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Abstract: The traditional social force model (SFM) in crowd simulation experiences difficulty coping
with the complexity of the crowd, limited by singular physical formulas and parameters. Recent
attempts to combine deep learning with these models focus more on simulating specific states of
crowds. This paper introduces an advanced deep social force model, influenced by crowd states.
It utilizes deep neural networks to accurately fit crowd trajectory features, enhancing behavior
simulation capabilities. Geometrical constraints within the model provide control over varied
crowd behaviors, adjustable to simulate different crowd types. Before training, we use the SFM to
refine behaviors in real trajectories with excessively small distances, aiming to enhance the general
applicability of the model. Comparative experiments affirm the effectiveness of the model, showing
comparable performance to both classic physical models and modern learning-based hybrid models
in pedestrian simulations, with reduced collisions. In addition, the model has a certain ability to
simulate crowds with high density and diverse behaviors.

Keywords: crowd simulation; social force model; pedestrian simulation; physics-infused machine
learning

1. Introduction

Crowd simulation, crucial in computer graphics and system modeling, plays a key
role in applications that extensively use electronic systems and technologies. These include
urban modeling [1,2], emergency evacuation planning [3–7], game design [8], and behavior
analysis [9,10]. This paper introduces an innovative method for crowd simulation that
integrates deep learning with the traditional social force model. The approach enhances the
accuracy and interpretability of crowd simulation trajectories and enables the construction
of simulations involving high-density crowds and various crowd behaviors, to some extent
vital for applications in electronic systems that require realistic modeling of crowds.

Existing crowd simulation methods can generally be categorized into rule-based meth-
ods and data-driven methods. Rule-based methods are extensively applied across various
crowd simulation tasks and rely heavily on empirical modeling. They often involve the use
of expert knowledge or specific rules to construct crowd simulations. Many of these meth-
ods have achieved outstanding results in specific areas. For instance, the optimal reciprocal
collision avoidance algorithm (ORCA) [11] excels in collision avoidance, and improved
algorithms based on the classical social force model [12] have demonstrated remarkable
performance in tasks such as high-density crowd simulation [13] and evacuation simula-
tion [3,4]. However, human behavior is inherently complex, and representing the intricate
dynamics of crowds solely through homogeneous rules or physical calculations can be
challenging. Rule-based methods often rely on empirical knowledge and may require pa-
rameter tuning to achieve accurate simulations. With advancements in sensing technologies,
acquiring crowd trajectory data has become more accessible, leading to the development
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of data-driven crowd simulation methods. Early approaches involved constructing simu-
lations based on crowd databases [14,15]. However, these methods struggled to adapt to
environments with complex interactions. Other methods utilized statistical learning [16,17]
and optimization algorithms [18] to analyze crowd data and construct simulations. These
methods, however, are limited by the data-fitting capabilities of their respective algorithms.
In recent years, the evolution of deep learning techniques has led to a surge in research
exploring deep learning-based crowd simulation methods. Some studies [5,6,10,19] applied
deep reinforcement learning techniques to various crowd simulation tasks. Others [20–22]
utilized a variety of deep learning methods to extract crowd trajectory features and build
simulations by predicting crowd behaviors. However, subsequent work [23] indicated
that directly predicting trajectories using deep learning for simulation may not generalize
well to simulations longer than the training data. Amirian et al. [24] and Lin et al. [25]
employed generative adversarial networks [26] to generate pedestrian simulation trajecto-
ries. While these deep learning methods have achieved impressive simulation results, their
black-box nature often lacks interpretability. Some recent research has aimed to combine
deep learning with rule-based methods to construct crowd simulations. Zhang et al. [27]
and Li et al. [28] integrated deep learning with the ORCA algorithm [11] to enhance the
realism of crowd simulations based on traditional algorithms. Zhang et al. [23] employed
deep learning to construct network structures resembling the social force model for crowd
simulation. However, these approaches still predominantly rely on neural network designs
and struggle to simulate crowd behaviors beyond the training data distribution.

To address these challenges, we introduce a crowd simulation approach that combines
deep learning techniques with traditional social force models. Our model leverages deep
learning to capture intricate crowd behavior features, enhancing interpretability by incor-
porating behavior representation akin to the improved social force model for high-density
autonomous crowds (HiDAC) [13] as an inductive bias into the physical structure model.
By harnessing the strengths of both deep learning and the social force model, we aim to
improve crowd simulation. During model training, we take a unique approach by not
directly using real-world crowd data as input. Instead, we preprocess the data by filtering
out instances of individuals that are too close to each other and expanding their distances
using a method similar to SFM [12]. This preprocessing step enhances the generalization
capabilities of the model. Learning from this modified real-world crowd data allows the
model close resemblance of the features of real data when simulating pedestrian behavior.
Additionally, we retain a portion of adjustable parameters in the structure of the model to
endow it with similar capabilities to HiDAC [13] in simulating high-density crowds and
diverse crowd behaviors.

The innovations and contributions of this paper can be summarized as follows:

• Introduction of a generic multi-agent simulation model that combines deep learning
techniques with the social force model, enabling the model to learn group behavior
features from real data while applying constraints based on the social force model.
In comparison to conventional social force model, our model yields superior sim-
ulation results across multiple evaluation metrics, without necessitating frequent
parameter adjustments.

• Preservation of critical parameters of the HiDAC model within the architecture of the
model. Our approach enables the flexible simulation of high-density crowds and a
variety of crowd behaviors through parameter adjustments, demonstrating that the
integration of deep learning with traditional models for crowd simulation, guided
by a meticulous design process, is a feasible method that effectively preserves the
strengths of classical models.

• Introduction of a novel training mechanism to enhance the generalization of crowd
simulation. Instead of learning directly from natural crowd behavior data, the model
benefits from training on modified natural crowd data, resulting in simulations char-
acterized by reduced collision rates and more generalized crowd behaviors.
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2. Related Work
2.1. Rule-Based Crowd Simulation Methods

Rule-based crowd simulation methods can be categorized into macroscopic models
and microscopic models [29]. At the macroscopic level, crowd simulation algorithms
emphasize group path planning or global control. They typically employ methods like
the continuum model [30,31], the aggregate dynamics model [32], or potential field [33]
to guide group movement. Conversely, at the microscopic level, the focus centers on indi-
vidual agent characteristics and interactions among agents. Microscopic models involve
the modeling of different behaviors of agents based on attributes such as an agent’s veloc-
ity [11,34], visual properties [35,36], or dynamic attributes [12,13] to establish rules for each
agent, thus constructing the overall group simulation. For example, the SMF [12] interprets
the motion of each agent as a result of the attraction of targets on agents, avoidance forces
among agents, and repulsive interactions between agents and the environment. These
methods abstract crowd motion into mathematical equations or deterministic systems,
demonstrating excellent scalability and robustness. They are applicable to various tasks,
including pedestrian simulation [7], high-density crowd simulation [13], and crowd evacu-
ation simulation [3,4], among others. However, these homogeneous behavior models may
not fully capture the complexity of crowd behavior, resulting in limitations in achieving
realism. Our model enhances the classical SFM [12] and the HiDAC [13] model to improve
the realism of simulating pedestrians in general scenarios while preserving scalability.

2.2. Application of Deep Learning Methods in Crowd Tasks

The rapid advancement of artificial intelligence technology has established deep learn-
ing as a vital tool for applications in crowd tasks. Extensive research in crowd trajectory
prediction leverages various neural network architectures such as Multilayer Perceptron
(MLP) [37], Long Short-Term Memory (LSTM) [38,39], Graph Neural Networks (GNN) [40],
and Transformer [41–44] to extract crowd trajectory features. Several methods [37,39,44]
adopt direct prediction for trajectory forecasting, while others focus on the stochastic nature
of crowd behavior, employing Generative Adversarial Networks (GAN) [42,45] and Varia-
tional Auto-Encoders (VAE) [43] for multimodal prediction. These approaches indicate that
deep learning-based crowd tasks necessitate fitting real crowd characteristics and modeling
the uncertainty in Agent behavior. Furthermore, Yue et al. [46] achieve state-of-the-art
results in recent trajectory prediction tasks by combining deep learning with the social force
model, suggesting potential in other crowd tasks. In crowd simulation, Yao et al. [20] and
Song et al. [22] construct simulations through predictive methods, while Amirian et al. [24]
and Lin et al. [25] generate crowd trajectories using GANs. Despite their capability to build
simulations, these methods face challenges with interpretability due to their pure network
structures. To enhance interpretability, Zhang et al. [23] develop a network mimicking
the social force model for simulating crowd trajectories, yet its design primarily remains
network-centric, limiting broader application in crowd behavior simulation. Additionally,
Yu et al. [47] control crowd behavior at two levels using a continuum model and neural
networks, further demonstrating the effectiveness of integrating traditional methods with
deep learning for crowd simulation. In this context, this study draws inspiration from
previous ideas and improves upon the HiDAC [13] model as an inductive bias. Neural
network models are employed to fit crowd data features and calculate critical parameters
for the physical model component. This model retains the architecture of the physical
model, allowing for the simulation of more diverse crowd behaviors through parameter
adjustments while maintaining the realism of crowd simulations.

3. Method

This chapter outlines the methodology for simulating crowds using the model, where
the position of agent i at time t is denoted as pt

i = (xt
i , yt

i), and its velocity as vt
i = (ẋt

i , ẏt
i).

The combined set of position and velocity is represented as qt
i = (pt

i , vt
i), implying qt

i ∈ R4.
The observable trajectory set is defined as Pt

i = {p1
i , p2

i , ..., pt−1
i , pt

i}, and the corresponding



Electronics 2024, 13, 934 4 of 18

velocity set as Tt
i = {q1

i , q2
i , ..., qt−1

i , qt
i}. The target location is represented by dt

i . The set Nt
i

encapsulates the position and velocity information of the surrounding agents perceived by
agent i at time t, expressed as {qt

j : j ∈ Nt
i }. The environmental information perceived by

agent i at time t, including the locations of nearby obstacles, is denoted as Et
i . Thus, the

state of agent i at time t can be formulated as St
i = {dt

i , Tt
i , Nt

i , Et
i}. The model infers the

future position of an agent based on its current state, described by the following equation:

p̂t+1
i = f (St

i ) (1)

For each agent, the next position is computed, followed by an update to obtain the state of
each agent as St+1

i . This iterative process constructs crowd simulation.
The model employs a hybrid architecture combining physical and deep learning mod-

els. This hybrid structure, anchored in a physical model, provides a strong inductive bias,
ensuring the fundamental physical realism and intuitiveness of the simulation. Concur-
rently, the integration of a deep learning model enhances the data-driven nature of the
model, enabling efficient extraction of key features from complex crowd behavior data. Its
main structure is depicted in Figure 1. Drawing inspiration from the design of the HiDAC
model [13], different methods are used to calculate the next position of agents involved in
collisions (overlap with other agents or obstacles) and those not in collisions. For agents
not involved in collisions or under special rules, their future positions are determined
by a neural social force Ft

i , which is subsequently adjusted for gait randomness ϵ̂ using a
conditional variational autoencoder (CVAE) [48] module. This neural social force is derived
from three independent neural network modules that fit data features to key parameters
of the social force model. Agents in a state of collision have their repulsive forces F̂t

i cal-
culated by a repulsion force module to determine their future positions. Special rules,
including StoppingRule and WaitingRule, are configured in accordance with the HiDAC
model. Subsequent sections delve deeper into the calculation process and the model’s
architecture; Section 3.1 presents the model’s physical structure, Section 3.2 outlines the
neural network-related structures, and Section 3.3 describes the optimization strategies of
the model.

Figure 1. Model overview. For non-colliding agents, preliminary future positions are calculated
using neural social force, followed by CVAE for precise positioning with dynamic randomness. For
colliding agents, future positions are determined by repulsive force.
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3.1. Physical Structure

The physical architecture of the model is an enhancement of the HiDAC model [13],
itself an advancement of the traditional SFM. Building upon SFM, the HiDAC model
introduces capabilities for simulating high-density crowds and diverse crowd behaviors,
thus offering a solid physical basis for interactions among agents and between agents and
their environment. The physical structure of the model is formulated as follows:

ât
i = αt

i F
t
i + βt

i F̂
t
i (2)

In conventional mechanics models, the force is generally the product of mass and accelera-
tion (i.e., F = ma). This model assumes a uniform mass for all agents and omits the mass
factor in the formula, a decision made to facilitate relative scaling of the force. Coefficients
αt

i and βt
i are employed to control the calculation of the force, and their values are defined

as follows:

αt
i =

{
0 Collision or StoppingRule or WaitingRule

1 Otherwise

βt
i =

{
1 Collision

0 Otherwise

(3)

When agent i is in a collision state at time t, the model employs F̂t
i as the force acting on

the agent. Conversely, in non-collision and non-specific rule states, Ft
i serves as the force.

StoppingRule and WaitingRule are utilized to simulate diverse crowd behaviors.
Neural social force Ft

i represents the social force exerted on agent i at time t, which
can be further decomposed, as follows, in the formula:

Ft
i = f t

iD + ∑
j ̸=i,j∈Nt

i

f t
ji + ∑

o∈Et
i

f t
oi,

f t
iD =

nt
iDvid − vt

i
τ

,

f t
ji = λ1e−dt

ji/λ2nt
ji,

f t
oi = λ3e−dt

oi/λ4nt
oi

(4)

f t
iD represents the target attraction force for agent i at time t, indicating the force directing

the agent towards its target position. Unit vector nt
iD points from the agent’s current

position towards the target. The desired velocity is denoted as vid, and τ is a tuning
parameter controlling the rate at which the agent reaches this desired velocity. Force
f t
ji denotes the repulsive force between agents at time t, occurring when other agents

approach agent i, generating a force to prevent collisions. The distance from agent j to
agent i is represented by dt

ji, and nt
ji is the unit vector from agent j to agent i. Model

parameters λ1 and λ2, respectively, regulate the intensity and range of the repulsive force.
For environmental obstacles, the model discretizes them into points with similar spacing,
allowing the calculation of repulsive forces between agents and obstacles in a manner
analogous to inter-agent forces. Force f t

oi represents the repulsion between an agent and
environmental elements (e.g., obstacles), with nt

oi being the unit vector from an obstacle
to an agent. Parameters λ3 and λ4 control environmental repulsion. These parameters,
including τ, λ1, λ2, λ3, and λ4, are computed through neural networks, as discussed in the
following section. This model, based on a hybrid structural design, can bring a certain level
of interpretability to the behavior of simulated crowds. As previously mentioned, force
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Ft
i is directly considered as predicted acceleration ât

i . The next velocity and position of an
agent are then calculated according to the following equation:

v̂t+1
i = vt

i + ∆t · ât
i ,

p̄t+1
i = pt

i + ∆t · v̂t+1
i ,

p̂t+1
i = p̄t+1

i + ϵ̂

(5)

In calculating future positions, the model does not directly use the results from the neu-
ral social force. Instead, it incorporates crowd gait randomness ϵ̂, constructed using a
CVAE model, following the approach suggested in [46]. This addition aids in simulating
randomness in crowd behavior.

The collision repulsive force F̂t
i adapts to physical behaviors post collision, serving

as the dominant force when an agent encounters a collision. This approach is a signifi-
cant enhancement to traditional physical laws within the model, ensuring more accurate
simulations of agent interactions in high-density crowd scenarios. The model assumes
each agent as a circle with a radius of 0.2 m. A collision is considered to have occurred if
the distance between two agents’ coordinates is less than 0.4 m. Similarly, obstacles are
modeled as circles with a radius of 0.1 m, with a collision deemed to have occurred if the
distance between an agent and an obstacle is less than 0.3 m. The specific implementation
formula for F̂t

i is as follows:

F̂t
i = ∑

j ̸=i,j∈N̂t
i

f̂ t
ji + λ ∑

o∈Êt
i

f̂ t
oi,

f̂ t
ji = (pt

i − pt
j)(0.4 + ϵ1 − dt

ji)/dt
ji,

f̂ t
oi = (pt

i − pt
o)(0.3 + ϵ2 − dt

oi)/dt
oi

(6)

f̂ t
ji and f̂ t

oi represent the repulsive forces exerted on an agent by other agents and obstacles,

respectively, during collisions. Sets N̂t
i and Êt

i consist of agents and obstacles involved
in collisions with agent i. Parameters ϵ1 and ϵ2 denote the personal space thresholds of
an agent towards other agents and obstacles. The position of obstacle o at time t is given
by pt

o, and the distance between obstacle o and agent i is dt
oi. Following the configuration

in HiDAC [13], when collisions occur simultaneously between agents and between an
agent and an obstacle, λ is set to 0.3 to prioritize preventing overlap with obstacles. This
prioritization is crucial for maintaining realistic simulations of crowd dynamics, as it reflects
the natural tendency of individuals to avoid physical obstacles that pose a more immediate
risk to their safety. Unlike the method in HiDAC [13] where F̂t

i directly affects positional
changes, this model calculates it as acceleration impacting velocity changes in general
scenarios. However, in several specific cases, we directly apply the force to positional
changes. If an agent collides with an obstacle twice in succession, the model follows the
method in HiDAC, applying the force directly to positional changes to prevent the agent
from passing through walls. When StoppingRule or WaitingRule are enabled, the force
is also directly applied to positional changes to ensure the effectiveness of these rules.
Figure 2 illustrates an example of velocity change post collision between agents in general
scenarios. When collision occurs, the next position moves towards resolving the collision,
also considering the current velocity of the agent. This approach, factoring in the current
dynamics agents, results in a smoother and more natural transition process. All parameters
used in F̂t

i are manually adjusted rather than derived through deep learning, mainly
because collision behaviors are less frequent compared to normal movement behaviors in
crowd data. Moreover, the outcomes calculated from collision repulsive force F̂t

i do not
incorporate randomness ϵ̂, preventing the induction of more intense collisions.
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Figure 2. Dynamics of velocity change under initial velocity and repulsive force.

3.2. Neural Network Structure

In our model, some key parameters are derived from data features using neural
network models. To effectively extract these features and compute the corresponding
parameters, the design incorporates three distinct networks: target The Network D, interac-
tion Network C, and obstacle Network O. After training with real crowd trajectory data,
these networks estimate parameters in neural social force Ft

i based on the state of the crowd.
The basic structure of these networks is illustrated in Figure 3.

Figure 3. Neural network structures within the neural social force module for automatic calculation of
key parameters in the social force model. (Top): D, (Bottom Left): C, (Bottom Right): O. Dimensions
and layers of each module are indicated in parentheses. Unless specified otherwise in the context,
intermediate layers utilize LeakRelu as the activation function.

Network D focuses on estimating parameters related to target attraction force τ in
the social force model. It determines the most suitable value of τ by analyzing the target
direction and current state of the agent, ensuring that the agent moves towards its desired
direction at appropriate speed. Specifically, Network D first concatenates historical trajec-
tory Tt

i with unit direction vectors niD pointing towards the target position at each moment,
forming a 6-dimensional input vector. This vector is then mapped to a 64-dimensional
space through a fully connected layer (FC), followed by the addition of position encoding
and subsequent input into a transformer [49] encoder module. Within this module, a
masking mechanism is employed so that the aggregated features at each position relate
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only to previous trajectories. After this series of processes, the data are mapped through an
MLP with a sigmoid activation function at its end, ensuring output values range between
0 and 1. The final output is adjusted (increased by 0.4) to determine the range of τ. The
number of predicted τ values corresponds to the length of the trajectory sequence, with
each moment’s τ value influenced only by prior trajectories due to the masking mechanism.
This intricate design enables Network D to effectively adapt to various agent states and
provide accurate parameters for target attraction force.

Network C is responsible for calculating parameters related to the repulsive force
between agents. Given that people typically focus on others within a specific field of
view ahead while walking, Network C concentrates on analyzing other agents within the
perceptual area of the agent. A sector area spanning 75° to either side of the current velocity
direction and within two meters is designated as the perception zone of the agent, a rule
also applicable to obstacles. The network initially computes relative position vectors pt

j − pt
i

between agent i and other agents j within its perception zone. These data, concatenated
with the velocity information into a 4-dimensional vector, are then processed through a
residual block (ResBlock) to extract features. The process concludes with mapping through
an FC layer with a sigmoid activation function to a 2-dimensional vector, yielding values
between 0 and 1. These values determine parameters λ1 and λ2. Network O, structurally
similar to Network C, focuses on analyzing interactions between agents and environmental
elements, particularly obstacles. The final output calculates repulsive force parameters
λ3 and λ4 between agents and obstacles. Furthermore, predicted values of λ1 and λ3 less
than 0.1 are set to 0.1 to ensure the force does not diminish due to excessively small values,
thereby enhancing the lower bound of simulation effectiveness. The design of Networks
C and O effectively leverages deep learning capabilities to capture complex dynamics
between agents and between the agents and their environment while ensuring the validity
and interpretability of the model’s output parameters. In this manner, the model accurately
simulates complex crowd dynamics, especially agent behaviors in intricate environments.

Additionally, in line with the workflow shown in Figure 1, the model uses the neural
social force to compute initial positions and then employs the CVAE module to introduce
gait randomness. Figure 4 details the CVAE’s structure. Based on the crowd prediction
results from the social force component and the crowd state, it adjusts the final crowd
positions. The encoder part extracts features from the given conditional data to gener-
ate a latent space representation of the predicted trajectory error and future trajectory.
The encoder initially fuses the neural social force model’s predicted trajectory positions
P̂t

i = { p̂2
i , p̂3

i , ..., p̂t
i , p̂t+1

i }, trajectory error ϵ, and Tt
i into an 8-dimensional vector. This

vector is then mapped to a 64-dimensional feature vector through an FC layer, followed
by sequence feature extraction using a transformer encoder with a masking mechanism.
This feature implicitly considers the environment and other agents. It is finally mapped
to µ and σ through two separate MLP layers. The decoder part is responsible for recon-
structing reasonable and random trajectory errors from the encoded latent space. It has
a structure similar to that of the encoder, merging past trajectory positions of the agent,
velocity information, and predicted trajectory positions into a 6-dimensional vector. This
vector is then mapped to a 64-dimensional feature vector by an FC layer. Following feature
extraction of the trajectory by the transformer, it is concatenated with a sample from a
normal distribution and then mapped to the trajectory error by an MLP layer with a Tanh
activation function. This design effectively enables the model to simulate realistic and
dynamic crowd movements, incorporating both deterministic and stochastic elements of
pedestrian behavior.
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Figure 4. Structure of the CVAE Module. (Top): Encoder, (Bottom): Decoder.

3.3. Model Optimization Strategy

For model training, fixed-length trajectory data of multiple simultaneously present
agents are sampled, with predictions of relevant parameters at each moment of the trajec-
tory sequence. A two-stage model training strategy is adopted, employing loss function
minimization for optimization. This process involves separate training for the Neural Social
Force model and the CVAE model. For Networks D, C, and O, an L2 loss function is used
for optimization. The formula of the loss function is as follows:

L2 =
1

n ∗ t

n

∑
i=1

t

∑
j=2

|| p̂j
i − pj

i ||
2 (7)

For the sampled number of agents n and trajectory sequence length t, predictions focus on
the next position at each moment. Therefore, in loss calculation, j starts from 2. The CVAE
employs a combined loss comprising L2 loss and KL divergence. The formula for its loss
function is as follows:

LCVAE = Lrecon + LKL

Lrecon =
1

n ∗ t

n

∑
i=1

t

∑
j=2

||ϵ̂j
i − ϵ

j
i ||

2

LKL = −1
2
(1 + log(σ2)− µ2 − σ2)

(8)

4. Experiments

Two publicly available large-scale crowd datasets, the ETH BIWI Walking Pedestrians
Dataset (ETH) [50] and the University of Cyprus Dataset (UCY) [14], are used to train the
model. The ETH dataset contains pedestrian data from two scenarios, ETH and Hotel, while
the UCY dataset includes pedestrian data from three scenarios, Univ, Zara1, and Zara2.
These datasets encompass pedestrian trajectories within complex real-world environments,
featuring thousands of nonlinear paths from over 1500 individuals across four distinct
settings. These datasets consist of pedestrian trajectories sampled at 2.5 Hz, featuring
diverse crowd sizes, data distributions, and rich social behaviors. Prior to initiating the
model training process, the training datasets undergo a review to identify and address
any collision events present. For detected collisions, the SFM is applied to adjust these
trajectories to create collision-free paths. This preprocessing not only aids the model in
more effectively generating collision-free trajectories, but also, given the rarity of collision
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events in real crowds, necessitates adjustments for only a small portion of the data. The
training involves 100 epochs each for both the Neural Social Force model and the CVAE
model. During model training, we train on sequences of 8 consecutive trajectory positions
of agents present in the same scene. The initial learning rate is set to 0.0005, with a decay
factor of 0.8 applied every 10 epochs. The depth of the Transformer module is configured
to 2, and the number of attention heads is set to 4.

4.1. Performance Analysis

In the experiments, trajectories from the ETH and UCY datasets are merged, utilizing
their diverse data distributions to enhance model performance. During training, trajectories
from each dataset are time segmented, with 50% of the data used for training, 25% for
validation, and 25% for testing. Once trained, the model constructs crowd simulations
based on the initial states and target locations from the test data. For simulation construc-
tion, the same number of agents as in the real data is used, starting with the first two
positions of the actual pedestrians and aiming for their final target positions. The iterative
generation of simulation trajectories continues until the simulated trajectories match the
length of the real trajectories. Due to the randomness in pedestrian movement, 20 different
outcomes are generated each time, with the scenario having the fewest collisions selected
as the simulation result. The model is evaluated using the same assessment metrics as
in [47], comparing the statistical results of simulated crowd velocity and minimum distance
(distance to the nearest agent) with the distribution in the real data. Comparative evaluation
encompasses classic pure physical models such as SFM [12] and HiDAC [13], as well as
the hybrid NSP-SFM model [46], which integrates neural network and physical elements
to achieve state-of-the-art efficacy in trajectory prediction and is applicable for simulation
development. The model is also benchmarked against the advanced multi-level crowd sim-
ulation social LSTM (MCS-LSTM) [47], a paradigm that synergizes conventional techniques
with data-driven approaches. For SFM and HiDAC models, we base our simulations on
the average velocity of agents within the dataset as their desired speed. Key parameters
τ, λ1, λ2, λ3 and λ4 are fixed at values derived from the mean outputs across all real data
by our neural social force model. For NSP-SFM and MCS-LSTM models, we adhere to
their officially recommended settings. The results of distribution comparison are shown in
Figure 5.

Figure 5. Comparative distribution of key indicators across various methods. (Left): Velocity,
(Right): Minimum distance.

It can be observed from the distribution diagram that the simulation results of the data-
driven model have distribution that is closer to the real data. For quantitative assessment,
differences in distribution are measured using root mean square error (RMSE) and further
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calculated as a score. These data represent the dynamics and density of the crowd, and the
calculation formula is as follows:

RMSE =

√
1
n ∑n

i=1(Xi − X̂i)2

Score =
1

1 +
√

RMSE

(9)

Table 1 presents the experimental results. Our model achieves optimal results in two
metrics, reflecting its effectiveness in capturing the complexities of crowd behavior. Its
exceptional performance in dynamics and density metrics indicates that the model not only
accurately simulates individual movement patterns within crowds, but also effectively
replicates the overall structure and flow of the crowd.

Table 1. Comparison of various indicators used to measure the closeness of generated results to
real-world crowd data under different methods.

Metric SFM [12] HiDAC [13] NSP-SFM [46] MCS-LSTM [47] Our

Velocity Score 0.64 0.64 0.67 0.62 0.69
Minimum Distance Score 0.54 0.53 0.64 0.62 0.64

Note: Bold indicates better indicator results (range of values from 0 to 1. The larger the value, the better).

Additionally, collision rate serves as an evaluative metric, calculated by expressing
the percentage of agent positions involved in collisions against the total movement po-
sitions of all agents. This further validates the results generated by the model. Figure 6
shows the results. Our model shows better performance in collision avoidance during
crowd simulation.

Figure 6. Comparison of collision rate of simulated crowds using different methods.

4.2. Trajectory Analysis

To further validate simulation results, Figure 7 displays the simulated trajectories
constructed by various methods in the ETH scenario, and a heatmap is constructed based
on the positions of agents within these trajectories. The heatmap reflects the concentration
of crowds in different areas of the scene. From the trajectories, it is evident that all methods
can generate reasonable crowd movement processes. However, the heatmaps reveal certain
differences in the crowd distribution areas produced by each method.
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Figure 7. Comparison of crowd trajectories and positions in the trajectories under the ETH dataset.
The upper part is the trajectory of the real crowd and the crowd simulated by each method, and the
lower part is the heatmap composed of the positions in the trajectory. (a) Real crowd, (b) SFM [12],
(c) HiDAC [13], (d) NSP-SFM [46], (e) MCS-LSTM [47], (f) our model.

We propose a multi-level trajectory evaluation method. The Structural Similarity
Index (SSIM) is computed to analyze the composite similarity between simulated crowd
heatmaps generated by various methods and an actual crowd heatmap. Subsequently,
pixel threshold values are employed to categorize the hotspots in each image into three
levels, comparing the similarities accordingly. The highest level, represented by red regions,
denotes areas with the most concentrated trajectories. The medium level, indicated by
yellow regions, reflects areas with a general distribution of trajectories. The lowest level,
depicted by green regions, signifies areas with fewer trajectory occurrences. The Jaccard
similarity index is utilized to calculate the similarity of the different levels of heatmap
regions generated by each method compared to the actual values. Results summarized in
Table 2 show that pure physical models such as SFM and HiDAC have certain discrepancies
in crowd position distribution within their generated trajectories compared to actual crowd
trajectories. In contrast, hybrid models integrating data-driven learning outperform pure
physical models in trajectory features. Further analysis of the hotspot levels reveals that
data-driven methods generate crowd trajectories in the most concentrated areas more
similar to real crowds at the highest level. This suggests that simulations closely match the
actual data in areas of highest crowd density. At the medium level, our method maintains
the highest similarity, indicating effective simulation of areas with a general trajectory
distribution. At the lowest level, our method achieves the highest similarity, demonstrating
close alignment with actual situations even in regions with sparse crowds. Overall, our
method surpasses other methods in average similarity, indicating that it more accurately
captures and reproduces the positional distribution and movement trends of real crowds.
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Table 2. Comparison of Similarity between Simulated Crowd Heatmaps by Different Methods and a
Real Crowd Heatmap.

Metric SFM [12] HiDAC [13] NSP-SFM [46] MCS-
LSTM [47] Our Model

SSIM 0.83 0.82 0.88 0.85 0.90
High 0.24 0.23 0.41 0.53 0.68

Medium 0.28 0.24 0.61 0.11 0.73
Low 0.34 0.27 0.59 0.08 0.62
Avg 0.42 0.39 0.62 0.39 0.73

Note: Bold indicates better indicator results.

4.3. Simulation of Different Behaviors of Crowds

The HiDAC model, with its StoppingRule and WaitingRule, facilitates the construction
of high-density crowd simulations and simulations of crowds in various states. These
rules apply in our model as well. Drawing on the approach of HiDAC for simulating
high-density crowds, our model sets StoppingRule for an agent when the repulsive force
from other agents opposes the velocity direction of the agent, along with a brief random
time lock to prevent deadlocks. When the countdown ends, the agent resumes movement,
avoiding deadlock. Additionally, agents are permitted to collide in this scenario, enabling
pushing behavior. Agents being pushed do not adhere to the stopping rule, allowing for
scenarios where groups become pushed towards an exit in high-density conditions. The
simulation of 300 agents exiting through a small door is demonstrated like the simulation
of HiDAC, as shown in Figure 8, where observable congestion forms at the doorway.

Figure 8. Simulation of the congestion state of 300 agents at a small exit.

Regarding WaitingRule, it is used to simulate more organized crowd states (such
as queuing). Referring to HiDAC settings, when WaitingRule is enabled, the influence
area is set for each agent. If other agents moving in the same direction enter the personal
influence area of the current agent, WaitingRule value is set to True. A random timer rule is
also employed to prevent deadlock. This rule facilitates the simulation of crowd queuing
movement, and setting different influence area ranges allows for varying densities in queue
formation. Figure 9 demonstrates the effects of simulating different crowd states through
parameter adjustments by our method. The effect of adjusting using HiDAC is similar
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to our method and therefore is not shown. We use three metrics to further evaluate the
simulation results as follows.

Mean Nearest Neighbor Distance (MNND): MNND is calculated by determining
the distance between each individual and their closest neighbor, and then computing the
average of these distances across the entire crowd. Lower MNND value generally indicates
denser crowd formation.

Standard Deviation of Nearest Neighbor Distance (SDNND): It is derived from the
variance in nearest neighbor distances. A smaller SDNND reflects a more consistent spacing
between individuals, suggesting a higher degree of formation neatness.

Convex Hull Area (CHA): CHA measures the total area encompassed by the outermost
individuals of the crowd, providing insight into the overall spatial spread of the formation.
A larger CHA may imply a more dispersed and less compact crowd formation.

Figure 9. The simulation state of 88 agents walking on the road after running for 1 min based
on the same initial state and different parameter settings. (Top): Without the use of WaitingRule,
(Middle): Using WaitingRule with a smaller influence area (0.6) for each agent. (Bottom): Using
WaitingRule with a larger influence area (1.0) for each agent.

The results are summarized in Table 3. When WaitingRule is not enabled, a higher
SDNND is observed, suggesting a more irregular distribution of the crowd. Concurrently,
the relatively lower values of MNND and CHA indicate a closer average distance between
agents. In contrast, upon the activation of WaitingRule, there is a significant reduction in
SDNND, denoting a more orderly and uniform crowd distribution. Furthermore, employ-
ing varying agent influence areas leads to notable changes in MNND and CHA, indicating
that increasing the influence area enlarges the spatial gap between agents. These find-
ings are highly consistent with the visual results presented in Figure 9, further validating
our analysis.

Table 3. The neatness assessment of crowds.

Metric No WaitingRule Smaller Area Larger Area

MNND 0.53 0.58 0.77
SDNND 0.14 0.09 0.11
CHA 41.18 41.54 52.35

After different parameters in the model are adjusted, the model can simulate various
crowd states, a feature not present in previous deep learning models. This indicates that
through meticulous design, using deep learning models combined with traditional methods
for constructing crowd simulations can retain the intrinsic characteristics of traditional
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methods, demonstrating the immense potential of hybrid models in the development of
crowd simulations. Additionally, these scenarios differ from those used in training the
model, demonstrating the generalizability of our approach.

4.4. Ablation Experiment

In the final phase, ablation studies take place to validate the roles of modules and
experimental strategies. The same strategies from performance analysis experiments apply
in these ablation studies. Two ablation experiments occur: first, a comparison between
models trained on real data and those trained on collision-free data. Then, the study
examines the impact on model performance by removing collision repulsion force module
F̂t

i . The results displayed in Figure 10 show that training the model only with real data
slightly improves the similarity in dynamics and density between simulated and real
crowds but increases collision rate in simulation results. This suggests that using collision-
free trajectories for training helps reduce collisions in simulated crowds. Since real crowds
infrequently encounter very close distances, processing a small portion of the data has
minimal impact on the ability to simulate the realism of the model. In the experiment
without collision repulsion force F̂t

i , both crowd speed and minimum distance exhibit a
slight increase, while the change in collision rate remains minimal. This indicates that
using collision repulsion force F̂t

i may slightly decrease performance, but the extent of this
decrease is minimal, and previous experiments demonstrate that effectively simulating
different crowd behaviors is possible by controlling the use strategy of collision repulsion
force F̂t

i .

Figure 10. Ablation Study Results: Comparison with results from a model trained only on real data
and results from removing the collision repulsion force module.

5. Conclusions

In this study, an innovative approach combining deep learning with the enhanced
traditional social force model HiDAC was introduced for simulating crowd dynamics.
Our approach aimed to achieve a more accurate and interpretable simulation of crowd
behaviors. To delineate the difference of our approach compared to the HiDAC model, we
summarized the major differences in Table 4.

Through meticulous experiment setups involving the analysis of diverse crowd scenar-
ios captured in the ETH and UCY datasets, our model was rigorously tested against existing
benchmarks. These experiments were designed to not only validate the model’s effective-
ness in simulating realistic crowd dynamics, but also explore its limits and potential areas
for improvement. The results underscored our model’s superior performance, particularly
highlighted by its ability to reduce collision rates and more effectively manage complex
interactions within crowds. Such findings are pivotal, as they demonstrate the feasibility of
combining traditional modeling techniques with the latest advances in machine learning to
enhance the fidelity and applicability of crowd simulations.
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Table 4. The differences between our approach and the HiDAC model.

- Our Model HiDAC

Theoretical Basis
Integrates deep learning with
social force theories for en-
hanced accuracy.

Based on traditional social
force theories.

Parameter Calculation Method
Adaptively calibrated based
on real-time analysis of crowd
behavior data.

Set based on experience.

Simulation Realism Data distribution closer to the
real crowd. General distribution.

Computational Efficiency
Aims for future enhancements
to balance computational de-
mand with simulation depth.

Efficient within its scope of
complexity.

The academic implications of our work extend beyond the immediate realm of crowd
simulation, suggesting a broader applicability of hybrid modeling approaches in under-
standing complex systems. For practitioners, especially urban planners and emergency
responders, the insights garnered from our model offer a new lens through which to view
crowd management strategies, potentially leading to safer and more efficient public spaces.

However, acknowledging the limitations of our current model, particularly in terms
of computational demands and the extensive data requirements for training, sets the
stage for future research directions. Our forthcoming efforts will be directed towards
refining the model to enhance its computational efficiency and generalizability, with an eye
towards real-world applications that can benefit from improved crowd management and
simulation techniques.
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