
Citation: Alalwany, E.; Mahgoub, I.

An Effective Ensemble Learning-

Based Real-Time Intrusion Detection

Scheme for an In-Vehicle Network.

Electronics 2024, 13, 919. https://

doi.org/10.3390/electronics13050919

Academic Editors: Dongkyun Kim

and Taeshik Shon

Received: 9 January 2024

Revised: 8 February 2024

Accepted: 26 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Effective Ensemble Learning-Based Real-Time Intrusion
Detection Scheme for an In-Vehicle Network
Easa Alalwany 1 and Imad Mahgoub 2,*

1 College of Computer Science and Engineering, Taibah University, Yanbu 46421, Saudi Arabia;
ealwani@taibahu.edu.sa

2 Electrical Engineering & Computer Science, Florida Atlantic University, 777 Glades Road,
Boca Raton, FL 33431, USA

* Correspondence: mahgoubi@fau.edu

Abstract: The emergence of connected and autonomous vehicles has led to complex network ar-
chitectures for electronic control unit (ECU) communication. The controller area network (CAN)
enables the transmission of data inside vehicle networks. However, although it has low latency and
enjoys data broadcast capability, it is vulnerable to attacks on security. The lack of effectiveness
of conventional security mechanisms in addressing these vulnerabilities poses a danger to vehicle
safety. This study presents an intrusion detection system (IDS) that accurately detects and classifies
CAN bus attacks in real-time using ensemble techniques and the Kappa Architecture. The Kappa
Architecture enables real-time attack detection, while ensemble learning combines multiple machine
learning classifiers to enhance the accuracy of attack detection. The scheme utilizes ensemble methods
with Kappa Architecture’s real-time data analysis to detect common CAN bus attacks. This study
entails the development and evaluation of supervised models, which are further enhanced using
ensemble techniques. The accuracy, precision, recall, and F1 score are used to measure the scheme’s
effectiveness. The stacking ensemble technique outperformed individual supervised models and
other ensembles with accuracy, precision, recall, and F1 of 0.985, 0.987, and 0.985, respectively.

Keywords: controller area network; machine learning; ensemble learning; in-vehicle network; Kappa
Architecture; intrusion detection system

1. Introduction

Significant advancements have been made in vehicle technologies over the past few
decades, which has led to the development of connected and autonomous vehicles in the
automobile industry. This digital transition has resulted in sophisticated vehicles that rely
on complicated network architectures to ensure smooth communication among their many
components. Among various network topologies, the controller area network (CAN) bus
has emerged as a crucial basis for vehicle networks, enabling efficient data transmission
between an enormous number of electronic control units (ECUs) [1–3].

The CAN bus has many benefits when used in automobiles, including reduced costs,
enhanced real-time communication, and simple installation. The CAN bus is characterized
by a number of features, including low latency, broadcast data transfer, and priority arbi-
tration. These same characteristics, however, also increase its vulnerability to attack [4–6].
Conventional security mechanisms, including authentication, firewalls, and encryption
are not suitable for CAN due to their structural limitations. These limitations include the
absence of support for such security methods [7,8]. Thus, the modern Internet of Vehicles
(IoV) is seriously threatened by the susceptibility of automotive networks to malicious
threats. An attacker could potentially take control of essential vehicle functions, such as
acceleration, steering, and braking [9,10].

As the CAN bus was originally developed without any security mechanism, it is
vulnerable to a variety of attacks. Consequently, it is essential to develop and implement

Electronics 2024, 13, 919. https://doi.org/10.3390/electronics13050919 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13050919
https://doi.org/10.3390/electronics13050919
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0948-0069
https://orcid.org/0000-0002-4461-7307
https://doi.org/10.3390/electronics13050919
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13050919?type=check_update&version=1


Electronics 2024, 13, 919 2 of 14

highly accurate detection mechanisms to effectively identify and counter potential CAN
bus attacks. The intrusion detection system (IDS) is a notable security mechanism that has
received considerable attention among researchers [7,11–13]. To defend against intrusions
in environments with limited resources, the authors in [3] recommend implementing
IDS for in-vehicle networks (IVNs). Among the security techniques that have garnered
interest from researchers is the utilization of intrusion detection systems. Investigating and
developing these mechanisms is an effort to strengthen network security in the face of the
rising number of attacks. The primary goal of IDSs is to capture information and detect
unusual activities in order to prevent unauthorized acts, such as data theft, censorship, or
protocol abuse. For the protection of computer resources at the network level, IDSs are
implemented. IDSs are highly suitable for detecting anomalies in common networks due
to their essential features and capabilities. Furthermore, the integration of IDS is crucial
in order to detect and prevent malicious activities automatically, as highlighted in [14].
These systems analyze network traffic and security records, and audit data to find potential
security breaches. IDSs have generated considerable interest from both academia and
industry due to their critical role in protecting network security, particularly in industrial
control networks (ICNs).

The integration of novel technologies can enhance the effectiveness and accuracy of
IDSs in in-vehicle networks that are faced with challenging cyberattacks. To enhance the
detection capabilities and improve the level of accuracy of results obtained by IDSs, the
utilization of ensemble learning and Kappa Architecture real-time prediction techniques
can be of essential significance.

Ensemble learning allows IDSs to utilize multiple machine learning (ML) classifiers,
thereby enhancing their ability to detect attacks in the CAN bus network. Ensemble
methods have been considered to increase intrusion detection accuracy over implementing
single classifiers in [15–18]. The Kappa Architecture is used for real-time attack detection.
The Apache Spark Streaming Discretized Stream (DStream) is utilized in real-time to
process and store CAN bus data records in batches. The real-time stream records will
be transmitted to the streaming layer of Kappa Architecture, where Spark Streaming
can analyze the real-life data and then utilize the stored ensemble learning techniques
to provide real-time detection and classification of attacks. By utilizing Apache Spark’s
real-time capabilities, the CAN bus network can quickly handle massive amounts of data,
allowing for the rapid detection of anomalies or malicious activity. Prediction in real-time
Apache Spark has emerged as a prominent strategy for overcoming limitations in numerous
fields. It has received considerable attention as an alternative approach to overcoming these
limitations. Apache Spark has been extensively implemented in numerous research fields
and applications, such as healthcare systems [19], and traffic [20,21]. The integration of
ensemble methods and efficient real-time data processing enhances the capability of IDSs
to detect and classify common attacks in the CAN bus network including Denial-of-Service
(DoS), fuzzing, replay, and spoofing.

The design of the CAN bus lacks robust security mechanisms, which results in vulnera-
bilities to numerous attacks. Designing IDSs with high accuracy is crucial for detecting and
classifying attacks on the CAN bus. No study has proposed real-time CAN bus network
threat detection. We developed an IDS that employs ensemble learning and the Kappa
Architecture to detect and classify CAN bus attacks in real-time. This study proposes a
solution that aims to design a highly effective IDS scheme. The solution uses ensemble
methods and Kappa Architecture real-time detection techniques. By integrating ensemble
methods into the IDS scheme and employing Kappa Architecture for real-time data anal-
ysis, the proposed solution aims to improve the accuracy and efficiency of detecting and
classifying common CAN bus attacks.

• We design IDS with high accuracy for detecting and classifying attacks on the CAN
bus. The scheme uses ensemble methods and Kappa Architecture’s efficient real-time
data processing technique. We enhance IDS accuracy and efficiency by integrating



Electronics 2024, 13, 919 3 of 14

ensemble methods and leveraging Kappa Architecture for real-time data analysis in
the CAN bus attack detection scheme.

• We develop and test three supervised models that include hyperparameters tuning,
balancing of data, and feature selection. The models are random forest (RF), eXtreme
Gradient Boosting (XGBoost), and decision tree (DT).

• With three different ensemble methods, we combine the three supervised models to
enhance our scheme’s ability to detect and classify DoS, fuzzing, replay, and spoofing
attacks. These ensemble methods are stacking, voting, and bagging.

• In the evaluation of our scheme, we use well-known evaluation metrics, including
accuracy, recall, F1 score, precision, and area under the curve receiver operating
characteristic (ROC-AUC). The four attacks are accurately detected with an error rate
of 1.5%.

This study’s remaining sections are structured as follows: Section 2 addresses the
relevant work. Section 3 covers the CAN bus, ensemble methods, Kappa Architecture, and
Apache Spark overview. The proposed scheme is illustrated in Section 4. Section 5 contains
the results and analysis. Section 6 finally concludes the paper.

2. Related Work

This section contains a discussion of studies relevant to our study on IDSs for CAN bus
networks. Moulahi et al. [22] proposed a CAN-bus-based system for detecting malicious
intrusions in vehicles. They effectively detected three attacks by utilizing RF, DT, support
vector machine (SVM), and multi-layer perceptron (MLP) classifiers to identify between
normal and malicious messages. CAN bus intrusion detection may be a potential future
enhancement. Reduced inception-ResNet, a deep convolutional neural network (DCNN)
technique, was presented in a study [23] for identifying in-vehicle attacks. This technique
outperformed DT, NB, SVM, and ANN in terms of accuracy of detection. The study showed
that the CAN bus attack performance requires further improvement.

Furthermore, a method for identifying CAN bus intrusion threats was proposed
in [24]. Combining a convolutional neural network with an attention-based gated recurrent
unit, their hybrid model demonstrates a potential strategy for detecting vehicle threats.
A comprehensive study conducted by [25] investigated communication vulnerabilities in
in-vehicle networks and proposed machine learning-based security methods. While the
survey critically evaluated the effectiveness of these security solutions, it emphasized the
need to evaluate their performance in real-time.

Another study demonstrated the current focus on securing vehicular networks but
also highlighted the lack of coverage for real-time approaches. The survey indicated that
additional studies are needed to investigate real-time approaches and their implementa-
tion in the overall framework of security in vehicular networks [16]. In a different field,
researchers used Apache Spark for real-time prediction. For instance, to improve prediction
accuracy for real-time high-dimensional data challenges, ref. [26] developed a cascade
structure on the Spark MLlib Big Data Analytics platform by combining MLP with LSTM.
The results of the study showed that this method is effective in enhancing the accuracy
of detection.

To identify DDoS attacks, ref. [27] proposed S-DDoS, a streaming-based distributed
and real-time DDoS detection system built on the Apache Hadoop framework. Their system
identified DDoS attack traffic in real-time using the K-means clustering algorithm, and it
achieved a high detection accuracy. In another study [28], the authors used the UNSW-
NB15 dataset to investigate efficient Spark-based anomaly identification. The authors
proved that their proposed method produced higher accuracy when utilizing Spark for
anomaly identification.

To our knowledge, no studies have proposed real-time CAN bus network attack
detection. We designed an IDS that uses ensemble learning methods and the Kappa
Architecture to achieve real-time highly accurate attack detection and classification in CAN
bus networks, with a low error rate of 1.5%.



Electronics 2024, 13, 919 4 of 14

3. Background

This section introduces fundamental concepts essential to the study. It begins with an
overview of the CAN bus, followed by a discussion of ensemble learning for enhancing
detection accuracy. The significance of Kappa Architecture in enabling real-time data
processing is then demonstrated, and Apache Spark is highlighted as an effective data
processing engine.

3.1. CAN Bus

CAN bus is a serial communication protocol widely used for ECU-to-ECU commu-
nication because of its high speed and robust communication. In the 1980s, Robert Bosch
GmbH developed it for automotive applications [29]. By allowing numerous ECUs to
exchange data and control signals over a shared bus architectural concept, the CAN bus
provides real-time communication. Its benefits include low cost, easy installation, and fault
tolerance. A broadcast technique is used in the CAN bus protocol to ensure that all network
nodes receive data and messages. Each bus is capable of performing a range of functions,
including engine and braking control [30,31]. Seven fields represent a CAN packet. The
start of the frame starts CAN message transmission to all nodes that are connected with one
bit. The arbitration field (CAN ID) determines the message’s significance. High-priority
CAN ID messages have low values. The control field includes a data length code (DLC).
The data field transfers data. The cyclic redundancy check (CRC) field validates data
packets. The acknowledge (ACK) field confirms that network receiver nodes received CAN
packets. The ‘end of frame’ completes the CAN messages. Attackers can use the ID-based
priority mechanism of the CAN protocol to launch DoS attacks by sending high-priority
messages through it and gaining access to other services. The vulnerability of the protocol
to deceptive data injection into the bus network is attributed to its simplicity and high
adaptability. Moreover, injection attacks are possible due to the absence of authentication
and source/destination addresses in CAN messages. Such attacks frequently exploit the
onboard diagnostics II (OBDII) interface to inject malicious messages and disable func-
tionalities, which may come from external sources such as Wi-Fi, cellular, or Bluetooth,
or internal sources such as the OBD [32–35]. The CAN protocol lacks sufficient security
support, which limits vehicle communication security. Cyberattacks have targeted the
CAN bus because of its vulnerabilities [16,36,37].

3.2. CAN Bus Attacks

Attackers can utilize these vulnerabilities to compromise the communication system’s
availability, confidentiality, and integrity [38–40]. In [10], hacking was employed to gain
unauthorized access and control over the functionalities of a Jeep Cherokee. The most
common inter-vehicle attacks are message injection attacks, which include DoS, spoofing,
replay, and fuzzing [41]. A DoS attack occurs when the attacker intends to render com-
munication services inaccessible. This is achieved by increasing the number of messages
transmitted via the CAN bus. The attacker will send high-frequency messages that either
have a higher priority or lower priority than a normal message. A malicious node can
intentionally raise the level of bus occupancy, resulting in delays or perhaps preventing
other communications. Fuzzing is a technique employed by attackers wherein they inject
messages with randomly generated CAN IDs that have the aim of imitating legitimate IDs.
Attackers can launch this type of attack against a network at any time by transmitting a
large number of compromised IDs and data. This attack is possible even if the victim node
is unknown. The attack happens due to weaknesses in the CAN bus protocol’s authentica-
tion and data integrity. Replay attack: the aim of this attack is to intercept authentic CAN
messages during transmission and subsequently re-transmit them into the CAN bus. This
attack may cause unauthorized actions or the broadcast of false information throughout
the network. A spoofing attack involves the unauthorized injection of messages into the
CAN bus by utilizing CAN IDs that are associated with authorized nodes. This is made



Electronics 2024, 13, 919 5 of 14

possible due to the absence of authentication in the communication of the CAN bus. This
attack has the potential to reduce communication efficiency.

3.3. Ensemble Methods

Ensemble learning is a methodology in machine learning that combines several dif-
ferent models to enhance the accuracy of predictions or classifications. Ensemble learning
is a method for enhancing performance, robustness, and generalization by combining
the strengths of multiple models. Bagging, voting, and stacking are common ensemble
learning techniques. Each model contributes its own predictions to the ensemble. Ensemble
learning through stacking is a common technique employed for combining the outcomes
of several basic classifiers via a meta-model. The objective is to enhance the performance of
the ensemble through the fixing of errors. The main concept is to use a different classifier to
fix the weaknesses of previous classifiers [42]. Two-stage learners are used in the stacking
technique to determine the most effective way of combining the individual models of the
base learners with the meta-learner. The process of voting learning involves combining
multiple model predictions to produce the final prediction. It is predicated on the idea
that integrating the decisions of multiple models can typically enhance performance. The
process of voting-based learning applies to both classification and regression tasks [43].
Ensemble learning uses bagging, to increase the machine learning model’s stability and
accuracy [44]. It utilizes random sampling with replacement to create various subsets of
the original training data. Each subset trains a model, and the final prediction is based on
all models’ predictions.

3.4. Kappa Architecture

The Kappa is an architecture intended to handle real-time data processing with high
efficiency, scalability, and fault tolerance. As an alternative to Lambda, it was first proposed
by Jay Kreps. By combining batch and real-time processing into a single layer so it consists
only of stream and service layers, the Kappa Architecture streamlines the data processing
pipeline, as depicted in Figure 1. It utilizes a single stream processing system that manages
both historical and incoming data, resulting in low latency and simplified data management.
The Kappa Architecture employs a message-passing system to process real-time data.
Apache Spark MLlib is used by the streaming layer for developing machine learning models
for real-time prediction and analytics. The results are transmitted to the service layer for
storage in Hadoop Base, Cassandra, or MySQL, among others. The service layer allows
for real-time analysis, decision-making, and user access via visualization, dashboards, and
application programming interfaces (APIs). To implement the Kappa, we use Apache
Spark and Spark Streaming so we can develop a real-time prediction system that efficiently
analyzes data, performs machine learning, stores results, and offers real-time analysis [45].

Figure 1. Kappa Architecture.

3.5. Apache Spark

Apache Spark is a scalable and efficient distributed computing framework for process-
ing and analyzing large amounts of data. Spark provides a single computational model for
running a variety of applications, including batch processing, real-time streaming, machine
learning, and graph processing. It offers high-level APIs in a number of languages, which
programmers can use to create sophisticated data processing pipelines. These program lan-
guages include Java, Python, R, and Scala. Spark’s in-memory computational capabilities



Electronics 2024, 13, 919 6 of 14

allow for rapid data processing and iterative algorithms, making it suitable for real-time
analytics and machine learning tasks. The analysis of streaming data can be performed in
real-time using machine learning and statistical approaches. This helps identify and deal
with issues that are time-sensitive and crucial. Streaming data lets systems analyze data in
real-time and make predictions. Streaming data are usually ingested in real-time but are
processed in small amounts, which is sufficient to train machine learning models [46–50].

4. Proposed Method

It is essential for the safety of drivers, passengers, and the vehicle itself that communica-
tion within the vehicle be protected. The scheme aims to enhance CAN bus communication
security by detecting attacks on the CAN bus network. The objective of the study is to
design an IDS by utilizing ensemble learning methods for the purpose of detecting and
classifying real-time attacks on the CAN bus. The ensemble approach can effectively and ac-
curately, identify and detect attacks in CAN bus communication by leveraging the strengths
of multiple ML models. For analyzing the real-time data collected by the CAN bus and
using ensemble learning algorithms for intrusion detection, The Kappa Architecture en-
ables real-time attack detection. The effectiveness of the proposed approach was evaluated
using well-known evaluation metrics. Our proposed model’s workflow is presented in
Figure 2, which includes a learning layer and real-time capabilities. As shown in Figure 3,
our IDS scheme can be integrated into the architecture of the in-vehicle network in [51,52].
A network-based IDS is strategically positioned in the vehicle’s CAN architecture at the
CAN bus. The system actively monitors and inspects the communication system within
the vehicle by placing sensors to collect CAN messages and utilizing IDS. The IDS detects
any cybersecurity threat by analyzing the communication within the CAN network of the
powertrain, head unit, chassis, and body electronics [5].

Figure 2. The workflow of our proposed model.



Electronics 2024, 13, 919 7 of 14

Figure 3. The architecture of the in-vehicle network with our proposed scheme integrated.

4.1. Dataset

For this study, we obtained the CAN intrusion dataset from IEEE DataPort [53]. The
dataset was selected since it was collected in 2020. One important component of this
dataset is that it has full labels, which are required for supervised models. The dataset’s
authors gathered millions of CAN bus messages by using data taken from actual vehicles.
DoS, spoofing, replay, and fuzzing were the four types of attacks launched against the
dataset. Features in the dataset include the timestamp feature which records each CAN bus
message’s capture time. CAN communications are identified by an arbitration ID. Each
CAN message’s data length code (DLC) shows its data payload length. CAN data, the
network’s payload, are represented by the data feature. The dataset’s target feature detects
CAN message attacks. It labels instances as normal or associated with DoS, spoofing, replay,
or fuzzing attacks. The number of benign and attacked samples is shown in Table 1.

Table 1. The number of benign and attacked samples.

Message Type Count

Normal 3,372,743
Flooding 154,180
Fuzzing 89,879
Replay 47,593

Spoofing 7756
Total 3,672,151

4.2. Learning Stage

In this study, multiple preprocessing methods were used to prepare the dataset for
analysis. The preprocessing stage utilized label encoding to transform categorical variables
into numerical representations. The process involves assigning distinct numerical codes to
individual categories, thereby enabling the efficient processing of data by machine learning
models. To address problems such as duplicate and null values, the data were cleaned. Re-
dundancy was eliminated, and data integrity was ensured by removing duplicate instances.
The feature selection was employed to determine the most significant features present in
the given dataset. The extra tree technique was used to determine the significance of each
feature and eliminate those with minimal or no relevance to the analysis. Dimensionality
was reduced and modeling efficiency was improved with this approach. Figure 4 presents
an overview of our proposed model’s workflow, which includes the following phases: the
CAN bus input dataset, data preprocessing, supervised model building, ensemble mod-
eling, attack classification, and scheme evaluation. The dataset split consists of 2,495,077
training samples and 817,042 test samples, with training taking 60 min and testing taking
20 min. We balanced the data during model training to eliminate the data imbalance across
classes. With the majority class dominating predictions, imbalanced classes may affect
model performance. To address this, we used near-miss undersampling. Near-miss bal-
ances the dataset by reducing the majority class data to match the minority class, enhancing
the classification accuracy. During the supervised model phase, we utilized three models
that have demonstrated high performance in our previous research [15]: RF [54], DT [55],



Electronics 2024, 13, 919 8 of 14

and XGBoost [56]. The previous research indicated that these models show a high level
of accuracy, making them appropriate candidates for the present study. We tuned hyper-
parameters to improve the machine learning model performance. Each model’s optimal
hyperparameters were found via a random search. This helps find the most effective model
performance. In order to enhance the performance of a single classifier, ensemble methods
can be used to decrease overfitting, strengthen the classifier, and improve its effectiveness
at generalizing. These ensemble methods are stacking voting and bagging. The stacking
ensemble approach was used during the ensemble phase, and the RF, DT, and XGBoost
models were used as the base models. The XGBoost model is used as the meta-model for
this ensemble of methods. The predictive ability of the meta-model is improved by using
the predictions of the basic models as inputs, which is achieved by stacking. The bagging
classifier has been combined with the XGBoost model in order to reduce overfitting in the
bagging process. Aggregating these models’ predictions improves the model’s stability
and generalization. the combination of the RF, DT, and XGBoost models is utilized for
the voting ensemble technique. Voting combines the predictions of multiple models to
generate an accurate prediction. The predictions of each model are given equal weight,
and the majority prediction is chosen as the final output. The objective of our study was
to enhance predictive performance by utilizing a combination of supervised models and
ensemble techniques, thus leveraging the unique strengths of each model.

Figure 4. The workflow for ensemble classifiers.

4.3. Kappa Architecture

The Kappa Architecture is a common design pattern utilized for the purpose of
real-time data processing and analysis. It is specifically employed in situations where the
processing of continuous data streams with low latency is of utmost importance. The Kappa
Architecture is used in this scenario for processing real-time traffic records. The design
utilizes Apache Spark Streaming for the purpose of ingesting and processing real-time data
in the form of a Discretized Stream (DStream), which stands for a sequence of RDDs. Kappa



Electronics 2024, 13, 919 9 of 14

Architecture’s streaming layer uses Spark Streaming to perform a variety of data operations
and transformations. Within the framework of the processed data, ensemble methods
are employed to provide real-time malicious traffic detection using ensemble methods.
These ensemble methods have been trained using historical data. The streaming layer
then transmits the prediction results to the serving layer of the Kappa Architecture. The
serving layer analyzes and makes the results available to other applications and systems.
When applied to traffic data, the Kappa Architecture uses Spark Streaming and ensemble
algorithms to process the data in real-time and provide accurate detection. A real-time data
stream from the CAN bus is continuously appended to the main dataset in the streaming
layer, and the historical database will be updated to accommodate new examples and
features, ensuring the system remains current.

5. Results and Discussions

In this study, we utilized accuracy, precision, recall, F1 score, and ROC metrics for
evaluating the performance of the scheme. These metrics are defined below [57];

Accuracy is a frequently used metric to evaluate classification performance, calculated
as the ratio of correctly classified samples to the total number of samples. Precision is a
metric that evaluates the predictive capability of an algorithm. It is calculated by dividing
the number of accurately identified positive samples (TPs) by the sum of accurately and
incorrectly classified positive samples. Recall measures the reliability of an algorithm in
accurately identifying all relevant instances, calculated as the true positives (TPs) divided
by the sum of true positives and false negatives (FNs). The F1 score is a single value that
combines precision and recall metrics to evaluate a model’s performance. ROC graphs
illustrate the trade-off between sensitivity (true positive rate, or TPR) and specificity (true
negative rate, or TNR), serving as a tool to evaluate the performance of classification models.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(4)

Speci f icity =
TN

FP + TN
(5)

Sensitivity = Recall (6)

In the results of supervised models, we focused on improving the effectiveness of
three supervised models: random forest (RF), XGBoost, and decision tree (DT). We were
able to enhance the predictive capabilities of the models by employing techniques such as
data balancing, feature selection, and model tuning. We utilized a K-fold cross-validation
process with K equals 5. As seen in Table 2, the DT model’s accuracy, precision, recall, and
F1 were 0.981, 0.984, 0.981, and 0.981, respectively. This results in a balanced detection of
class labels. The accuracy of the XGBoost model was 0.982, and its precision and recall
scores were 0.985 and 0.982, respectively, demonstrating outstanding performance. Its
balanced 0.9829 F1 score emphasizes its strong prediction ability. The Rf model performed
well, even if its accuracy was 0.973. A 0.977 precision and 0.973 recall score indicate that
the model correctly detected positive events. The F1 score of 0.973 indicates a balanced
performance in terms of recall and precision. Our analysis demonstrates the efficiency
of data balancing, feature selection, and model tuning in enhancing the performance of
supervised models.



Electronics 2024, 13, 919 10 of 14

Table 2. The results of the evaluation of the supervised models.

Models Accuracy Recall Precision F1

RF 0.973 0.973 0.977 0.973
DT 0.981 0.981 0.984 0.981

XGBoost 0.982 0.982 0.985 0.982

Stacking, bagging, and voting were used to improve the detection and classification
performance for CAN bus attacks using ensemble methods. As seen in Table 3, the stacking
ensemble obtained an accuracy of 0.985 with high precision, recall, and F1 score, indicating
its capacity to accurately detect class labels and recognize positive instances. The bagging
ensemble obtained an accuracy of 0.983 and showed balanced precision, recall, and F1
score, demonstrating that it was effective at capturing true positive instances. The ensemble
voting system obtained a 0.979 accuracy with the balanced precision, recall, and F1 score,
demonstrating its ability to make accurate detection across classes. These ensemble methods
were effective in enhancing the performance of the models and providing accurate and
robust predictions for detecting CAN bus attacks.

Table 3. Results of the evaluation for the three ensemble classifiers.

Models Accuracy Recall Precision F1

Stacking 0.985 0.985 0.987 0.985
Bagging 0.983 0.983 0.985 0.983
Voting 0.979 0.979 0.981 0.978

The results of our study showed the efficiency of both supervised models and ensemble
methods for improving the performance of CAN bus attack detection. The supervised
models performed effectively, and the ensemble approaches, which combine the best
features of several models, significantly increased detection accuracy and robustness.
The stacking ensemble method outperformed all supervised models and other ensemble
methods in detecting CAN bus attacks. The stacking ensemble outperformed RF, XGBoost,
DT, voting, and bagging with an accuracy of 0.9856. The stacking ensemble technique
enhances the accuracy and robustness of detection by leveraging the strengths of various
models. Figure 5 illustrates a comparison to the supervised models and voting and bagging
methods, the obtained results for the classification task are improved for the stacking
method. In terms of the four metrics. Comparing attack detection improvements between
individual models and ensemble learning is crucial as it directly influences the safety of
drivers, passengers, and vehicles.

Figure 5. The comparative performance of ensemble classifiers and supervised models.



Electronics 2024, 13, 919 11 of 14

Figure 6 depicts the AUC-ROC curve for each class in the stacking method. The x-axis
represents the false positive rate, while the y-axis represents the true positive rate. A high
AUC-ROC score is preferable because it indicates the robustness of the model. A model
is considered reliable if its AUC-ROC is close to 1.0. The ROC results reveal outstanding
performance in detecting DoS and fuzzing attacks, with an AUC of 1.00, while the detection
of replay and spoofing attacks demonstrates a high AUC of 0.99.

Figure 6. The results of the AUC-ROC curve for each class in the stacking method.

In Figure 7, which illustrates the results of the stacking method, we obtained high
performance, comparing actual and predicted values across the four classes. This finding
indicates the model demonstrates the ability to consistently and accurately detect each in-
dividual class, providing reliable results. The four attacks are accurately detected with an
error rate of 1.5%. By utilizing the stacking method that provides high accuracy, our scheme
efficiently detects and classifies common attacks on the CAN bus. The shortest time to detect
spoofing is 0.26 s, followed by fuzzing, replay, and DoS at 0.29, 0.30, and 0.28 s, respectively.
This real-time responsiveness provides robust security along with high accuracy.

Figure 7. The results of the stacking method in comparing actual and predicted values across the
four classes of attacks.

Compare our method to the proposed methods [24,58] in Table 4, demonstrating
promising results in evaluation metrics. Results from experiments show the effectiveness
of our IDS in detecting and classifying attacks on in-vehicle networks.



Electronics 2024, 13, 919 12 of 14

Table 4. Comparison of our method to proposed methods.

Citation Year Models Accuracy Precision Recall F1 Score

[24] 2021 CANintelliIDS - 0.936 0.939 0.937
[58] 2022 SVM 0.979 0.98 0.96 0.97
Our 2024 Stacking 0.985 0.987 0.985 0.985

6. Conclusions

The controller area network (CAN) enables the transmission of data inside vehicle
networks. However, although it has low latency and enjoys data broadcast capability, it is
vulnerable to attacks on security. Vehicle safety is in danger since conventional security
measures are ineffective at addressing these vulnerabilities. To address these challenges,
in this study, we proposed an effective IDS scheme designed for the CAN bus network.
The scheme’s objective is to enhance IDS that accurately detects and classifies CAN bus
attacks in real-time using ensemble techniques and the Kappa Architecture. The Kappa
Architecture enables real-time attack detection, while ensemble learning combines multiple
machine learning classifiers for enhanced attack detection accuracy. We developed and
evaluated supervised models and utilized ensemble techniques to enhance the effective-
ness of the detection and classification of common CAN bus attacks. The results showed
that ensemble methods significantly enhanced the detection accuracy. By combining the
strengths of multiple models, the stacking ensemble technique outperformed individual
supervised models and other ensembles with accuracy, precision, recall, and F1 of 0.985,
0.987, and 0.985, respectively, and experienced less run-time. Our scheme demonstrated
promising results in evaluation metrics, by exhibiting the effectiveness of our IDS in detect-
ing and classifying attacks on in-vehicle networks compared to the proposed methods. For
future work, we will investigate the potential of collaborative learning, federated learning,
and transfer learning within domain transfer learning-based intrusion detection systems
(DTL-IDSs) to enhance the efficiency of security threat prevention and detection [14].

Author Contributions: Conceptualization, E.A. and I.M.; methodology, E.A. and I.M.; software,
E.A.; validation, E.A. and I.M.; formal analysis, E.A. and I.M.; investigation, E.A. and I.M.; writing—
original draft preparation, review and editing, I.M.; visualization, E.A.; supervision, I.M. and E.A.;
writing—project administration, I.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available upon request.

Acknowledgments: This work is part of the Smart Drive initiative at Tecore Networks Lab at Florida
Atlantic University.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References
1. Kleberger, P.; Olovsson, T.; Jonsson, E. Security aspects of the in-vehicle network in the connected car. In Proceedings of the 2011

IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 528–533.
2. Liu, J.; Zhang, S.; Sun, W.; Shi, Y. In-vehicle network attacks and countermeasures: Challenges and future directions. IEEE Netw.

2017, 31, 50–58. [CrossRef]
3. Wu, W.; Li, R.; Xie, G.; An, J.; Bai, Y.; Zhou, J.; Li, K. A survey of intrusion detection for in-vehicle networks. IEEE Trans. Intell.

Transp. Syst. 2019, 21, 919–933. [CrossRef]
4. Petit, J.; Shladover, S.E. Potential cyberattacks on automated vehicles. IEEE Trans. Intell. Transp. Syst. 2014, 16, 546–556. [CrossRef]
5. Lokman, S.F.; Othman, A.T.; Abu-Bakar, M.H. Intrusion detection system for automotive Controller Area Network (CAN) bus

system: A review. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 184. [CrossRef]
6. Young, C.; Zambreno, J.; Olufowobi, H.; Bloom, G. Survey of automotive controller area network intrusion detection systems.

IEEE Des. Test 2019, 36, 48–55. [CrossRef]

http://doi.org/10.1109/MNET.2017.1600257
http://dx.doi.org/10.1109/TITS.2019.2908074
http://dx.doi.org/10.1109/TITS.2014.2342271
http://dx.doi.org/10.1186/s13638-019-1484-3
http://dx.doi.org/10.1109/MDAT.2019.2899062


Electronics 2024, 13, 919 13 of 14

7. Bozdal, M.; Samie, M.; Aslam, S.; Jennions, I. Evaluation of can bus security challenges. Sensors 2020, 20, 2364. [CrossRef]
8. Wang, Q.; Qian, Y.; Lu, Z.; Shoukry, Y.; Qu, G. A delay based plug-in-monitor for intrusion detection in controller area network.

In Proceedings of the 2018 Asian Hardware Oriented Security and Trust Symposium (AsianHOST), Hong Kong, China, 17–18
December 2018; pp. 86–91.

9. Koscher, K.; Czeskis, A.; Roesner, F.; Patel, S.; Kohno, T.; Checkoway, S.; McCoy, D.; Kantor, B.; Anderson, D.; Shacham, H.; et al.
Experimental security analysis of a modern automobile. In Proceedings of the 2010 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, 16–19 May 2010; pp. 447–462.

10. Miller, C.; Valasek, C. Remote exploitation of an unaltered passenger vehicle. Black Hat USA 2015, 2015, 1–91.
11. Karopoulos, G.; Kambourakis, G.; Chatzoglou, E.; Hernández-Ramos, J.L.; Kouliaridis, V. Demystifying in-vehicle intrusion

detection systems: A survey of surveys and a meta-taxonomy. Electronics 2022, 11, 1072. [CrossRef]
12. Khraisat, A.; Alazab, A. A critical review of intrusion detection systems in the internet of things: Techniques, deployment strategy,

validation strategy, attacks, public datasets and challenges. Cybersecurity 2021, 4, 1–27. [CrossRef]
13. Shichun, Y.; Zheng, Z.; Bin, M.; Yifan, Z.; Sida, Z.; Mingyan, L.; Yu, L.; Qiangwei, L.; Xinan, Z.; Mengyue, Z.; et al. Essential

Technics of Cybersecurity for Intelligent Connected Vehicles: Comprehensive Review and Perspective. IEEE Internet Things J.
2023, 10, 21787–21810. [CrossRef]

14. Kheddar, H.; Himeur, Y.; Awad, A.I. Deep transfer learning for intrusion detection in industrial control networks: A comprehen-
sive review. J. Netw. Comput. Appl. 2023, 220, 103760. [CrossRef]

15. Alalwany, E.; Mahgoub, I. Classification of Normal and Malicious Traffic Based on an Ensemble of Machine Learning for a Vehicle
CAN-Network. Sensors 2022, 22, 9195. [CrossRef]

16. Aliwa, E.; Rana, O.; Perera, C.; Burnap, P. Cyberattacks and countermeasures for in-vehicle networks. ACM Comput. Surv.
(CSUR) 2021, 54, 21. [CrossRef]

17. Alhowaide, A.; Alsmadi, I.; Tang, J. Ensemble detection model for IoT IDS. Internet Things 2021, 16, 100435. [CrossRef]
18. Pham, N.T.; Foo, E.; Suriadi, S.; Jeffrey, H.; Lahza, H.F.M. Improving performance of intrusion detection system using ensemble

methods and feature selection. In Proceedings of the Australasian Computer Science Week Multiconference, Brisbane, QLD,
Australia, 29 January–2 February 2018; pp. 1–6.

19. Ed-Daoudy, A.; Maalmi, K. Real-time machine learning for early detection of heart disease using big data approach. In
Proceedings of the 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), Fez,
Morocco, 3–4 April 2019; pp. 1–5.

20. Ameer, S.; Shah, M.A.; Khan, A.; Song, H.; Maple, C.; Islam, S.U.; Asghar, M.N. Comparative analysis of machine learning
techniques for predicting air quality in smart cities. IEEE Access 2019, 7, 128325–128338. [CrossRef]

21. Saraswathi, A.; Mummoorthy, A.; GR, A.R.; Porkodi, K. Real-time traffic monitoring system using spark. In Proceedings of the
2019 International Conference on Emerging Trends in Science and Engineering (ICESE), Hyderabad, India, 18–19 September 2019;
Volume 1, pp. 1–6.

22. Moulahi, T.; Zidi, S.; Alabdulatif, A.; Atiquzzaman, M. Comparative performance evaluation of intrusion detection based on
machine learning in in-vehicle controller area network bus. IEEE Access 2021, 9, 99595–99605. [CrossRef]

23. Song, H.M.; Woo, J.; Kim, H.K. In-vehicle network intrusion detection using deep convolutional neural network. Veh. Commun.
2020, 21, 100198. [CrossRef]

24. Javed, A.R.; Ur Rehman, S.; Khan, M.U.; Alazab, M.; Reddy, T. CANintelliIDS: Detecting in-vehicle intrusion attacks on a
controller area network using CNN and attention-based GRU. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1456–1466. [CrossRef]

25. Rathore, R.S.; Hewage, C.; Kaiwartya, O.; Lloret, J. In-vehicle communication cyber security: Challenges and solutions. Sensors
2022, 22, 6679. [CrossRef] [PubMed]

26. Khan, M.A.; Karim, M.R.; Kim, Y. A two-stage big data analytics framework with real world applications using spark machine
learning and long short-term memory network. Symmetry 2018, 10, 485. [CrossRef]

27. Patil, N.V.; Rama Krishna, C.; Kumar, K. S-DDoS: Apache spark based real-time DDoS detection system. J. Intell. Fuzzy Syst. 2020,
38, 6527–6535. [CrossRef]

28. Othman, D.M.S.; Hicham, R.; Zoulikha, M.M. An efficient spark-based network anomaly detection. Int. J. Comput. Digit. Syst.
2020, 9, 1175–1185. [CrossRef]

29. Bosch, C. Specification Version 2.0; Robert Bosch GmbH: Gerlingen, Germany, 1991; Volume 1.
30. Johansson, K.H.; Törngren, M.; Nielsen, L. Vehicle applications of controller area network. In Handbook of Networked and Embedded

Control Systems; CRC Press: Boca Raton, FL, USA, 2005; pp. 741–765.
31. Takefuji, Y. Connected vehicle security vulnerabilities [commentary]. IEEE Technol. Soc. Mag. 2018, 37, 15–18. [CrossRef]
32. Bozdal, M.; Samie, M.; Jennions, I. A survey on can bus protocol: Attacks, challenges, and potential solutions. In Proceedings of

the 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE), Southend, UK, 16–17
August 2018; pp. 201–205.

33. Song, H.M.; Kim, H.R.; Kim, H.K. Intrusion detection system based on the analysis of time intervals of CAN messages for
in-vehicle network. In Proceedings of the 2016 International Conference on Information Networking (ICOIN), Kota Kinabalu,
Malaysia, 13–15 January 2016; pp. 63–68.

34. Lee, H.; Jeong, S.H.; Kim, H.K. OTIDS: A novel intrusion detection system for in-vehicle network by using remote frame. In
Proceedings of the 2017 15th Annual Conference on Privacy, Security and Trust (PST), Calgary, AB, Canada, 28–30 August 2017.

http://dx.doi.org/10.3390/s20082364
http://dx.doi.org/10.3390/electronics11071072
http://dx.doi.org/10.1186/s42400-021-00077-7
http://dx.doi.org/10.1109/JIOT.2023.3299554
http://dx.doi.org/10.1016/j.jnca.2023.103760
http://dx.doi.org/10.3390/s22239195
http://dx.doi.org/10.1145/3431233
http://dx.doi.org/10.1016/j.iot.2021.100435
http://dx.doi.org/10.1109/ACCESS.2019.2925082
http://dx.doi.org/10.1109/ACCESS.2021.3095962
http://dx.doi.org/10.1016/j.vehcom.2019.100198
http://dx.doi.org/10.1109/TNSE.2021.3059881
http://dx.doi.org/10.3390/s22176679
http://www.ncbi.nlm.nih.gov/pubmed/36081138
http://dx.doi.org/10.3390/sym10100485
http://dx.doi.org/10.3233/JIFS-179733
http://dx.doi.org/10.12785/ijcds/0906015
http://dx.doi.org/10.1109/MTS.2018.2795093


Electronics 2024, 13, 919 14 of 14

35. Groza, B.; Murvay, P.S. Efficient intrusion detection with bloom filtering in controller area networks. IEEE Trans. Inf. Forensics
Secur. 2018, 14, 1037–1051. [CrossRef]

36. Avatefipour, O.; Malik, H. State-of-the-art survey on in-vehicle network communication (CAN-Bus) security and vulnerabilities.
arXiv 2018, arXiv:1802.01725.

37. Pan, L.; Zheng, X.; Chen, H.; Luan, T.; Bootwala, H.; Batten, L. Cyber security attacks to modern vehicular systems. J. Inf. Secur.
Appl. 2017, 36, 90–100. [CrossRef]

38. Nowdehi, N.; Lautenbach, A.; Olovsson, T. In-vehicle CAN message authentication: An evaluation based on industrial criteria.
In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017;
pp. 1–7.

39. Zhang, H.; Meng, X.; Zhang, X.; Liu, Z. CANsec: A practical in-vehicle controller area network security evaluation tool. Sensors
2020, 20, 4900. [CrossRef]

40. Alalwany, E.; Mahgoub, I. Security and Trust Management in the Internet of Vehicles (IoV): Challenges and Machine Learning
Solutions. Sensors 2024, 24, 368. [CrossRef]

41. Seo, E.; Song, H.M.; Kim, H.K. GIDS: GAN based intrusion detection system for in-vehicle network. In Proceedings of the 2018
16th Annual Conference on Privacy, Security and Trust (PST), Belfast, UK, 28–30 August 2018; pp. 1–6.

42. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
43. Dietterich, T.G. Ensemble learning. In The Handbook of Brain Theory and Neural Networks; MIT Press: Cambridge, MA, USA, 2002;

Volume 2, pp. 110–125.
44. Quinlan, J.R. Bagging, boosting, and C4.5. In Proceedings of the Thirteenth National Conference on Artificial Intelligence

(AAAI-96), Portland, OR, USA, 4–8 August 1996; Volume 1, pp. 725–730.
45. Lin, J. The lambda and the kappa. IEEE Internet Comput. 2017, 21, 60–66. [CrossRef]
46. Choudhary, P.; Garg, K. Comparative analysis of spark and hadoop through imputation of data on big datasets. In Proceedings

of the 2021 IEEE Bombay Section Signature Conference (IBSSC), Gwalior, India, 18–20 November 2021; pp. 1–6.
47. Kumar, K.; Sharma, N.A.; Ali, A.S. Machine Learning Solutions for Investigating Streams Data using Distributed Frameworks:

Literature Review. In Proceedings of the 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE),
Brisbane, Australia, 8–10 December 2021; pp. 1–6.

48. Tun, M.T.; Nyaung, D.E.; Phyu, M.P. Performance evaluation of intrusion detection streaming transactions using apache kafka
and spark streaming. In Proceedings of the 2019 International Conference on Advanced Information Technologies (ICAIT),
Dehradun, India, 5–7 June 2019; pp. 25–30.

49. Karau, H.; Konwinski, A.; Wendell, P.; Zaharia, M. Learning Spark: Lightning-Fast Big Data Analysis; O’Reilly Media, Inc.:
Sebastopol, CA, USA, 2015.

50. Meng, X.; Bradley, J.; Yavuz, B.; Sparks, E.; Venkataraman, S.; Liu, D.; Freeman, J.; Tsai, D.; Amde, M.; Owen, S.; et al. Mllib:
Machine learning in apache spark. J. Mach. Learn. Res. 2016, 17, 1235–1241.

51. Apvrille, L.; El Khayari, R.; Henniger, O.; Roudier, Y.; Schweppe, H.; Seudié, H.; Weyl, B.; Wolf, M. Secure automotive on-board
electronics network architecture. In Proceedings of the FISITA 2010 World Automotive Congress, Budapest, Hungary, 30 May–4
June 2010; Volume 8.

52. Studnia, I.; Alata, E.; Nicomette, V.; Kaâniche, M.; Laarouchi, Y. A language-based intrusion detection approach for automotive
embedded networks. Int. J. Embed. Syst. 2018, 10, 1–12. [CrossRef]

53. Kang, H.; Kwak, B.; Lee, Y.H.; Lee, H.; Lee, H.; Kim, H.K. Car hacking: Attack and defense challenge 2020 dataset. IEEE Dataport
2021. [CrossRef]

54. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
55. Song, Y.Y.; Ying, L. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27, 130.

[PubMed]
56. Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T.; et al. Xgboost: Extreme

Gradient Boosting. R Package Version 0.4-2. 2015; Volume 1, pp. 1–4. Available online: https://cran.r-project.org/web/packages/
xgboost/vignettes/xgboost.pdf (accessed on 25 February 2024).

57. Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond accuracy, F-score and ROC: A family of discriminant measures for
performance evaluation. In Proceedings of the 19th Australasian Joint Conference on Artificial Intelligence, Hobart, Australia,
4–8 December 2006; pp. 1015–1021.

58. Refat, R.U.D.; Elkhail, A.A.; Hafeez, A.; Malik, H. Detecting can bus intrusion by applying machine learning method to graph
based features. In Proceedings of the Intelligent Systems and Applications: Proceedings of the 2021 Intelligent Systems Conference
(IntelliSys), Amsterdam, The Netherlands, 1–2 September 2022; Volume 3, pp. 730–748.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TIFS.2018.2869351
http://dx.doi.org/10.1016/j.jisa.2017.08.005
http://dx.doi.org/10.3390/s20174900
http://dx.doi.org/10.3390/s24020368
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1109/MIC.2017.3481351
http://dx.doi.org/10.1504/IJES.2018.089430
http://dx.doi.org/10.21227/qvr7-n418
http://dx.doi.org/10.1023/A:1010933404324
http://www.ncbi.nlm.nih.gov/pubmed/26120265
https://cran.r-project.org/web/packages/xgboost/vignettes/xgboost.pdf
https://cran.r-project.org/web/packages/xgboost/vignettes/xgboost.pdf

	Introduction
	Related Work
	Background
	CAN Bus
	CAN Bus Attacks
	Ensemble Methods
	Kappa Architecture
	Apache Spark

	Proposed Method
	Dataset
	Learning Stage
	Kappa Architecture

	Results and Discussions
	Conclusions
	References

