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Abstract: Spatial image transformation is a commonly used component in many image processing
pipelines. It enables the correction of optical distortions, image registration onto a common reference
plane, electronic image stabilisation, digital zoom, video mosaicking, etc. With the growing tendency
to embed image processing in low-power devices, attaining an efficient transformation solution
becomes increasingly decisive. Furthermore, interpolation is the key operation in achieving the
high quality of the transformed data from the original data. Fortunately, different implementations
have already seen several efficiency improvements in recent years. However, interpolation relies on
sampling a set of neighbouring points from memory, which has yet to be addressed efficiently for
smaller computational platforms with limited memory resources. In this work, we derive a generic
mathematical model and circuit design principles for the spatial transformation accelerator design
for N-dimensional data. Furthermore, we present an efficient simultaneous access scheme for high-
quality signal reconstruction. Finally, the introduced ideas are verified in field programmable gate
arrays using one-dimensional and two-dimensional data transformation use cases. The presented
solution is able to transform images with sizes ranging from 256 × 256 to 8192 × 8192 and achieves a
transfer rate of 275 frames per second with 512 × 512 images.

Keywords: spatial transformation; digital circuit design; image processing; interpolation; resampling;
acceleration; FPGA

1. Introduction

The inefficiencies in general-purpose processing combined with the end of Dennard
scaling and Moore’s law highlight the difficulties in further sustaining performance im-
provement rates [1]. Alongside improvements in compiler technology, domain-specific
languages, caching hierarchy utilisation, etc., an alternative, more hardware-centric ap-
proach is to design tailored domain-specific architectures and accelerators.

For example, frequent limitations of the Internet of Things (IoT) technology [2] are size,
weight and power. Such applications like security camera systems, autonomous vehicles
and drones regularly depend on on-board processing due to latency, security and power
consumption requirements. In response, the development of smart image sensor technology
has emerged, which must support numerous combinations of image sensor specifications.

With the increasing chip heterogeneity, algorithm acceleration becomes a viable so-
lution for improving the performance/watt ratio and can be exceptionally influential for
frequently employed algorithms and their pipelined combination. This work examines the
implementation prospects of such an algorithm: generic digital circuit design for spatial
transformation with variable data dimensionality. Notably, the scientific literature offers a
range of approaches concerning data resampling, distortion correction and interpolation.
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2. Related Work

Different digital circuit-based resampling and interpolation methods have been ex-
plored [3–6]. For example, Aho et al. [3] demonstrated an accelerator design for image
scaling, where pixels are resampled at a different resolution, and interpolation is necessary
to restore the missing information. They present a detailed look into a parallel memory unit,
separate address computation and data permutation blocks. The read and write addresses
of each data element are computed with predetermined address functions. The permu-
tation block organises data based on the address of each element. The work achieves a
four-point window for bilinear interpolation, but increasing interpolation window size has
not been demonstrated.

Zemčik et al. [4] introduces an efficient resampling algorithm, which is based on
separable Finite Impulse Response (FIR) filtering and bi-linear interpolation. The solu-
tion applies to geometry distortion correction, where distortion is described through a
rectangular mesh. The proposed solution separates vertical and horizontal resampling in
independent pipelined modules with separate buffering schemes. The solution is demon-
strated to be efficient. Nonetheless, it is only suitable for small geometrical distortions
where the displacement is in the order of a few pixels.

A thought-out interpolation architecture based on a bi-cubic convolution interpolation
algorithm with external memory is proposed by Mahale et al. [5]. Their solution utilises an
elaborate buffering scheme and performs at 59 frames per second (using Xilinx Virtex-6).
The authors address the under-utilisation of the computing resources used in interpolation
and explore resource efficiency at the expense of reduced throughput. The authors manage
to utilise external memory; nonetheless, the solution is only suitable for image down-scaling
and up-scaling.

More recent bicubic interpolation architecture [7] manages to lower resources and
improve the maximum frequency by replacing multiplications with summations and shift
operators. A frequency of 289 MHz was achieved on a Xilinx Artix-7 Field Programmable
Gate Array (FPGA) device with a fairly good interpolation quality compared to the software-
based method. Boukhtache et al. [8] explored different alternative bicubic interpolation
algorithms that reduce resource consumption while maintaining approximation accuracy.
Multiplier count is reduced by more than 65% compared to standard bicubic implementa-
tions by combining cubic and linear interpolation algorithms. Similarly, only image scaling
is possible in solutions proposed by Khaledyan et al. [7] and Boukhtache et al. [8] due to
the utilisation of a simple sliding window-based buffer.

Chiew, Lin and Soon [9] introduced another alternative interpolation method called
Negative Squared Distance (NSD) intended for embedded real-time reconstruction. Con-
trary to conventional methods, NSD is targeted towards FPGA-based implementation
and possesses the characteristic of being advantageously described with 1D lookup ta-
bles (LUTs). Although advanced memory sampling for image scaling and rotation op-
erations has been demonstrated to evaluate the quality of the proposed interpolation
method, unfortunately, this work focuses on reconstruction and does not explain image sam-
pling. In contrast, we focus on describing the memory access scheme and utilise standard
interpolation methods.

D’Arco et al. [6] proposed a real-time resampling algorithm and circuit between
an ADC and acquisition memory. The final solution utilises linear interpolation and is
synthesised for FPGAs and Application Specific Integrated Circuits (ASICs). While the
design supports arbitrary sampling rates, it does not account for the potential application
of non-uniform resampling.

Also, multiple teams [10–12] proposed solutions that specifically address lens dis-
tortion correction. For instance, Ref. [10] have optimised fisheye distortion correction
implementation for hardware by leveraging CORDIC [13] algorithms. Nonetheless, the
actual distortion removal is managed by a Microblaze soft processor.

A relevant system has been proposed by Guo et al. [11], which handles real-time
image distortion correction with a bilinear interpolation algorithm and a custom edge
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enhancement scheme. Sensibly, the algorithm utilises a two-and-two-block Random Access
Memory (RAM) buffering scheme to ensure parallel access. Their system achieves a real-
time distortion correction at 1400 × 1050@60 Hz. Here, we adopt a similar approach while
extending it to even higher dimensions and the number of memories.

Junger et al. [12] proposed a spatial transformation solution for radial lens distortion
correction and image rectification of stereo-images. Their solution utilises a parallel access
buffering scheme enabling bilinear interpolation, thus improving the quality of the output
pixels. The transformation is precomputed and provided as an inverse transformation map,
i.e., coordinate pairs of the input image. The transformation map is streamed from memory,
and authors compress it to save the communication bandwidth. An alternative approach,
showcased in this article, is to compute transformation on the go.

Our proposed work is a generic solution for carrying out a variety of data spatial
transformations in digital logic. The proposed accelerator enables real-time computing,
omitting the need for a communication bandwidth saving mechanisms as in [12] and
enabling the fully digital implementation of such use cases as real-time image rectification
and registration, digital zoom, lens distortion correction and compression [14]. Additionally,
in this work, we formalise the logic behind parallel data access, which enables 16-point bi-
cubic interpolation and improves over other related work: [11,12]. Furthermore, the derived
model has the potential of also utilising parallel data access schemes for volumetric data.

3. Conceptual Design of the Spatial Transformation Core
3.1. Functional Architecture of the Spatial Transformation Core

Figure 1 illustrates the overall architecture of the spatial transformation accelerator.
It consists of the following logic blocks: Input and Output Coordinate Counters, Dual-
Port Memory Matrix, Write and Read Masters, Output Buffering Logic, Control Logic
and external Inverse Transformation Computing. The accelerator accepts and provides
data according to the Advanced Extensible Interface (AXI) Stream protocol. The spatial
transformation accelerator’s working principle relies on the sequential estimation of the
consecutive output sample’s location in the input image and reconstructing it using buffered
input samples.
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Transformation

Computation

Xin,Yin

X
o
u
t,
Y

o
u
t

Xin',Yin'

Logic
Control

Xin,Yin

Xin',Yin' Control Signals

Generic Spatial Transformation

Memory

Write-Read

Masters

Write Port

Read Port

Dual Port 

Memory Matrix
Read

Data Recon-

struction

Output

FIFO

BufferInput

Coordinate

Counter

AXI-
Stream

Figure 1. Functional architecture of the image spatial transformation accelerator.

In general, any image data transformation can be expressed as:

(xout, yout) = f (xin, yin), (1)

where xin, yin and xout, yout denote the input/output image coordinates, and f is some
arbitrary function, often expressed as a matrix operator for linear transformations. Our
proposed transformation solution necessitates the opposite: estimating the inverse trans-
formation and essentially retrieving the corresponding input coordinate pairs for the
consecutive output coordinates, i.e.,

(xin, yin) = f−1(xout, yout). (2)
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Input coordinate retrieval is achieved by the Output Coordinate Counter and Inverse
Transformation Computation blocks. Furthermore, the Input Coordinate Counter provides
image coordinates for the input data stream; consequently, the Control Logic has access to
the required and available data samples. This structure enables the simultaneous writing
of input data to (buffer) memories and calculating the appropriate read addresses for the
output data.

The final value for every output pixel can be reconstructed using adjacent pixels in
the input image. Dual Port Memory Matrix and Memory Write-Read Masters ensure such
functionality in a pipelined manner following a refined algorithm described in subsequent
chapters. Notably, the Memory Read Master arranges a buffered pixel data for the Re-
construction, e.g., bi-linear or bi-cubic interpolation. The output First-In–First-Out (FIFO)
buffer prevents the computing pipeline from stalling.

In some cases, consecutive coordinates from the transformed output image may result
in coordinate “hopping”, i.e., the coordinate pairs provided by the Inverse Transforma-
tion Computation block have relatively large distances in the input image. For example,
in backward lens distortion coordinate mapping illustrated in Figure 2, each of the cor-
rected output image coordinate pairs is used to calculate coordinates in the distorted input
image. In severely distorted images, it equates to large ∆x and ∆y deviations. Hence,
a sizable memory buffer is required, and the Memory Write-Read Masters should introduce
a write-read distance threshold for potentially blocking the write data path.

(xout, yout)

(xin, yin)

y

x

Δx

Δy

Figure 2. Coordinate mapping for Barrel distortion correction illustrating a potential coordinate “hopping”.

The proposed accelerator concept partially resembles the solutions proposed in [3,9,12].
However, in this article, we derive an efficient parallel access scheme for sample buffering
and retrieval. Furthermore, we generalise the model to N dimensions and demonstrate
the concrete methodology behind deriving digital circuit designs. The presented approach
enables pipelined spatial transformation and sample reconstruction utilising an additional
number of input data points. Furthermore, the proposed solution is not constrained to a
specific manipulation. The Inverse Transformation Computation represents a generic con-
cept for computing coordinate mappings for any spatial transformation, e.g., in the case of
image processing, lens distortion correction could be combined with linear transformation.

3.2. Memory Access Scheme

Figure 3 illustrates the overall approach for buffering and data access while perform-
ing the inverse transform. The write pointer continuously rolls over while, simultaneously,
the read pointer is updated using the respective write and read requests. The implementa-
tion of such an approach is straightforward for a single memory use case where the output
signal is reconstructed using a single sample, i.e., the nearest neighbour interpolation
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method. Nonetheless, the requirement for signal reconstruction with multiple samples
introduces additional complexity, yielding a compelling optimisation challenge.

WP

RP

Write / Read

Request

Di�erence

Generated

by 

Rollover

Counter

Computed

Using

Read / Write

Request

Di�erence

Figure 3. The overall concept of write and read pointer access to the memory.

One of the core requirements for achieving a fully pipelined design while enabling
more advanced interpolation is a memory buffering scheme that permits interpolation
logic with simultaneous access to adjacent pixels. The straightforward solution is based
on the use of multiple dual-port memories, as shown in Figure 4. While this approach
is convenient, it requires a considerable amount of memory, given that pixel data for
interpolation are always adjacent. Figure 5 offers a more optimised solution, where the
size of the memories is reduced by only storing the data for the respective odd and even
columns and rows. While such an approach reduces the required memory size four times,
it injects additional complexity for the write and read request multiplexing.

Memory

(size = N)

WP

RP0
RP1

RP2
RP3Memory

(size = N)

Memory

(size = N)

Memory

(size = N)

Figure 4. Straightforward data access scheme for 4-point reconstruction. Each memory Write Port
(WP) processes an identical request while Read Ports (RPs) permit parallel access. Arrows denote the
direction of the data flow.

Memory

(size = N/4)

WP

RP0
RP1

RP2
RP3Memory
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Memory
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Memory

(size = N/4)

Demux

Logic

Pseudo

Mux

Logic

To Recon-

struction

Figure 5. Optimised data access scheme for 4-point reconstruction, requiring 4× less memory. Each
Write Port (WP) processes requests separately, while Read Ports (RPs) require additional logic for
address computation and data reordering. Arrows denote the direction of the data flow.

Figure 6 demonstrates data sample storage when using the exemplary configuration
illustrated in Figure 5. Note the different address combinations caused by the varying
reconstruction areas. The modelling and generalisation of these address configurations are
the main contributions of this article. The following sections disassemble the challenge,
derive a mathematical model and disclose the general circuit generation principles.
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Figure 6. Storage of adjacent data samples across 4 memories in a 2 × 2 buffer configuration (dotted
rectangles represent various reconstruction areas).

4. Derivation and Design of the Digital Circuit
4.1. Write Model and Circuit Generation

Typically, the corresponding memory address for the given coordinates adheres to
the equation:

a = Y × W + X, (3)

where a denotes the address, W denotes the image width and (Y, X) denote the image row
and column. Nonetheless, the Generic Spatial Transformation circuit does not store the
whole image in the On-Chip Random Access Memory (OCRAM). Utilising the consecutive
quality of the write pointer, it is possible to substitute the write address generation logic
with a simple rollover counter with the maximum value corresponding to the size of the
memory buffer and the characteristics of the respective spatial transformation calculations.
Still, we require row and column indices to compute the difference between the write and
read pointers.

Considering that the memory matrix has M rows and N columns, the trailing log2(M)
row signal bits and log2(N) column signal bits determine the demultiplexing functionality
for the write pointer, illustrated by Figure 7. Naturally, for non-power-of-two reconstruction
methods, the demultiplexing circuit becomes more complex.

x0x1x2x3x4x5x6x7

y0y1y2y3y4y5y6y7

log
2
(N)

log
2
(M)

00

01

10

11

00 01 10 11

1

1

Write Request

Column

Row

Towards

Memory

Matrix

Figure 7. An example of write request demultiplexing logic when using a 4 × 4 memory matrix.

4.2. Read Model and Circuit Generation

Data retrieval is more challenging because of the requirement to generate varied
addresses for each of the memories’ read ports. Such a circuit design process can be
formalised. First, let us assume a use-case for a one-dimensional data reconstruction
with four samples, i.e., four memories. Figure 8 dissects such a one-dimensional request
into rh—high bits representing the core address for the sliced memories; rl—low bits
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utilised for individual memory address generation; and r f —fixed-point part used later
for reconstruction.

x0x1 x−1.x2x3x4x5x6x7 x−2x−3x−4

High request bits (used as base 

for individual memories)

Fixed request bits

(used for interpolation)

Low request bits (used for the 

readout multiplexing logic)

rh r l rf

Figure 8. Dissection of a 12-bit one-dimensional reconstruction request for a 4-memory (4 sample) readout.

Figure 9 illustrates four variants of such a request for a single dimension where data
samples reside across four memories. Here, the input sample index is denoted by i, and a
is the memory address in the corresponding memory. We consider the readout circuit to be
an operator that takes the request and generates the address vector for the relevant data
retrieval. Note that the address vector corresponds to the memories in the order m0–m3,
and the retrieved data may require further reordering for a proper sample reconstruction,
i.e., interpolation.

Sample Index:
Memory Address:

i
m0

i+1
m1

i+2
m2

i+3
m3Memory ID:

a a a a
i+4
m0

i+5
m1

i+6
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i+7
m3

a+1 a+1 a+1 a+1
i−2
m2

i−1
m3

a−1 a−1
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i+2 i+3 i+4 i+5

i+1 i+2 i+3 i+4

i+3i+0 i+1 i+2

[ 1  1  0  0 ]' + [ r  r  r  r ]'

[ 0  0  0 −1]' + [ r  r  r  r ]'

[ 0  0  0  0 ]' + [ r  r  r  r ]'

[ 1  0  0  0 ]' + [ r  r  r  r ]'
4x1

Memory

Request

Address

Vector
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h h h h

h

r = 11:
l

r = 10:
l

r = 01:
l

r = 00:
l

h h h h

h h h h

h h h h

Figure 9. Data retrieval for reconstruction using four input data samples.

The demonstrated mechanism for data retrieval can be expressed in a matrix form
with the following equation:

a = Svo + rh, (4)

where a denotes the address vector, S denotes the shift matrix, vo denotes the constant
offset vector and rh denotes the high bit portion of the request. In this particular 2D case,
the offset vector would be:

vo =
[
1 1 0 0 0 0 −1

]′ (5)

and with J being the reverse identity matrix, the shift matrix is:

S4×7 =



[
04×3 J4×4

]
, if rl = 0[

04×2 J4×4 04×1
]
, if rl = 1[

04×1 J4×4 04×2
]
, if rl = 2[

J4×4 04×3
]
, if rl = 3

(6)

Furthermore, the offset vector can be constructed for any power-of-two number of memo-
ries N as:

vo =
[ 1 · · · 1︸ ︷︷ ︸

N/2

0 · · · 0︸ ︷︷ ︸
N

−1 · · · − 1︸ ︷︷ ︸
N/2-1

]
(7)
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The derived model can be extended to the second dimension by considering a specific
signal reconstruction use case where reconstruction is explicitly executed across the vertical
axis. Such constraint corresponds to stretching or contracting the image along the vertical
axis. Figure 10 illustrates this particular case using four memories. The only difference
compared to the horizontal reconstruction use-case is the offset added to the memory
request address—which corresponds to the image width as follows:

C =
image width

log2(number of memories)
. (8)
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Memory ID
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Figure 10. Data retrieval for reconstruction using four vertical input data samples.

The vertical retrieval mechanism can be expressed similarly to Equation (4) by intro-
ducing an offset constant C:

a = CSvo + rh, (9)

Further extending to any dimension, the address vector becomes:

an = CnSnvon + rhn , (10)

where C1 = 1 and n is a dimension index.
Figure 11 illustrates the combination of vertical and horizontal retrieval mechanisms

to generate the required addresses for all memories. Note that we have chosen to omit the
offset constant from the offset vector in order to highlight the relationships for different
output address matrices.
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Finally, the derived mathematical model can be mapped into particular digital designs.
For N dimensions, memory addresses are expressible as an N-dimensional matrix A ∈ EN ,
where each element is computed by:

Ai1i2···iN =
N

∑
n=1

CnSnvoin
. (11)

Figure 12 encapsulates Equation (11) and illustrates the overall circuit design for
N dimensions. This incorporates the following major components:

• Offset Vector(s) —generates Snvoin
by multiplexing slices of the constant offset vector

(Equation (7)), as illustrated in Figure 13.
• Read Access Generation Circuitry—sets up all possible combinations for the memory

matrix read addresses (3-value vector for the one-dimensional use case, 3 × 3 matrix
for two dimensions, 3 × 3 × 3 cube for three dimensions, etc.) and utilises previously
generated offset vectors to multiplex addresses accordingly while consequently pro-
viding read addresses for all memories in the memory matrix. Figure 14 illustrates
such circuitry for a two-dimensional use case. In the case of constant input dimensions,
the circuitry becomes more efficient by preprocessing the fixed combinations.

• Memory Matrix—abstracts multiple memories corresponding to the number of data
samples used for the reconstruction. In the current solution, each memory incorporates
separate ports for writing and reading (i.e., T8 Static RAM (SRAM) cell); nonetheless,
the continuous nature of the write requests could be exploited to utilise a single-port
memory (i.e., T6 SRAM cell) and schedule simultaneous writes at the expense of
introducing regular pipeline stalls.

• Demultiplexing Logic—rearranges read memory data for a consistent reconstruction
of the output sample. Figure 15 illustrates such a circuit for a one-dimensional use case,
and it resembles the opposite action of the multiplexing logic in the offset generation
circuit (Figure 13). The design is reusable for every extra dimension.
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Figure 12. Read request generation for N dimensions.
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vector for a single dimension.
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Figure 15. Conceptual design of the data rearrangement logic for one-dimensional use-case.

4.3. Signal Reconstruction

Since the memory access scheme provides configurable buffer matrix arrangements,
different data reconstruction algorithms with varying neighbouring sample requisites are
conceivable. The goal is to leverage the advantage of the optimised memory management
strategy to implement cubic interpolation, one of the most accurate but more complex
methods. Naturally, other interpolation methods are supported.

In cubic interpolation, a series of unique third-degree polynomials are fitted between
each data point to obtain a continuous and smooth curve. To fit the curve and find the value
at the coordinate x, we find appropriate coefficients in the following interpolation function:

f (x) = a0x3 + a1x2 + a2x + a3, (12)

where the four unknowns result from the four equations written using the four nearest
neighbours of the point x.

The bicubic interpolation is a generalisation of the cubic interpolation for estimating
data points on a rectangular grid. The value assigned to the reconstructed sample (x, y)
derives from the equation:

f (x, y) =
3

∑
i=0

3

∑
j=0

aijxiyj, (13)

where the sixteen coefficients correspond to the sixteen equations and sixteen nearest
neighbours of the point (x, y).

For hardware implementation, the cubic interpolation is calculated based on
Equation (12) using fixed-point arithmetic operations. Four neighbouring sample values
and the coordinate make up input data for the calculations and produce the reconstructed
value. Figure 16 illustrates how five one-dimensional cubic interpolations on a rectangular
grid result in bicubic interpolation. The first four interpolations reconstruct value in the
horizontal direction. The final data point arises from the final vertical interpolation.
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Figure 16. Bicubic interpolation composed of cubic interpolation subcomponents.

The proposed implementation is straightforward and sub-optimal concerning the
minimisation of resource consumption because it is not the focus of this paper. For more
efficient implementation variants, refer to [5,8].

5. Results and Evaluation

The spatial transformation controller concept has been implemented using Very High-
Speed Integrated Circuit Hardware Description Language (VHDL) and evaluated by syn-
thesising it with different buffer configurations. The hardware validation and concept
verification process utilises Alpha Data ADM-PCIE-8K5 Peripheral Component Interconnect
Express (PCIe) development platform containing Xilinx Kintex UltraScale KU115-2 FPGA.
The provided transformation applications map the original and transformed coordinates to
demonstrate the presented solution’s performance. The component is accommodated with
AXI Stream-compliant interfaces, while the PCIe Direct Memory Access (DMA) engine trans-
fers data between the host and the device. Loopback tests enable performance (throughput)
comparison against an empty system.

5.1. One-Dimensional Resampling

Resampling for one-dimensional data, such as audio recordings, was implemented
using the cubic interpolation method to reconstruct the samples at the target coordinates.
The generic spatial transformation accelerator, depicted in Figure 1, is configured to have
four sample buffers in the Dual Port Memory Matrix to collect the neighbouring samples
necessary for cubic interpolation. The coordinate processor utilises transformed sample
coordinates to calculate the corresponding source sample location. In this example use-
case, the processor can multiply coordinates with a coefficient or add an offset. Scaling the
coordinates can resample any one-dimensional signal to a different sample rate, for example,
to align sample rates (data registration) and prepare data for further processing.

Table 1 shows the implementation’s resource utilisation on a Xilinx Kintex XCKU115-2-
FLVA1517E device. Notably, the one-dimensional transformation use case necessitates only
two block RAM units due to the small number of required buffered memory. Importantly,
every Block RAM (BRAM) unit of the selected FPGA architecture is configurable as two
independent 18 Kb RAMs [15], thus resulting in the utilisation of two (instead of four)
BRAM units.

Table 1 also provides the maximum clock frequency and power consumption obtained
from the Xilinx Vivado design suite. The data transfer rate is given as two measurements—
the throughput of the bypass path and the throughput of the accelerator unit. Time was
measured on the host machine by repeating a 10-megabyte (input) transfer 100 times and
averaging the results. With a sample depth of 8 bits, the maximum capacity of the bypass
path of the AXI stream channel was reached with a 125 MHz clock frequency. The transfer
rates decreased notably to 833.83 Mbps when utilising the transformation accelerator.

Table 1. One-dimensional resampling hardware implementation results.

DSP Registers LUT BRAM Frequency,
MHz

Throughput
(Bypass), Mbps MSE

5 (0.09%) 812 (0.06%) 634 (0.1%) 2 (0.09%) 236 833.83 (1041.03) 0.1714
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The accuracy of the interpolation was analysed by resampling a waveform and com-
paring the results with the exact solution. Figure 17 illustrates a rational conversion factor
used to upsample a sine waveform from 11,025 to 44,100 samples/s. The in-between
values are interpolated from the neighbouring samples, and the reconstructed waveform
approaches the exact sinusoidal wave.

Generally, the latency is dependent on multiple factors, including the implementation
of the Inverse Transformation Computing block, the chosen reconstruction method and
the corresponding buffering scheme. Nonetheless, in the 1D use-case, the minimum
achievable latency is 18 clock cycles, where two clock cycles are dedicated to constructing
the reconstruction’s sample coordinate, eight cycles are dedicated to storing samples in
parallel buffers, two cycles are dedicated to reading and reordering samples and six cycles
are dedicated to the actual reconstruction.

The results illustrate the concept’s applicability for one-dimensional use cases. Nonethe-
less, the reconstruction precision depends on different aspects, such as fixed-point data-type
precision and signal waveform.

Figure 17. A linearly quantised test waveform represented with 8-bit integers is upsampled 4 times.

5.2. Two-Dimensional Resampling

For an image pixel resampling application, the system utilises 16 buffer memories,
which ensures access to the input data samples for bi-cubic interpolation. A hardware
matrix multiplier is employed to find the location of the source pixels by multiplying
the target pixel coordinates with a transformation matrix. The coordinate processor can
have numerous implementations; nonetheless, a matrix multiplier has the advantage of
performing arbitrary transformations and provides a convenient mechanism for evaluating
the proposed architecture.

Table 2 summarises resource consumption and provides a comparison with related
work. The utilised resources with a single interpolation core and a matrix multiplier are
51 (0.92%) hardware multipliers, 5203 (0.78%) logic cells and 5304 (0.4%) registers. The over-
all usage of the embedded block RAM is variable and depends on the size of the dedicated
buffer required for the specific transformation. For this purpose, the implementation utilises
a 1 megabyte or 12.41% of available block RAM resources, which corresponds to the maxi-
mum buffering size of the accelerator. The core also is configurable for three interpolation
cores, i.e., for RGB image reconstruction. In addition, we provide resource consumption
without the matrix multiplier since the proposed architecture can achieve uncomplicated
image transformations (e.g., scaling, translation) with simpler coordinate processors.
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Table 2. Comparison of older bicubic interpolation designs with the proposed architecture and the
proposed architecture with matrix multiplier (MM).

Architecture Method DSP Registers LUT BRAM Frequency, MHz

Mahale et al. [5] (Gray) Bicubic 48 (5.0%) 7843 (1.1%) 7900 (2.2%) 78 (12.3%) 75
Zhang et al. [16] (Gray) Bicubic 20 574 870 - 209
Boukhtache et al. [8] (Gray) 3C-2L 11 2046 2470 - 212
Proposed Gray MM Bicubic 51 (0.92%) 5304 (0.4%) 5203

(0.78%)
256

(11.85%) 173

Proposed Gray Bicubic 23 (0.42%) 4060
(0.31%)

4050
(0.61%)

256
(11.85%) 185

Proposed RGB MM Bicubic 95 (1.72%) 10,841
(0.8%)

10,184
(1.5%) 768 (35.6%) 172

Proposed RGB Bicubic 63 (1.14%) 9196
(0.69%)

8385
(1.26%) 768 (35.6%) 204

Our proposed architecture without the matrix multiplier can be fairly compared
with interpolation cores included in Table 2 considering that these works omit complex
coordinate calculations. The implementation costs for the solution in [5] with intricate line
buffers reveals that our proposed approach is more efficient. Other recent and optimised
architectures [8,16] mentioned in a comprehensive study in [8] are less expensive but only
include a shift buffer, which is only suitable for image scaling transformations. Notably,
RGB implementations require roughly twice the number of LUTs and FFs compared to
grayscale implementations. It can be explained by the scalability aspects of some of the
components, in which resource consumption is determined by the resolution and pixel
count rather than channel count, e.g., Coordinate Counters, Control Logic and Memory
Write-Read Masters blocks.

Notably, while the memory-mapped architecture frequency is similar, the data show an
unexpected anomaly. The RGB streaming architecture has a notably higher clock frequency
than grayscale architecture, which is contrary to the expected. The inconsistency may be
caused by the fitting algorithm, which employs some uncertainty.

Figure 18 depicts the transfer rates measured at several image resolutions. The estima-
tion of the maximum transfer rates possible with the test environment utilised in this work
follows the measurement of transfers while bypassing the accelerator (data loopback trans-
fer). We select 2× scaling and vertical shear transformations to expose the effects on the
transformation performance while necessitating different amounts of buffer memory. Only
a negligible delay arises during the scaling operation since the transformed coordinates
increase consecutively. On the other hand, when a shear coefficient λ for the y dimension is
present in the transformation matrix, the transformed coordinates are y′ = λx + y. As can
be seen, a shear coefficient smaller than zero will cause the memory controller to sample
each consecutive pixel with a decreasing row offset, necessitating a buffer, which can hold
|λW| number of rows, where W is the width of the image. Subsequently, the transfer rates,
in this case, are lower. With the RGB arrangement, the transfer rates are slightly lower than
with a single interpolation core but still reach 29 frames per second with a frame size of
2048 × 2048 pixels.

The reconstruction quality is evaluated by inspecting an image after resizing from
VGA to XGA resolution, as shown in Figure 19. With a conversion factor of 1.6, only every
fifth pixel is reused from the input data as it is, while others are interpolated. Stairstepping
can be observed on the white blossom edges in the cropped original image in Figure 19c,
whereas in the up-scaled image in Figure 19d, the effect is not noticeable. To visualise and
compare the interpolation quality Figure 20 illustrates the absolute difference obtained by
upscaling and then downscaling the VGA reference image by the same factor of 1.6. The
mean square error (MSE) is used to evaluate the error compared to the reference image
of the size N × M by finding the mean of the squared differences between each of the
reference pixel values p(i, j) and the generated pixels p′(i, j):

MSE =
1

NM

N−1

∑
i=0

M−1

∑
j=0

(p(i, j)− p′(i, j))2 (14)
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We see that, in Figure 20, the proposed algorithm yields a 2.7 times higher MSE due to the
reduced precision of the fixed point arithmetic.

(a) Gray (b) RGB
Figure 18. Rate of transformation at image sizes ranging from 256 × 256 to 8192 × 8192. (a) Single
interpolation core. (b) Three interpolation cores.

(a) (b)

(c) (d)
Figure 19. (a) Before scaling 640 × 480 image and (b) after 1.6 times up-scaling 1024 × 768 image.
(d) Closer inspection of reconstruction after resizing and (c) initial for reference.

The results show that the interpolation error of the algorithm changes depending on
the details in the test image. To fairly evaluate the quality of interpolation, we select five
commonly used test images with varying levels of detail and perform different types of
transformations. MSE and peak-signal-to-noise-ratio (PSNR) measurements relative to a
software bicubic interpolation in Table 3 confirm that the proposed solution consistently
provides low levels of errors.
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(a) (b)
Figure 20. Absolute error after upscaling and then downscaling a reference image by a factor of 1.6.
(a) Reference image after software bicubic interpolation (MSE = 0.3924). (b) Image after proposed
fixed-point interpolation (MSE = 1.0763).

Image rotation measurements in Table 3 and the result in Figure 21 show that the
proposed architecture is suitable for transformation with deep read operations. In contrast
to the line buffer approach, the parallel memory access scheme can store large fragments of
the image or even an entire image. In the case of Figure 21, for a 45◦ rotation, at most half
of the 512 × 512 image resides in buffers while maintaining a transfer rate of 275 frames
per second.

The latency characterisation of a 2D use case is far more involved compared to the 1D
scenario. Similarly, apart from the particular implementation of the Inverse Transformation
Computing block, the reconstruction method and the corresponding buffering scheme,
the latency is also influenced by the highest deviation in the transformation and nonlinearity
aspects. For the simplest identity transformation use-case, the minimum achieved latency
is 220 clock cycles, where 10 clock cycles are spent on computing the coordinate pair,
196 cycles—for storing samples in memory buffers, 2 cycles—for reading and reordering
samples and 12 cycles—for the actual reconstruction.

Table 3. MSE and PSNR compared to software bicubic interpolation solution.

Images MSE PSNR [dB]

Sc
al

e
1.

25 Cameraman 1.7094 45.8024
Lake 4.1096 41.9928
Lena 2.1119 44.8842
Peppers 2.2535 44.6021
Bridge 7.4841 39.3894

R
ot

at
e

30
◦ Cameraman 2.4567 44.2273

Lake 4.2654 41.8312
Lena 2.5701 44.0313
Peppers 2.6491 43.8998
Bridge 7.6319 39.3045

R
ot

at
e

45
◦ Cameraman 1.6840 45.8675

Lake 2.9820 43.3857
Lena 1.9591 45.2103
Peppers 1.9436 45.2447
Bridge 5.6992 40.5727
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Figure 21. RGB image rotation demonstrates that transformations with deep buffering and
three interpolation cores are attainable.

6. Conclusions

In this work, a parallel memory access approach for data resampling and recon-
struction has been proposed. The concept consists of a mathematical model and digital
implementation of the corresponding operators. The underlying address generation pro-
cedure manifests through a set of matrix operations and is applicable for an arbitrary
number of data dimensions. Furthermore, the operator structure lends itself to parallel
implementation mediums, e.g., programmable logic devices.

The scalability and performance were verified by applying the proposed concept for
one- and two-dimensional data formats using cubic and bicubic interpolation methods.
Hardware resource consumption, interpolation quality and transfer rates were evaluated
using practical image scaling and rotation applications. Interpolation quality was estimated
using MSE and PSNR measurements for comparisons with equivalent existing solutions.
Results indicate that the interpolation achieves a pipelined performance and satisfies the
reconstruction quality. Nonetheless, the overall resource utilisation is slightly higher when
compared to related work due to more generic computational logic.

Compared to the less complex sample acquisition architectures, this technique pro-
vides deep read requests and justifies higher implementation costs by supporting resam-
pling tasks with sparse address inquiries. This capability facilitates usage in different
transformation computation instances, e.g., lens distortion correction and data registration.
Most importantly, the proposed architecture ensures the efficient utilisation of the expensive
on-chip (SRAM) memory resources.

Future advancement of the solution could incorporate a DDR-based memory con-
troller(s) and comprehensive caching hierarchy. Such an approach could enable the
real-time spatial transformation of enormous images and other data formats. Further-
more, the solution could be probed against currently unaccelerated higher dimensionality
use cases.
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