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Abstract: The use of Machine Learning (ML) models as predictive tools has increased dramatically
in recent years. However, data-driven systems (such as ML models) exhibit a degree of uncertainty
in their predictions. In other words, they could produce unexpectedly erroneous predictions if the
uncertainty stemming from the data, choice of model and model parameters is not taken into account.
In this paper, we introduce a novel method for quantifying the uncertainty of the performance
levels attained by ML classifiers. In particular, we investigate and characterize the uncertainty of
model accuracy when classifying out-of-distribution data that are statistically dissimilar from the
data employed during training. A main element of this novel Uncertainty Quantification (UQ)
method is a measure of the dissimilarity between two datasets. We introduce an innovative family
of data dissimilarity measures based on anomaly detection algorithms, namely the Anomaly-based
Dataset Dissimilarity (ADD) measures. These dissimilarity measures process feature representations
that are derived from the activation values of neural networks when supplied with dataset items.
The proposed UQ method for classification performance employs these dissimilarity measures to
estimate the classifier accuracy for unseen, out-of-distribution datasets, and to give an uncertainty
band for those estimates. A numerical analysis of the efficacy of the UQ method is conducted
using standard Artificial Neural Network (ANN) classifiers and public domain datasets. The results
obtained generally demonstrate that the amplitude of the uncertainty band associated with the
estimated accuracy values tends to increase as the data dissimilarity measure increases. Overall, this
research contributes to the verification and run-time performance prediction of systems composed of
ML-based elements.

Keywords: uncertainty quantification; artificial neural networks; machine learning; image classification;
performance prediction; anomaly detection; data dissimilarity measures

1. Introduction

Autonomous systems (AS) make use of a suite of algorithms in order to understand the
environment in which they are deployed and make independent decisions. In recent years,
the ability of AS to gain situational awareness has been boosted by significant improvements
in the performance of Machine Learning (ML) algorithms. Artificial Neural Networks
(ANN ) are a class of ML algorithms that are typically employed to solve one or more
classic problems, such as classification or regression. The decision boundaries generated
by such networks are highly non-linear, and the choice of data used to prepare and test
a network can have a dramatic impact on performance. These factors could influence
automated decisions in a way that might compromise the safety of people interacting with
the system. Therefore, it is vital to establish that ANN algorithms operating within an AS
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are trustworthy. There are a number of requirements which must be met by an ANN for it
to be deemed trustworthy, and those requirements must be subject to verification. One such
requirement is that the uncertainty of ANN outputs should be quantified. There is also a
need to quantify the uncertainty of information generated when monitoring ANN operation
at run-time, such as when making predictions of algorithm behavioral performance.

The popularity of Machine Learning (ML) models has been steadily increasing in
recent years due to their effectiveness, flexibility, applicability, and the machine-speed
acceleration they provide for decision-making processes [1,2]. However, according to [3],
one of the challenges posed by these models is that their outputs will exhibit uncertainty.
In other words, even a well-trained ML-based model can produce unexpectedly erroneous
predictions if the uncertainty associated with both data and model parameters is not taken
into account. Incorrect predictions might hinder users’ confidence in a model, thus affecting
its applicability in practice [4]. Due to the stochastic nature of environmental systems,
uncertainty can be minimized but not completely eliminated in real-world applications [3].
The goal of Uncertainty Quantification (UQ) is to capture this uncertainty in terms of
probability distributions [5,6].

The accuracy of ML models tends to fall when used on data that are statistically differ-
ent from their training data [4,7]. The term in-distribution is used to describe data which
are drawn from the training data-generating distribution (i.e., the probability distribution
from which training samples are drawn); out-of-distribution data are not drawn from the
training data-generating distribution. Mathematically, when an ML-based model is suc-
cessfully trained on a given dataset, the model is expected to produce accurate predictions
for unseen, in-distribution test data. Conversely, the accuracy of the model is expected
to fall when processing data instances drawn from out-of-distribution test data. This is
of practical importance since it will often be the case that when ML models are deployed
within real-world AS, they will receive out-of-distribution data during operation.

In this paper, we assume that a shift between training and test data-generating distri-
butions is a source of ML model uncertainty. Thus, our aim is to introduce a UQ method
based on the idea of first quantifying the statistical divergence between a training and a test
distribution (or dataset), and secondly using this information to estimate the expected level
of performance (e.g., output accuracy) of an ML-based model. In addition, we estimate the
uncertainty interval associated with this point estimation of performance.

Here, we propose and elaborate on the following novel methods and measures:

e  An Uncertainty Quantification (UQ) method aimed at predicting the level at which
an ML model will perform, and the uncertainty associated with such a performance
prediction, using data dissimilarity measures;

e Anovel family of data dissimilarity measures based on anomaly detection algorithms,
which are computed from the features represented by ANN activation values.

An experimental analysis of the UQ method introduced above, and the related family
of dissimilarity measures, is conducted using public domain datasets and established ANN
architectures.

This paper is organized as follows. Section 2 introduces the materials and methods
employed in this work. More specifically, Section 2.1 describes how UQ methods have been
used within ML applications, and provides a brief review of prominent performance and
data dissimilarity measures that have been proposed in the literature. Section 2.2 introduces
a UQ method for predicting the level of performance and the corresponding uncertainty
of an ML-based model using measures of data dissimilarity. Section 2.3 describes a novel
family of data dissimilarity measures, the Anomaly-based Dataset Dissimilarity (ADD)
measures, where anomaly scores are employed to quantify the degree of discrepancy
between two datasets of interest. Section 2.4 describes the experimental setting employed
to perform a numerical analysis of our proposed UQ method and ADD measures operating
on public domain data. The results of this numerical analysis are provided in Section 3.
Finally, some observations are made and conclusions drawn in Section 4.
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For completeness, we conclude Section 1 by specifying that this work is an extension
of our conference paper [8].

2. Materials and Methods

In this section, we provide information about the datasets, ML models and algorithms
used in this work. In Section 2.1, we provide a review of the relevant literature, which
includes Uncertainty Quantification (UQ) methods for ML models, measures of ML perfor-
mance, and measures of dataset dissimilarity. In Section 2.2, we introduce a UQ method
for ML performance prediction based on dataset dissimilarity measures. In Section 2.3,
we describe a novel family of dataset dissimilarity measures based on anomaly detection
algorithms, which we refer to as Anomaly-based Dataset Dissimilarity (ADD) measures. In
Section 2.4, details about the datasets and ML models employed in this work are given.

2.1. Related Work

The interest of the ML community in UQ methods is confirmed by the fact that, accord-
ing to [6], more than 2500 papers addressing the use of UQ in ML were produced between
2010 and 2021. The literature refers to a broad variety of applications including computer
vision and image processing [9-13]; medical studies [14,15]; weather forecasting [3,16,17];
and natural language processing and text mining [18,19]. UQ methods have been de-
veloped for supervised learning [20], unsupervised learning [21,22] and reinforcement
learning [23,24]. Prominent subjects in the UQ literature include: (i) Bayesian approaches,
which aim to learn the relationship between ML model inputs and ML model outputs
in terms of a conditional probability distribution, but require assumptions on the prior
distribution [6,9,10]; and (ii) ML calibration, which aims to provide confidence scores for
ML model predictions that correspond to the actual probability of correctness of these pre-
dictions, but often involves further, potentially computationally expensive, transformations
of the ML model outputs [25,26]. In this paper, we propose a novel UQ method based on
data dissimilarity measures.

2.1.1. Measures of ML Performance

ML algorithm performance measures have been extensively investigated in the litera-
ture, and their definition depends on the particular type of problem addressed. In other
words, different measures might be needed for different tasks. For instance, examples
of performance metrics for classification problems include accuracy, balanced accuracy,
precision, recall, F1 score and confusion matrices [27,28]. The Mean Absolute Error (MAE),
Mean Squared Error (MSE) and Root-Mean-Square Error (RMSE) [27,29] are examples of
performance measures which are widely used for regression problems.

2.1.2. Measures of Dataset Dissimilarity

A brief overview of established data dissimilarity measures that have been proposed
in the literature is provided below.

A number of statistical measures that were originally developed to quantify the simi-
larity between probability distributions can be used to quantify the divergence between
data-generating distributions. Examples of such statistical measures include the Hellinger
distance, Bhattacharyya distance, Mahalanobis distance, and the Kullback-Leibler diver-
gence [30,31]. However, they present challenges when characterizing distributions in
high-dimensional spaces [30]. Another popular example of a statistical measure is the
Maximum Mean Discrepancy (MMD) [32], which quantifies the distance between two
distributions by representing them as elements of a Reproducing Kernel Hilbert Space.

A confidence score based on generative models that is interpretable as a measure
of data dissimilarity has been introduced in [33]. The authors argue that the pre-trained
features of a discriminative softmax classifier can be fitted well by a class-conditional
generative Gaussian distribution, which can then be employed to calculate confidence
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scores for test data instances. In addition, as shown in [33], these confidence scores can be
used to detect abnormal test data instances, such as out-of-distribution ones.

A surprise-based data distance is proposed in [34] and used to develop an adequacy
criterion for testing ML-based models. The general approach is to quantify how surprising
a test input is in relation to a trained ML-based model. In this context, a greater degree of
surprise is associated with a test data item that is more dissimilar from the training samples,
and consequently more likely to produce prediction errors.

Finally, we note that further data dissimilarity measures computed on suitably selected
feature spaces have been proposed, where the choice of these features depends on the
particular application addressed [20,35,36]. For example, the fractional Neuron Region
Distance (fNRD) proposed in [35] is computed in terms of activation values of an Artificial
Neural Network (ANN) into which the data of interest have been fed as input. Additional
dissimilarity distances based on features extracted from imagery and represented within
Convolutional Neural Networks (CNNs) and Siamese Networks [37,38] are introduced
in [39,40].

2.1.3. Relationship between Dataset Dissimilarity Measures and Anomaly
Detection Algorithms

The task of computing data dissimilarity measures is related to that of recognizing
sample outliers or anomalies. An anomaly can be defined as a data instance that does
not conform to a well-defined notion of normal behavior [41] or, more intuitively, that
deviates so much from other available observations as to arouse suspicion that it has
been generated by a different mechanism [42]. Several anomaly scores which quantify the
degree of outlierness of an instance with respect to a reference set have been proposed
in the literature [43—46]. These scores can be employed to define novel data dissimilarity
measures, and we will explore this possibility more extensively in Section 2.3.

Examples of algorithms which output anomaly scores include the Empirical Cumu-
lative distribution functions for Outlier Detection (ECOD) [44], the Simple univariate
Probabilistic Anomaly Detector (SPAD) algorithm [45], and the Histogram-Based Outlier
Score (HBOS) algorithm [46]. A brief description of the latter now follows.

HBOS is a histogram-based anomaly detection algorithm with high computational
efficiency whose goal is to assign a score to a given test input x (e.g., an image). This score
provides information as to the probability that this input is an outlier with respect to a
reference set. Suppose we have a reference dataset (e.g., a training dataset) whose samples
are represented in terms of d features. For each data feature, a normalized, univariate
histogram HG;, i = 1,...d, is constructed for all instances in the training dataset. Next,
given a test input x, we extract the corresponding d feature values. Then, for each histogram
HG;, we find the bin b; in which the i-th feature value falls. The notation hist;(x) is used
to indicate the height of the bin b; within HG;. Finally, a score s(x) is assigned to the test
point x according to Equation (1) as follows:

s(x) = iélog(@) 1

2.2. A UQ Method for Model Performance Prediction Based on Data Dissimilarity Measures

In this section, we outline a UQ method aimed at predicting the performance of
an ML-based model using data dissimilarity measures. The UQ method also returns
an estimate of the uncertainty interval associated with a performance prediction. The
proposed UQ method is an extension of the technique discussed in [7,47], where the authors
introduce the idea of studying the relationship between ANN classifier performance and
data dissimilarity in the context of ML verification. The degree of shift is to be gauged
by data dissimilarity measures. Verification might be undertaken in practice by recording
classifier accuracy at design time for a series of test datasets, which are designed or selected
to return progressively increasing dissimilarity values when compared to the training
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dataset. This enables a performance—dissimilarity relationship to be established and then
verified against robustness requirements. Moreover, they suggest using the following
process for run-time performance prediction and verification. Upon receipt of an unseen
operational dataset, calculate its dissimilarity from the training dataset. Then, employ this
measurement in combination with the performance-dissimilarity relationship observed at
design time in order to make a prediction of the expected level of accuracy of the classifier
for the operational run-time dataset.

Here, we complement the technique introduced in [7] by adding performance estima-
tion uncertainty. Specifically, we assume that the relationship between model performance
and input data dissimilarity is statistical in nature and, as observed in [7], decreasing. We
can therefore characterize this relationship in terms of an expected trend and an uncertainty
band, shown as a solid-lined orange curve and by dashed orange curves in Figure 1, respec-
tively. In line with [7], this plot would be empirically determined using (data dissimilarity,
performance) measurement pairs generated from a series of available test datasets. In
Figure 1, these empirical pairs are illustrated as blue circles.

Performance 4
Ap* p* .............................. * [}
®
_____________________________________________ e o
° ®
e ® ®
° L I
°.°
e ©®
®
d* Data Dissimilarity
Measure

Figure 1. An illustrative, statistical relationship between model performance and input data dissimilarity.

Figure 1 can also be used to show how performance can be predicted having empir-
ically established a relationship between data dissimilarity and performance. Suppose
we are given an unseen operational dataset whose data dissimilarity from the model
training dataset is measured as d* (see Figure 1). Then, reference to the pre-established
performance-dissimilarity relationship enables not only a determination of the performance
point estimate p* for the operational dataset, but also of its uncertainty interval Ap*.

To summarize, we first establish a statistical relationship between measures of ML
performance and measures of dataset dissimilarity to characterize the behavior of an
ANN model of interest in the presence of data shift. Then, we use this relationship to
predict the expected performance level, and the corresponding uncertainty, that would be
achieved by the model when operating on unseen data. Therefore, the method provides
information about the performance (e.g., accuracy) of the model when processing out-of-
distribution data, and quantifies the confidence with which it can be applied to the problem
under consideration.

It should be noted that our proposed UQ method is not only limited to ANN classifiers
but can also be applied to ML-based models more broadly. This is because the proposed
UQ method requires only two key elements: (i) a measure of model performance, and
(ii) a measure of dataset dissimilarity. In other words, any application that allows for
the definition of a performance metric and a data dissimilarity measure could potentially
benefit from this UQ method. However, we recognize that the selection of these measures
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is problem specific, and would need to take into account the particular requirements of the
application considered.

2.3. Anomaly-Based Dataset Dissimilarity (ADD) Measures
2.3.1. Description of ADD Measures

Here, we introduce a novel family of data dissimilarity measures based on anomaly
detection algorithms which we refer to as Anomaly-based Dataset Dissimilarity (ADD)
measures. Given two datasets of interest, D51 and Dy,gp0, our goal is to quantify their
statistical dissimilarity via a suitably defined measure d(Dyest1, Diest2). As anticipated in
Section 1, this measure will be formulated so that it returns an indication of the divergence
between the data-generating distributions associated with the datasets being compared.
The steps that comprise an ADD computation are given below.

First, we determine a secondary representation of the two datasets by projecting
them from their primary, raw form onto a suitably chosen feature space. Then, in the
latter feature space, we characterize each dataset with respect to a third, reference dataset,
which has also been projected onto the feature space. This operation employs anomaly
detection algorithms to compute the degree to which the data instances of Djs; and
D52 are anomalous with respect to the reference dataset. In other words, the reference
dataset is used to define a notion of data normality for the purpose of calculating anomaly
scores. Finally, the anomaly scores computed for all dataset instances are used to calculate
a measure of the data dissimilarity between Dyyg1 and Dyestn, i-€., d(Dtest1, Diyest2 ). The
data dissimilarity measure therefore reflects the differences between the anomaly scores
computed for Dj,1 and those computed for Dyegpo.

For the purpose of generality, in the steps outlined above, we have deliberately not
specified how to derive secondary data representations and which anomaly detection
algorithms to use. This highlights the flexibility of our proposed measures as it allows
for the definition of ADD variants by selecting different feature extraction methods and
diverse anomaly detection algorithms. In this respect, our proposed measures constitute a
family of data dissimilarity measures, such that specific ADD variants could be defined
taking into account the characteristics and requirements of a given task.

In the sections below, we describe a feature extraction process based on ANN activation
values, and a computation of anomaly scores based on the HBOS algorithm. The HBOS
algorithm is selected because it is numerically efficient and applicable to high-dimensional
feature spaces.

2.3.2. Feature Extraction Process

The selection of a suitable secondary data representation should take into account
multiple factors and is generally dependent on the properties of relevant datasets. In
other words, different types of data (e.g., images, text, radar measurements) could benefit
from different feature descriptions. Furthermore, computational constraints might impose
limitations on the employability of expensive representations, and the nature of the problem
addressed might require additional considerations such as data anonymization due to
privacy-related requirements.

A specific two-step feature extraction process is selected for experimentation in
this study:

(i) Araw datasetis fed to a CNN, i.e., a chosen ANN. The activation values output by a
fixed subset of CNN neurons are recorded for each data instance. Each data instance is
thus effectively mapped to a feature vector, each of whose components corresponds to
the activation value output by a given neuron. This is an intermediate representation
of the raw dataset;

(ii) A transformation is applied to the aforementioned feature vectors to determine a
further feature vector representation. This is the secondary representation of the raw
dataset.
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More precisely, we use a reference set Dy, to train a selected CNN to which the
instances of Dy,g1 and Dy,sp are then fed as inputs. A subset of Ny, neurons of this CNN
is selected, whose output activation values are used to compute an intermediate feature
representation of Dy,s¢1 and Dyesn. Looking ahead to our experiments, we define the subset
to be the penultimate layer of the chosen CNN, and set Ny, to be equal to the number of
neurons in this penultimate layer. This means that for each data instance x of the datasets
being compared, we determine its corresponding activation trace A(x) € RNwr as a vector
whose components are the activation values of the Ny, selected neurons. Next, we employ
a projection mechanism (i.e., a vector-to-vector transformation) that maps the activation
traces to a final feature vector representation.

In this work, we define and compare the projection mechanisms specified below.

Projection Mechanism 0 (PMO): represents an identity mapping. Mathematically,
PMO : RNweu — RNmew | where a generic dataset instance x is transformed to a final repre-
sentation given by the feature vector Ay;(x) = A(x). In other words, data dissimilarity
measures are directly computed in a feature space defined by neuron activation values.

Projection Mechanism 1 (PM1): final features are defined by multiplying a fixed num-
ber of CNN activation values randomly chosen from the neuron subset. Mathematically,
PM1 : RNwew RNP””, Npm1 < Nneu, such that a generic input x is assigned a final rep-

resentation given by the feature vector A,;1(x) € RNvm, where each vector component

A;]gﬂ (x), j = 1,..., Npm, is the product of three randomly selected components of the

activation trace A(x).

Projection Mechanism 2 (PM2): defines a final representation by applying a Principal
Component Analysis to the set of activation traces generated by the data instances in Dy,
That is, the principal directions (i.e., components) of the activation traces associated with Dy,
are first calculated and subsequently used to define a feature space onto which the instances
of Dyegs1 and Dy, are projected. Mathematically, PM2 : RNnew —y RNpm2, Npmz < Npeu- The
final representation is thus a feature vector comprising the projections of A(x) onto the
first N2 principal components. The selection of the dimensionality of the new feature
space, comprising Ny, principal components, is made on the basis that at least 90% of the
variance of the training activation traces is retained.

Projection Mechanism 3 (PM3): represents a variation of PM2. Mathematically,
PM3 : RNweuw _y RNwms, Npm3 < Npeu. Here, test dataset instances are projected onto a fea-
ture space defined by lower order principal components of the training activation traces, i.e.,
those principal components associated with lower variance. Specifically, for a given dataset
instance x, only the last N3 principal components of the Ny, computed as described for
PM2 are employed to define the final representation of x, with Np;3 < Npp2.

We have defined the above mappings in order to overcome some of the known limita-
tions of the anomaly detection algorithm that has been adopted for the ADD computation.
PMO is formulated for benchmarking purposes. PM1 is introduced in response to the
observations discussed in [45], according to which the hypothesis of feature independence
used to justify several anomaly detection algorithms will not always hold; consequently,
more effective outlier detection would require feature interdependence to be taken into
account. PM2 is investigated for the following reasons:

e  Principal component analysis accounts for linear interdependencies between the
variables corresponding to CNN neuron activation values;

e PCA analysis leads to a dimensionality reduction of the A(x) feature vector (i.e., data
compression) which, in turn, lowers the computational costs of the subsequently
applied HBOS algorithm.

PM3 is a variation of PM2 motivated by the following observation. If the variance of
the values generated by projecting training activation traces onto a principal component is
low, it might be more likely that anomalies will be detected in that direction when projecting
test activation traces.
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In summary, the above projection mechanisms define four distinct feature spaces in
which anomaly scores can be computed. This leads to four distinct ADD measures, which
will be evaluated and compared in Section 3.

2.3.3. Anomaly Scores

We employ the HBOS algorithm [46] to assign an anomaly score to each data instance in
Dtest1 and Dygpp using Dy, as a reference set. As described in Section 2.3.1, this operation
is performed within a secondary feature space defined through the projection mechanisms

described in Section 2.3.2. We denote by {s"!(x;) }?ﬁef‘” the anomaly scores associated

. . NES 4
with the Njes1 data instances of Deg1, and by {s™2(x;) } .4 those corresponding to the
Niesio data instances of Dyegpo.

2.3.4. Anomaly-Based Dataset Dissimilarity—Formula

A formula is now given which converts the anomaly scores calculated for the data in-
stances in Dy,sy1 and Dy, into a final dissimilarity value d(Dyest1, Drest2 ) A histogram H psp1

is constructed to represent the distribution of the anomaly scores {1 (x;) }i:“f” associated

. . . . N@S
with Dyeg1; similarly, the histogram Hi,qp represents the anomaly scores {52 (x;) } 4"

associated with Dy,s. Histogram bins b are specified so that they cover the full range of
HBOS scores generated for the datasets, with the bins being common to both histograms.
Dynamic histogram bins are employed following [46]. Thereafter, the degree of overlap
between these two histograms is calculated, where a greater degree of overlap indicates a
lower dissimilarity. The overlap computation is used to quantify the dissimilarity between
the datasets being compared by means of the following formula:

Yp in(Hpesp1 (b), Hiesr2 (b))
Yo Hiest1(b)

where the sums are computed over all histogram bins, and Hes¢ (b) returns the normalized
frequency that a histogram H.s: records for a particular bin b. The absence of any overlap
between H 541 and Hyesio results in the right, fractional term of Equation (2) returning 0; if
Hiest1 and Hyespo are identical, the right term returns 1. Thus, it follows that d(Dyest1, Drest2)
is defined within the range [0, 1]. Furthermore, the greater the statistical dissimilarity
between Dy,s1 and Dy,s2, the greater the value of the measure.

d(Dyest1, Diestz) =1 —

()

2.4. Materials and Experimental Setting
2.4.1. Datasets

To assess the performance of our proposed data dissimilarity measures, we employ two
public domain datasets: MNIST [48] and CIFAR-10 [49]. The MNIST dataset is randomly
split into three subsets, as follows:

e A training set D{\r/%f ST

e Avalidation set D%ZN IST comprising 9000 images;
e A testset DMNIST comprising 10,000 images.

test
The training set D%%I ST

Section 2.3. The validation set

DMNIST j5 used to evaluate the performance of trained networks on unseen data.

Similarly, we randomly split the CIFAR-10 dataset into three subsets, as follows:

e A training set DtcréﬁfR

e A validation set DgaIlF AR comprising 9000 images;
e Atestset DCIFAR comprising 1000 images.

comprising 51,000 images;

is used to train CNNs for feature extraction, as described in
D%ZN IST is used to monitor the training process. The test set

comprising 50,000 images;

In addition, following [50], the training dataset D{F4R is subsequently extended via
random image cropping data augmentation.
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We recall that the objective of the proposed ADD measures is to quantify the dissimilar-
ity between two datasets, namely Dy,s1 and Dy,sr0. In this work, we generate these datasets
as follows. With respect to MNIST, a baseline dataset Dy, is prepared by randomly select-
ing a subset of 1000 images from DMN!ST. With respect to CIFAR-10, we adopt D{,/FAR as
Dest1- Diest2, on the other hand, is generated by applying a synthetic transformation to the
images in Dy, . For instance, a test dataset D50 can be created by rotating each image in
D511 For our experimentation and numerical analysis, the following image transforms are
employed: image rotation, blur (performed via a Gaussian filter with standard deviation o),
the addition of pixel-wise random Gaussian noise (with zero mean and standard deviation
0), and brightness variation (performed by adding a constant value y to each pixel).

The choice of the procedure above for generating synthetic data is motivated by the
fact that by making step-wise changes to the magnitude of the applied data transforms,
the degree of dissimilarity between Dy,s1 and Dy,.s» can be systematically controlled.

T
For example, with reference to image rotation, a series of T datasets {Dt(;fs)tz}F1 can be
generated from Dy, by applying rotations of progressively greater magnitude. A dataset
Dt(éztz in the series might be produced by rotating all the images in D;,s1 by t8, where 8 is
a constant. For instance, if 8 = 5°, the first datasets in the series would be generated by
rotating images in Dy,g1 by 5°, 10°, 15°,. ... Such a series of datasets will be progressively
more dissimilar to Dy in terms of orientation. The ability of the ADD measures to
respond to progressively more perturbed datasets can then be studied by quantifying the

T
data dissimilarity between D, and each dataset in the series {Dt(etztz }t X

2.4.2. Neural Networks

In order to examine the relationship between dataset dissimilarity and ML model
performance, we train models to classify MNIST and CIFAR-10 images. We apply several
convolutional neural network architectures to the image classification tasks that we un-
dertake. Specifically, for MNIST data, we employ two variants of the LeNet-5 CNN [51]
that differ in terms of the activation functions operating within their hidden layers. We
refer to [51] for a description of the technical details of the LeNet-5 architecture. It com-
prises seven layers: two convolutional layers, each followed by an average pooling layer,
and three dense layers. The first variant uses the Rectified Linear Unit (ReLU), while the
second variant uses the hyperbolic tangent (tanh) activation function [29]. We select the
Nypew = 84 neurons which constitute the penultimate layer of these CNNs to populate
the activation traces (as defined in the feature extraction process described in Section 2.3).
Furthermore, for CIFAR-10 data, we employ a ResNet-18 CNN [50], namely an 18-layer
network with shortcut connections, and use the Ny, = 512 neurons in its penultimate layer
for feature extraction. However, we highlight that other ANN models could play the same
role. The implementations of these CNNs access the Keras (version 2.10.0) and TensorFlow
(version 2.10.0) Python libraries [52,53]. CNN training and evaluation is conducted on a
NVIDIA GeForce RTX 3080 Ti GPU and an Intel(R) Xeon(R) CPU. The latter CPU is also
used to compute ADD measures based on CNN activation values.

3. Results
We perform a numerical analysis aimed at evaluating the following:

o  The ability of the proposed ADD measures to indicate progressively greater dissimilar-
ity when applied to a series of datasets which have been systematically transformed
to a progressively greater extent;

e  The applicability of the ADD measures to the UQ method designed to predict ML
model performance and quantify the associated uncertainty, as outlined in Section 2.2.
Each step of the investigation employs both the LeNet-5 CNNs applied to the MNIST

dataset and the ResNet-18 CNN applied to the CIFAR-10 dataset.
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3.1. Numerical Results and Evaluation: The Relationship between the Magnitude of Image
Transform Parameters and ADD Measures

In this section, we perform a numerical analysis aimed at evaluating the responsiveness
of the ADD measures to specific image transformations, which are applied to induce data
dissimilarity. To this end, we employ ADD measures to quantify the discrepancy between
pairs of datasets { (Dtest1, D ggtz) }T , T = 6. Since the datasets {Dt(ézt2}T are generated
from D41, by applying an image fc?elmsform whose parameter is progresfs:iilely increased,

they are also expected to be progressively more dissimilar to Dy, in terms of ADD
measures. In other words, when characterizing the relationship between the magnitude of
the image transform parameter and the ADD measure value, a monotonically increasing
trend is expected.

We begin by examining the relationship between ADD measure values and the mag-
nitude of the applied image transformations. Four ADD measures are evaluated and
these are differentiated by, and will be denoted by, the form of their projection mecha-
nism. The mechanisms are termed PMO0, PM1, PM2 and PM3, as described in Section 2.3.2.
In addition, we adopt the following parameter values for the projection mechanisms:
Npm1 = 60; Npmz = 40 and N3 = 10 when processing MNIST images; Npy2 = 80 and
Npms = 25 when processing CIFAR-10 images.

The results of this analysis are summarized in Figures 2 and 3, for the MNIST dataset,
and in Figure 4, for the CIFAR-10 dataset. These figures present results for the following in-
put data transformations: image rotation, image blur, additive random Gaussian noise, and
change in image brightness. The results associated with different image transformations
are illustrated in different charts within these figures.
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Figure 2. Data dissimilarity measure values against amplitude for four image transformations. The
trends correspond to ADD measures that use PM0, PM1, PM2, and PM3, respectively. The measures
are applied to a LeNet-5 CNN with tanh activation functions.

We first examine the application of the data dissimilarity measures to two LeNet-5
CNNs, one with tanh activation functions (Figure 2), and one with ReLU activation func-
tions (Figure 3). Figures 2 and 3 show that, as anticipated above, the general trend is for data
dissimilarity measure values to increase with the amplitude of the applied transformations.
However, some deviations from that trend can be observed. Overall, these trends suggest
that our proposed dissimilarity measures are sensitive to the progressively greater pertur-
bations used to generate the series of datasets (at least for this set of image transformations,
and with respect to features extracted via the specified projection mechanisms).

The results for the individual projection mechanisms and image transforms will now
be examined in more detail. Computing data dissimilarity measures directly from network
activation values, i.e., subsequent to PMO, leads to curves that increase with transform
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magnitude. However, some irregularities occur; that is to say, trends which are not perfectly
monotonically increasing. These can be observed for the image rotation transform, where
the network applies ReLU activation functions, and for the image brightness transform, in
the case of network tanh activation functions. The curves corresponding to PM1 generally
do not display an increasing trend. This is particularly evident with respect to the tanh
activation function (see Figure 2). The ADD measures that use PM2 and PM3, which process
features defined by principal components derived from CNN activation values, produce
more markedly upward trends than those associated with PM1. Moreover, the measures
employing PCA-based projection mechanisms outperform in terms of monotonicity the
benchmark PMO0 measure for image blur with ReLU activations, and change in image
brightness with tanh activations. In addition, we note that the ADD variants (i.e., ADD
measures based on different projection mechanisms) respond differently to the image
transformations examined. For instance, with reference to ReLU activations, the measure
based on PMO produces monotonically increasing trends in all cases except image rotation.
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Figure 3. Data dissimilarity measure values against amplitude for four image transformations. The
trends correspond to ADD measures that use PM0, PM1, PM2, and PM3, respectively. The measures
are applied to a LeNet-5 CNN with ReLU activation functions.
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A quantitative analysis of the monotonicity of the trends displayed in Figures 2 and 3
based on the computation of the Spearman’s correlation coefficient is provided in
Tables 1 and 2, respectively. A coefficient value of 1 indicates a perfectly monotonic
increasing trend and a value of —1 indicates a perfectly monotonic decreasing trend.
Table 1 (tanh activation functions) shows that PM2 and PM3 lead to trends which are
closest to being increasing monotonic for all transforms. Table 2 (ReLU activation func-
tions) records that PM0O and PM2 yield the most consistently monotonic increasing trends.
Both tables reveal that PM1 generates relationships which are furthest from the expected
monotonicity.

Table 1. Spearman’s correlation coefficients associated with the trends displayed in Figure 2.

Spearman’s Coefficient Rotation Blur Gaussian Noise Brightness
PMO0-based ADD 1.00 1.00 0.94 0.32
PM1-based ADD —0.03 0.43 0.60 —0.06
PM2-based ADD 1.00 0.83 0.89 1.00
PM3-based ADD 1.00 1.00 1.00 0.94

Table 2. Spearman’s correlation coefficients associated with the trends displayed in Figure 3.

Spearman’s Coefficient Rotation Blur Gaussian Noise Brightness
PMO0-based ADD 0.83 1.00 1.00 1.00
PM1-based ADD —0.60 1.00 0.66 1.00
PM2-based ADD 0.94 1.00 0.94 1.00
PM3-based ADD 0.66 1.00 1.00 1.00

Figure 4 shows the ADD measure trends with respect to image transformation magni-
tude which are obtained for a further neural network and dataset pair, a ResNet-18 CNN
trained on CIFAR-10. Here, CIFAR-10 images are subject to image transforms, and the
ADD measures are computed from ResNet-18 CNN activation values. In order to limit
the computational costs of experimentation, in this analysis, we only focus on the PM2-
and PM3-based ADD variants. These ADD variants produce similar results. However, the
project mechanism PM2 yields perfectly monotonic trends for all four image transforms,
whilst the selection of PM3 leads to small irregularities for image rotation and the addition
of Gaussian noise transforms. The Spearman’s correlation coefficients associated with the
curves displayed in Figure 4 are provided in Table 3.

Table 3. Spearman’s correlation coefficients associated with the trends displayed in Figure 4.

Spearman’s Coefficient Rotation Blur Gaussian Noise Brightness
PM2-based ADD 1.00 1.00 1.00 1.00
PM3-based ADD 0.94 1.00 0.94 1.00

3.2. Numerical Results and Evaluation: The Relationship between ADD Measures and CNN
Classification Performance

In this section, we investigate the applicability of the ADD measures to the UQ method
outlined in Section 2.2. This UQ method requires the establishment of a relationship
between model classification performance and dataset dissimilarity. To be more specific,
a relationship must be found between the performance that an ML-based model attains
for each of a set of test datasets, and the dissimilarity of each of those test datasets to
the training dataset. In general, model performance is measured in terms of a metric
such as accuracy, and dissimilarity in terms of a data dissimilarity measure such as an
ADD measure.

Section 3.2 extends the analysis of the experiments reported in Section 3.1, where
dataset dissimilarities are synthetically induced by means of image transformations. We



Electronics 2024, 13, 939

13 of 20

process the MNIST and CIFAR-10 datasets, and employ LeNet-5 and ResNet-18 CNNss to
extract data features for ADD computations.
Figures 5 and 6 summarize the results obtained when the two LeNet-5 CNNs are
applied to the MNIST dataset. Overall, they show that the general trend is for accuracy
to decrease as the data dissimilarity measure values increase. This general trend is in
line with the curve shown in Figure 1, and confirms that the neural networks examined
are less capable of correctly classifying progressively more perturbed images. A more
detailed visual inspection of Figures 5 and 6 leads to the following observations. The trends
associated with PMO are overall decreasing, but some deviations appear for the image
brightness transform, seen for the CNN with tanh activations, and for image rotation, seen
for the CNN with ReLU activations. The ADD variant based on PM1 produces subpar
results, especially for tanh activation functions. Decreasing trends are recorded for the
ADD measures corresponding to the projection mechanisms PM2 and PM3. However,
some small irregularities occur for PM2 and PM3, as can be observed for image rotation
with ReLU activations.
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Figure 5. Accuracy against ADD measure values for a LeNet-5 CNN with tanh activation functions.

The trends observed for different ADD variants are displayed in separate charts.

accuracy
ad o
© ©
o vl

e
©
@

(<4
©
S

accuracy
Fd Fd
© ©
o bl

o
©
vl

o
@
=1

LeNet-5 (RelLU)

DRI e R o x .
A x
Y 7y 0.95 * x
N x
>
$0.90
N e x
3
A A rotation, PMO ®0.85 X x  rotation, PM1
4 blur, PMO *  blur, PM1
4 Gaussian noise, PMO " 0.80 x  Gaussian noise, PM1 -
" brightness, PMO : brightness, PM1
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.1 0.2 0.3 0.4 0.5
data dissimilarity measure data dissimilarity measure
e es :, . . e o...: . .
. #
. . 0.95 + .
. .
20.90
. e .
3
. e rotation, PM2 2 0.85 * + rotation, PM3
e blur, PM2 +  blur, PM3
e Gaussian noise, PM2 . 0.80 + Gaussian noise, PM3 .
. brightness, PM2 : . brightness, PM3
0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6

data dissimilarity measure

data dissimilarity measure

Figure 6. Accuracy against ADD measure values for a LeNet-5 CNN with ReLU activation functions.

The trends observed for different ADD variants are displayed in separate charts.

Figure 7 shows the results obtained when the ResNet-18 CNN is applied to the CIFAR-
10 dataset. For computational efficiency, only PM2- and PM3-based ADD variants are
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considered. Analogously to what was observed in Figures 5 and 6, the general trend is for
accuracy to decrease as the data dissimilarity measure values rise. A visual comparison of
the projection mechanisms being investigated indicates that PM3 leads to slightly more
irregular trends, especially for lower magnitude random Gaussian noise perturbations.
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Figure 7. Accuracy against ADD measure values for a ResNet-18 CNN. The trends observed for
different ADD variants are displayed in separate charts.

3.3. Numerical Results and Evaluation: UQ Method for Predicting CNN Performance Using
ADD Measures

The relationships presented in Section 3.2 can be used for predicting the performance
of CNN models at run-time, as well as estimating the uncertainty intervals associated
with those predictions, using the UQ method outlined in Section 2.2. This necessitates the
determination of a curve that gives the expected CNN performance level as a function
of the input data dissimilarity, and delineating the uncertainty band associated with this
curve (see Figure 1).

We assume that the relationship between CNN performance p and data dissimilarity
measure 4 can be approximated as follows:

p=axd +po 3)

where py is the CNN classification performance recorded for the unperturbed dataset Dy,
(corresponding to an ADD measure value equal to zero), and a € R is a free parameter that
we determine through a least squares curve-fitting process.

Following [54,55], a measure of error for the fitted curve is calculated as a confidence
band p £k - u,,, with k = 1, which encompasses all the possible curves that might fit the
data with approximately 70% confidence. The u,,s component of the confidence band
is derived from Equation (3): uconf(d) = 2ad - 04, where 0, is the standard deviation
of the ADD measure values over all image transforms. The confidence band provides
information about the uncertainty of the predicted CNN performance with respect to the
data dissimilarity measure. Although we have adopted this particular form of uncertainty
band for the fitted curve (see Figure 1), there are a number of alternative ways in which the
band could have been defined.

Curves and confidence bands are fitted to the scatter graph relationships shown in
Figures 5-7 using the formulas given above. We first turn our attention to the scatter
graphs which are generated for the two LeNet-5 CNNs and the MNIST dataset, namely
Figures 5 and 6. Since the PM1-based measure yields a subpar relationship between
accuracy and dissimilarity, it is neglected in this analysis. An inspection and a visual
comparison of the fitted curves and associated uncertainty bands reveal that they are
broadly similar for PM0, PM2, and PM3. Figure 8 shows that the width of the uncertainty
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band tends to increase as the data dissimilarity measure values rise. However, some
differences can be noted. First, the choice of the activation function markedly affects the
range of the accuracy values returned by the models for the examined data transformations.
More specifically, using tanh activation functions leads to a larger range of accuracies than
using ReLU activation functions over the same set of perturbed datasets. Second, the width
of the uncertainty band associated with ReLU activation functions is generally lower than
that associated with tanh activation functions. These observations are significant since, in
practice, decision-making processes might rely on worst-case performance predictions, and
would therefore benefit from narrow uncertainty intervals.

LeNet-5 (tanh), PMO LeNet-5 (ReLU), PMO

1.0 1.00
ST % X % S X;g} R o % x
0.9 S xe ¥~ X x
™~ x 0.95 ~__
0.8 x \‘\\ % SR
> N >
E 0.7 . N X @ 0.90 N
2 3 "
0.6
8 X N % 0.85 )
0.5
X
0.4 0.80 x
X
0.3
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

data dissimilarity measure data dissimilarity measure

LeNet-5 (tanh), PM2 LeNet-5 (RelLU), PM2

1.00
1.0{ .- ooy
% Vﬁ?&x_xxx A);;( % ix X x X
‘ x 0.95 T X
. N
0.8 XN ’ X SN
> o . > x \\
] e ©0.90 N\
3 0.6 X N\ x 2 \\X
] N [v] x N\
© PN ©0.85 B
0.4
0.80 x
0.2 "

0.0 0.1 0.2 0.3 0.4 00 01 02 03 04 05 06

data dissimilarity measure

LeNet-5 (tanh), PM3

data dissimilarity measure

LeNet-5 (RelLU), PM3

1.0 - SRR —
~ - 0.95 X . X
0.8 N x -t
> x ON 20.90 Y
© X © KX
= b = *
0 0.6 N o x \\\
% x \\x\ g 0.85 \\‘\
X )
0.4 0.80 <
0.75
0.0 0.1 02 0.3 0.4 0.0 0.2 0.4 0.6

data dissimilarity measure data dissimilarity measure

Figure 8. Network accuracy against PM0-, PM2-, and PM3-based ADD measures. Left column:
LeNet-5 CNN with tanh activation functions; right column: LeNet-5 CNN with ReLU activation
functions. Solid orange lines chart the fitted functions; dotted orange lines indicate the associated
uncertainty bands.

With reference to Figure 8, the results of a quantitative analysis based on the calculation
of the Root-Mean-Square Error (RMSE) between empirical points and fitted curves are
summarized in Table 4. The average RMSE over the ADD measure variants is lower for
the LeNet-5 CNN which uses ReLLU activation functions (0.054) than for the LeNet-5 CNN
which uses tanh activation functions (0.084).
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Table 4. Root-Mean-Square Error (RMSE) between the empirical points and the fitted curves shown

in Figure 8.
RMSE LeNet-5 (tanh) LeNet-5 (ReLU)
PMO0-based ADD 0.132 0.056
PM2-based ADD 0.049 0.053
PM3-based ADD 0.071 0.052

Figure 9 shows the parameterized relationships between accuracy and ADD measures
for the ResNet-18 network and for CIFAR-10 data. In a similar manner to Section 3.1,
we only consider PM2- and PM3-based ADD variants for computational efficiency. A
visual inspection of the results obtained shows that although similar decreasing trends are
observed, PM2 produces a slightly narrower uncertainty band than PM3.
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Figure 9. ResNet-18 CNN accuracy against PM2- and PM3-based ADD measures. Solid orange lines
chart the fitted functions; dotted orange lines indicate the associated uncertainty bands.

With reference to Figure 9, the results of a quantitative analysis based on the calculation
of the Root-Mean-Square Error (RMSE) between empirical points and fitted curves are

summarized in Table 5.

Table 5. Root-Mean-Square Error (RMSE) between the empirical points and the fitted curves shown

in Figure 9.
RMSE ResNet-18
PM2-based ADD 0.127
PM3-based ADD 0.099

Once the relationship between CNN classification performance and a dataset dis-
similarity measure has been characterized, it can be used to make predictions of CNN
performance at run-time on unseen data. More details are provided in the following ex-
ample, with reference to the ResNet-18 CNN trained on CIFAR-10, and the PM2-based
ADD measure. We begin by synthetically generating new (i.e., unseen) test datasets by
applying image transforms to the instances of DS/FAR. Specifically, we employ the follow-
ing transforms: (1) pixel-wise addition of random noise drawn from a uniform probability
distribution, which yields a test dataset D%SCAR ; and (2) image magnification, which yields
a test dataset D%IEAR. Note that these transforms differ from the four which were employed
to generate the scatter graphs used for curve fitting. Then, we compute the ADD measure
values d,;iy and dyaq corresponding to DCIFAR and D,%IQ,AR, respectively. Next, we use
these measure values in conjunction with the fitted curve (and associated uncertainty band)

shown in Figure 9 to infer the CNN accuracy on D%f}AR and D,(flflgAR, respectively (and

the associated uncertainty intervals). This leads to predicted accuracy intervals that are
displayed as black intervals in Figure 10. In order to assess the goodness of these predic-
tions, we compare them with the ground truth accuracy values returned by the CNN under
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investigation when fed with D%;AR and D%{EAR, respectively. These ground truth values

are illustrated as red points in Figure 10. A visual analysis of Figure 10 shows that, for
both test datasets investigated, the ground truth value falls within the predicted accuracy
range. This confirms the applicability of the UQ method proposed in this paper to CNN
performance prediction.
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Figure 10. The orange lines chart the parameterized relationship between ResNet-18 CNN accuracy
and a PM2-based ADD measure. The solid orange line charts the fitted function; dotted orange
lines indicate the associated uncertainty band. The predicted accuracy intervals for the test datasets
DS;E,AR and D,(,:,{ZIEAR are illustrated in black, whereas the red dots show the corresponding ground

truth accuracy values.

4. Discussion

In this paper, we have introduced an Uncertainty Quantification (UQ) method that
predicts the performance level of an ML-based model for a given dataset and provides an
uncertainty interval for the estimate. The method is directed in particular at predicting
performance for data that are statistically dissimilar from model training data. Furthermore,
in developing our UQ method, we have addressed the problem of quantifying dataset
discrepancies by defining an innovative family of data dissimilarity measures, i.e., the
Anomaly-based Dataset Dissimilarity (ADD) measures. These measures combine anomaly
detection algorithms and feature representations based on Artificial Neural Network acti-
vation values.

We have performed a numerical analysis of the results produced when our UQ method
and measures are applied to established CNN models for image classification. We have
demonstrated the ability of the ADD measures to respond to progressively more perturbed
datasets, especially when PCA-based projection mechanisms are employed. We have
recorded statistical relationships between CNN model accuracy and dataset dissimilarity
when models are supplied with perturbed versions of prominent public domain datasets.
We have fitted parameterized curves with associated uncertainty bands to these relation-
ships. We have observed the following: (i) the general trend is for model accuracy to
decrease as ADD values increase; and (ii) the amplitude of the uncertainty band associated
with a curve tends to increase with ADD value. We have demonstrated the use of the
curves and bands for predicting the accuracy attained by CNN models when supplied with
unseen datasets, and for quantifying the uncertainty of those predictions. Our proposed
UQ method was shown to be effective, as demonstrated for LeNet-5 and ResNet-18 CNNs.
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Further investigations to evaluate our UQ method and ADD measures with respect to
other datasets and ML-based models are planned as future work. This UQ method could be
further developed for the verification and run-time performance prediction of operational
systems composed of multiple ML-based elements.
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