFormer integrates the FFT into
the Transformer structure, thereby achieving not only the shortest testing time but also the
smallest parameter count.

Table 10. Test time (s) and parameters (MB) of several methods on the IP dataset.

Methods Test Time (s) Parameters (MB)

HybridSN 7.93 12.59
SSFTT 5.99 0.93

MDRDNet 7.12 1.92
MSA-LWFormer 5.81 0.86

4.3. Optimal Hyperparameters for MSA-LWFormer

To ascertain the optimal hyperparameters for the model, MSA-LWFormer underwent
training on three publicly available datasets. Parameters including, but not limited to, the
learning rate, batch size, training sample ratio, number of principal component analysis
components, 3D convolution kernel size, and multi-scale 2D convolution kernel size were
systematically varied and evaluated. The influence of these hyperparameters on the
ultimate classification outcome was thoroughly examined.

4.3.1. Influence of Different Learning Rates

In the course of this investigation, the optimization of the model was executed uti-
lizing the Adam optimizer, with a prescribed learning rate range comprising values of
0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, and 0.0001. Figure 12 reveals that the optimal per-
formance was achieved by the MSA-LWFormer architecture when the learning rate was
configured at 0.001, particularly when applied to the three distinct hyperspectral datasets
under consideration.
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Figure 12. Influence of learning rate on classification accuracy. (a) IP dataset. (b) UP dataset.
(c) SA dataset.

4.3.2. Influence of Different Patch Sizes

Figure 13 visually depicts the impact of the patch size on the classification accuracy
across the three datasets. We examined patch sizes of 9, 11, 13, 15, and 17. The three
subfigures reveal that the optimal classification results were consistently achieved at a
patch size of 13 for all three datasets.
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Figure 13. Influence of patch size on classification accuracy. (a) IP dataset. (b) UP dataset.
(c) SA dataset.

4.3.3. Influence of the Number of Principal Components

The extensive continuous spectral range of HSI presents a classification challenge. In
addressing this issue, MSA-LWFormer utilizes PCA on the initial HSI to reduce the dimen-
sionality. We performed experiments using different numbers of principal components,
namely 20, 25, 30, 35, and 40. As depicted in Figure 14, the optimal number of principal
components for the IP, UP, and SA datasets was consistently determined to be 30.

20 25 30 35 40
Principal Component Numbers

95.0

95.5

96.0

96.5

97.0

97.5

98.0

Ac
cu

ra
cy

(%
)

OA
AA
Kappa

(a)

20 25 30 35 40
Principal Component Numbers

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

Ac
cu

ra
cy

(%
)

OA
AA
Kappa

(b)

20 25 30 35 40
Principal Component Numbers

98.00

98.25

98.50

98.75

99.00

99.25

99.50

99.75

100.00

Ac
cu

ra
cy

(%
)

OA
AA
Kappa

(c)

Figure 14. Influence of number of principal components on classification accuracy. (a) IP dataset.
(b) UP dataset. (c) SA dataset.

4.3.4. Influence of 3D Convolution Kernel Number

The impact of varying the number of 3D convolution kernels on the OA, AA, and
kappa is elucidated through the bar charts presented in Figure 15. Analyzing the IP dataset
reveals a reduction in classification accuracy with an increasing number of 3D Convolution
kernels, reaching its maximum at eight kernels. Similarly, for the UP dataset, the optimal
configuration is attained with eight 3D kernels. Conversely, in the SA dataset, superior
results are obtained when the quantity of 3D kernels is set to 24.
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Figure 15. Influence of 3D convolution kernel number on classification accuracy. (a) IP dataset. (b) UP
dataset. (c) SA dataset.

4.3.5. Influence of Multi-Scale 2D Convolution Kernel Size

Multi-scale 2D convolution employs four convolution kernels with varying sizes. The
selection of the optimal kernel size plays a crucial role in influencing both the classification
performance and computational complexity of the method. To examine the influence of
different 2D convolution kernel sizes on the classification accuracy of MSA-LWFormer, we
explored specific configurations, namely {{1, 3, 5, 7}, {2, 4, 6, 8}, {3, 5, 7, 9}, {4, 6, 8, 10}, and
{5, 7, 9, 11}}. The corresponding results are presented in Figure 16.
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Figure 16. Influence of multi-scale 2D convolution kernel size on classification accuracy. (a) IP dataset.
(b) UP dataset. (c) SA dataset.

The analysis of the IP dataset depicted in Figure 16 reveals that convolution kernel
sizes of {4, 6, 8, 10} yield excellent accuracy across three standard metrics. In contrast, for the
UP and SA datasets, the convolution kernel sizes {3, 5, 7, 9} exhibit superior performance.
Consequently, we identify the optimal convolution kernel sizes for the three benchmark
datasets as {4, 6, 8, 10}, {3, 5, 7, 9}, and {3, 5, 7, 9}, respectively.

5. Conclusions

This article presents a new approach known as MSA-LWFormer, designed to improve
the efficacy of HSI classification. The technique incorporates a spectral–spatial feature
extraction module, extracting shallow spectral–spatial features and establishing the long-
range spectral dependence within HSI. The module contains 3D convolution layers, a
multi-scale 2D-CNN, and MS-SA to integrate cross-channel and multi-scale features. In
addition, a frequency-domain lightweight Transformer applies the FFT to convert features
from the spatial domain to the frequency domain, effectively extracting global information
and significantly reducing the time complexity of the network. Experiments on three classic
HSI datasets demonstrate that MSA-LWFormer yields outstanding classification results.
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While our proposed framework shows promise, there exists potential for further refinement.
In future research endeavors, building upon MSA-LWFormer, we aim to integrate LIDAR
data with HSI, thereby advancing the classification accuracy. Additionally, we intend to
explore techniques such as transfer learning to bolster the network’s accuracy when dealing
with small sample sizes.
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