
Citation: Żal, M.; Michalski, M.;

Zwierzykowski, P. Implementation of

a Lossless Moving Target Defense

Mechanism. Electronics 2024, 13, 918.

https://doi.org/10.3390/

electronics13050918

Academic Editor: Christos J. Bouras

Received: 31 December 2023

Revised: 21 February 2024

Accepted: 26 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Implementation of a Lossless Moving Target
Defense Mechanism
Mariusz Żal , Marek Michalski and Piotr Zwierzykowski *

Institute of Communication and Computer Networks, Faculty of Computing and Telecommunications,
Poznań University of Technology, 60-965 Poznań, Poland; mariusz.zal@put.poznan.pl (M.Ż);
marek.michalski@put.poznan.pl (M.M.)
* Correspondence: piotr.zwierzykowski@put.poznan.pl; Tel.: +48-61-665-39-26

Abstract: The contemporary world, dominated by information technologt (IT), necessitates sophisti-
cated protection mechanisms against attacks that pose significant threats to individuals, companies,
and governments alike. The unpredictability of human behavior, coupled with the scattered develop-
ment of applications and devices, complicates supply chain maintenance, making it impossible to
develop a system entirely immune to cyberattacks. Effective execution of many attack types hinges on
prior network reconnaissance. Thus, hindering effective reconnaissance serves as a countermeasure
to attacks. This paper introduces a solution within the moving target defense (MTD) strategies,
focusing on the mutation of Internet protocol (IP) addresses in both edge and core network switches.
The idea of complicating reconnaissance by continually changing IP addresses has been suggested
in numerous studies. Nonetheless, previously proposed solutions have adversely impacted the
quality of service (QoS) levels. Implementing these mechanisms could interrupt Transmission Control
Protocol (TCP) connections and result in data losses. The IP address mutation algorithms presented
in this study were designed to be fully transparent to transport layer protocols, thereby preserving
the QoS for users without degradation. In this study, we leveraged the benefits of software-defined
networking (SDN) and the Programming-Protocol-Ondependent Packet Processors (P4) language,
which specifies packet processing methodologies in the data plane. Employing both SDN and P4
enables a dynamic customization of network device functionalities to meet network users’ specific
requirements, a feat unachievable with conventional computer networks. This approach not only
enhances the adaptability of network configurations but also significantly increases the efficiency and
effectiveness of network management and operation.

Keywords: moving target defense; software-defined networks; Programming-Protocol-Independent
Packet Processors (P4) language; IP address mutation; cybersecurity

1. Introduction

A criminal planning to intentionally break the law does not manifest their intentions.
The aim is to remain unnoticed by those in their surroundings for as long as possible,
especially by security institutions such as the police, intelligence, and counterintelligence
services. The main operational and reconnaissance method of state services is the observa-
tion of people, places, and things; therefore, from the perspective of a criminal, and often
a criminal group, it is completely justified to carry out counter-intelligence activities [1].
Criminals carefully plan their next moves. They do everything possible to ensure that
the process of gathering information, which could aid in committing a prohibited act, is
unnoticed. They meticulously cover up traces that could indicate who committed the crime.
If the crime is ongoing or meant to last for a longer period, the criminal disguises their
presence and the manner in which the crime was committed. Describing the criminal
mechanism is not a praise for the level of intelligence and cunning of criminals; it only
indicates the costs incurred during the commission of crimes. For the commission of a

Electronics 2024, 13, 918. https://doi.org/10.3390/electronics13050918 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13050918
https://doi.org/10.3390/electronics13050918
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2579-1502
https://orcid.org/0000-0002-6951-7222
https://orcid.org/0000-0001-5609-1026
https://doi.org/10.3390/electronics13050918
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13050918?type=check_update&version=1


Electronics 2024, 13, 918 2 of 24

crime to be profitable for the criminal (taking into account the costs of preparation and the
probability of punishment), the value of the object of the crime must be significantly higher
than the costs.

Cybercriminals may also follow a pattern. The process of gathering information about
a system is called reconnaissance [2,3]. Paradoxically, reconnaissance was originally used
to gather information about systems in order to identify security vulnerabilities. Originally,
it was an ethical hacking technique that allowed network owners to better secure their
systems after identifying security gaps. It should be noted that not all hackers are criminals.
The term “hacker” is frequently misapplied to individuals engaging in malicious security
breaches for personal gain, often with criminal intentions. In hacker communities, such
people are called crackers. Over the years, reconnaissance has evolved from an ethical
hacking procedure to a mechanism of cyber attack. A reconnaissance attack is a process in
which the hacker takes on the role of a secret detective to obtain information about target
systems. This information is then used to identify security vulnerabilities before launching
an attack or to pinpoint resources that may be targeted.

Reconnaissance attacks are most often carried out from within the targeted system.
We distinguish between active and passive reconnaissance [4]. In active reconnaissance,
the attacker interacts directly with the target. This can take place on multiple levels. To
obtain confidential information, the attacker may use social engineering, such as sending
emails, using chatbots, or other interactive communication means, to establish a connection.
Another method is port scanning, which entails checking open (active) Transmission
Control Protocol (TCP) or User Datagram Protocol (UDP) protocol ports by sending data
transfer requests to the tested ports. Active footprinting is also a technique used, involving
actions aimed at checking active Internet Protocol (IP) addresses or email addresses, by
interacting with the relevant services. Active reconnaissance is extremely efficient, as it
is targeted at obtaining data essential for conducting an attack and is relatively quick.
A notable defense feature against such attacks is the possibility of detection, since the
attacker’s interactions with the system can be identified as deviations from normal activity.
The second type of reconnaissance is passive reconnaissance. In this approach, the attacker
does not directly interact with the user or their system. They conduct their investigation
remotely, monitoring traffic and interactions on the network. The attacker can collect
and analyze data from public resources, in a process known as open source intelligence
(OSINT) [5]. Both individuals and networks disseminate their information on the network,
whether intentionally or unintentionally. A person conducting reconnaissance can utilize
Open Source Intelligence (OSINT) to obtain valuable information about a system.

Just as there is no human activity or action that is not in some way fraught with
some risk that may affect health or life, no network exists that has not been or will not
be the target of an attack. The attacker has many ways to “lurk” within the system,
including using social engineering, exploiting breaks in the supply chain, or deploying
zero-day attacks. Therefore, it is necessary to take actions aimed at making reconnaissance
difficult. One possible method involves disorienting the attacker by indicating that the
collected data are worthless, which means the process of collection and analysis must start
from scratch. This could result in an increased cost of the attack, potentially rendering it
unprofitable. This also increases the chances of detecting the attacker. One such method
is Moving Target Defense (MTD), in which dynamic changes are made to the parameters
of the protected system that enable its identification or determine its structure [6]. A
significant drawback of the method is that involves changes made to an operating system,
which can affect the continuity of provided services. This paper proposes a method for
the dynamic mutation of IP addresses of hosts operating in a protected network. IP
address mutation is not a new technique for hindering reconnaissance. A drawback of the
published solutions is that they do not account for the transitional state in which network
IP addressing is inconsistent. This oversight can cause disruptions in the service at the
transport layer level, interrupting established TCP connections. This can lead to data loss,
thereby degrading the level of Quality of Service (QoS) [7–9]. The presented IP mutation



Electronics 2024, 13, 918 3 of 24

mechanisms in many implementations utilize the Dynamic Host Configuration Protocol
(DHCP) to change IP addresses. In such a scenario, simultaneous IP address changes by all
devices operating in the network are not possible. Moreover, this may require introducing
changes at the operating system level to adjust the operation of network applications
to the IP address changes. The aim of this study was to develop a solution utilizing IP
address mutation that does not affect the functioning of transport-layer protocols. Since
IP address mutation is completely transparent to protocols using IP protocol services, it
avoids connection interruption or data loss. In the proposed solution, Software-Defined
Network (SDN) is utilized [10–12]. However, the characteristics of SDN networks alone
do not address the issue of of maintaining TCP connections. In the proposed solution,
the Protocol-Independent Packet Processor Programming (P4) language and the Portable
Switch Architecture (PSA) are employed, which offer another level of freedom in preparing
network applications. The ability to implement packet processing algorithms directly in
the data path helps to resolve the issue of temporary inconsistency in IP addressing.

This article is organized as follows: The next section contains a literature review
on MTD techniques. Section 3 introduces the concept of SDNs. Since every network
equipment provider currently introduces their own solutions that fall within the SDN
domain, the we describe the most crucial elements of SDNs used in implementation. The
next section provides a description of the individual stages of the cyberattack process
and how to defend against it, introducing the ideas behind the MTD technique. Section 5
contains a description of the P4 language, focusing on presenting the most important
elements of the language essential for understanding the operation of the algorithm. In
the following section, an evaluation of the performance of the MTD mechanism using IP
address mutation is performed. The network convergence time was determined, i.e., the
time after which all switches use only mutated IP addresses belonging to the same group,
referred to as a generation. We also present formulas specifying how often addresses can be
mutated. The next section provides a detailed description of the proposed MTD mechanism
and its implementation using a simple model (V1Model) of the P4 switch. This article
concludes with conclusions and plans for further research work.

2. State of the Art

The evolution of networks and computer systems has also forced the evolution of
cyberattacks. Cyberattacks that were used 10 or 20 years ago are now considered simple
or even primitive. The attacks used currently can be classified as smart attacks. Modern
attacks, which use innovative approaches, are difficult to detect and resistant to traditional
methods of defense. The reputation that an attacker could achieve in their environment has
ceased to be a sufficient form of gratification. Attacks have become a source of livelihood
for whole groups of people. Often, their execution is supported by funds from various
organizations or governments that are considered to support terrorism. Such attacks have
become very complicated and are adapted to the changing conditions of the attacked
area. Only intelligent defense mechanisms can counteract intelligent attacks. Among such
mechanisms, we include the MTD technique.

MTD can be applied at many levels: data, application, runtime environment, operating
system, or hardware. Moving target techniques in the dynamic data domain change the
format, syntax, representation, or encoding of application data to complicate attacks. An
interesting use of dynamic data techniques is data space randomization (DSR), where either
the data space or the program code is modified [13]. Another example of an MTD technique,
which falls within the category of dynamic applications, involves an environment utilizing
several web application servers that perform the same functions. The MTD mechanisms
used in this solution dynamically redirect client requests to any chosen server [14]. This
mitigates the effects of vulnerabilities in server software. A product by Morphisec Labs
exemplifies a dynamic runtime environment, a technique where the execution environment,
including RAM addresses and instruction sets, changes dynamically [15]. In computer
systems, the operating system, memory, and processor, with its instruction set being closely



Electronics 2024, 13, 918 4 of 24

related, are interconnected. Therefore, MTD techniques covering these three elements are
treated as a whole and are collectively referred to as a dynamic platform. Examples of the
solutions in this area can be found in [16–18].

The most explored research area in the field of MTD is dynamic networks. The tech-
niques proposed in this area suggest modifications to a wide range of parameters. The
proposed solutions include dynamic modifications to network topology. The initiation can
be triggered randomly [19,20] or at predefined times [21]. Another way to hinder reconnais-
sance is by changing the paths along which data are exchanged between two hosts [22–26].
In addition to changing the routes between two hosts, modifications to computer networks
can also dynamically alter routing protocol data [27,28]. As a result, changes in the network
structure are more extensive. Beyond affecting switches and routers, it is also possible to
implement changes that exclusively involve hosts. For example, random or timer-triggered
changes in port numbers in established connections are possible [29–31].The method most
commonly representation in the literature is IP address mutations [12,22,26,32–37]. As
with other methods, the change in IP addresses can be initiated at random moments, at
times determined by an algorithm (e.g., from game theory [38]), or by detecting anomalies
indicating third-party activity. To detect anomalies, specially prepared devices, so-called
honeypots [9,39], can be used.

3. SDN Concept

In traditional computer networks, each network node, such as a switch or router, has
a fully implemented data plane and a control plane. The proper functioning of such a
network necessitates applications running on individual nodes be compatible with each
other. Considering that computer networks comprise heterogeneous devices, i.e., from
different manufacturers and running different operating systems, application interoper-
ability is sometimes significantly hindered. Furthermore, the need to ensure cooperation
between applications restricts the functionality of the network being built. To make a
particular service available throughout the network, control-layer applications must be
running on all network devices (see Figure 1a). Naturally, applications that perform basic
network functions, such as handling routing protocols, i.e., Open Shortest Path First (OSPF),
Intermediate System to Intermediate System (IS-IS), Border Gateway Protocol (BGP), etc.,
or the DHCP protocol, are typically integrated in the operating systems of network devices.
The use of advanced functions or applications necessitates their incorporation into the
software stack of network devices, which is often an extremely difficult task.

Data plane

Control 
plane

Control 
plane

Control 
plane

Data plane Data plane

Applications

Applications Applications
OSPF BGP
FW NAT

OSPF BGP
FW NAT

OSPF BGP
FW NAT

(a) Traditional network

Data
plane

Control
plane

Data
plane

Data
plane

Applications

OSPF BGP

FW NAT

SDN
switch

SDN
switch

SDN
switch

SDN
controler

S

i

S

i

S

i

S

i

S

i

S

i

S

i

S

i

(b) SDN

Figure 1. Differences between traditional networks and SDNs.

In SDNs, device planes are separated, with only the data plane implemented within
the devices, and the control plane is separate, as shown in Figure 1b. Devices that perform
the tasks of the data plane, known as SDN switches, are responsible for forwarding data
between their inputs and outputs. A set of SDN switches managed by the same SDN
controller is called an SDN. The rules for forwarding data are defined by devices that
perform control plane functions, known as SDN controllers. Information about the rules



Electronics 2024, 13, 918 5 of 24

governing the operation of SDN switches is stored in flow tables. Data exchange between
the controller and SDN switches can occur using the standard OpenFlow protocol. The
primary advantage of SDN networks is their configurational flexibility and the ease of
adding new services and enabling virtualization. This is made possible by using an SDN
controller as a central device. In many solutions, centralizing control functions can become
a bottleneck for network performance. However, in SDNs, centralizing the control layer
along with flow tables on each device implementing the data plane increases network
efficiency, allowing for the customization of the features offered to meet user requirements.

The structure of SDNs is defined by the Open Networking Foundation (ONF) [40]. In
Figure 2, the basic elements of an SDN are presented. The architecture and elements defined
by the ONF should be considered as recommendations only. Each network equipment
provider may employ a different approach and their own solutions when it comes to
implementing SDNs. The vast majority of network hardware providers utilize the ONF
recommendations, in which each SDN controller implements at least two types of interfaces,
as shown in Figure 2. The northbound interface is used for communication between the
SDN controller and user applications. By using Application Programming Interfaces (APIs)
software, applications can influence the operation of the entire network by implementing
various scenarios. The availability of a wide range of SDN controllers written in various
programming languages allows for the selection of a solution tailored to the specific
requirements. The ability to add applications that implement nonstandard functions is
a significant advantage of SDNs. Another key component is the southbound interface,
which facilitates the exchange of information between the SDN controller and the SDN
switch. Through this interface, the controller receives telemetry data from the attached
SDN switches and sends flow table updates.

SDN Application SDN Application

SDN Controler

Network 
Element Network 

Element

Network 
Element

SDN northbound interfaces (NBIs)

SDN sounthbound interfaces (SBIs)

Application layer

Control layer

Infrastructure layer

Application plane

Controller plane

Data plane

Figure 2. SDN architecture.

The well-known protocol used for data exchange through the southbound interface
is the OpenFlow protocol, as described in the standard [41]. Its purpose is to modify the
flow table in the controller. As shown in Figure 3, the SDN switch implements a table that
consists of two parts: a match part and an action part. From each packet that arrives at the
switch’s input, data are extracted from the headers of the protocols. These can include the
source and destination Media Access Control (MAC) addresses, source and destination
IP addresses, protocol type, source, and destination TCP ports. The data are used to look
up the appropriate entry in the flow table. In the second part of the flow table, there is
information about what action (forwarding to a specific port, removal, modification) needs
to be taken on the received packet. The data are generated by the corresponding SDN
application. The goal of the OpenFlow protocol is to deliver the data to the SDN switch in
a secure and reliable manner. If necessary, the OpenFlow protocol can remove or modify
entries in the flow table. In the case of packets for which no matching entry is found in the
flow table, the OpenFlow protocol delivers the packet or its fragment to the SDN controller.
The controller can then send it to the appropriate SDN application to determine the rules to
be added to the flow table. Subsequent packets are then handled according to the updated
contents of the flow table. The final task of the OpenFlow protocol is to provide telemetry
information from the SDN switch to the relevant SDN applications.



Electronics 2024, 13, 918 6 of 24

Port 8Port 3

Data 

plane

OpenFlow Controler 

(NOX, Trema, Beacon, IRIS …)

Control Application

  def _handle_PacketIn (self, event):

        packet = event.parsed 

        if not packet.parsed:

              log.warning("Ignoring incomplete packet")

              return

       packet_in = event.ofp 

       self.act_like_switch(packet, packet_in)

T
C

P
 s

ec
u
re

 

se
ss

io
n

packet_in={port = 3; msg = }

stats = {{flowid=1, packet_# = 234}, ...}

OpenFlow protocol

action = {output_port = 8}

match = {dst.ip == 10.10.10.2}

Figure 3. Operation of OpenFlow protocol.

In many cases, the use of a central element is considered a disadvantage because it
can become a bottleneck in transmission. In the past, decentralized and distributed control
was thought to offer higher efficiency. However, the emergence of SDNs has prompted a
re-evaluation of the usefulness of centralized control. A wide range of applications that
can participate in preparing the data placed in flow tables, a view of the entire controlled
network, and the ability to achieve routing convergence almost instantly are just some of the
advantages of SDNs. Another highly important feature of SDNs is the processing control
information in only one network element. In the case of routing protocols, e.g., OSPF and
IS-IS, or ethernet redundancy protocols like Spanning Tree Protocol (STP) each network
node independently creates a view of the network. This leads to each node processing
the same data. Utilizing a central element that performs the necessary calculations only
once not only reduces electricity consumption but also places SDNs in the category of
energy-aware networks.

4. Moving Target Defense

To protect networks from cyberattacks, administrators utilize well-prepared security
policies and implement best practices for network maintenance and configuration. They
have access to a wide range of advanced tools and procedures, such as software updates
to patch vulnerabilities and event log analysis to detect attack-related events or network
anomalies. Unfortunately, these techniques are also well known to network attackers.

Between the discovery of a software vulnerability and the release of an update, several
days typically pass, and updates are typically performed when the system requiring the
update is not in use. This delay provides a significant window of opportunity for carrying
out zero-day attacks. Event log analysis may become ineffective when an attack is executed
using custom malicious software, which can be challenging to detect or prevent with
intrusion detection systems and antivirus tools.

To prepare an effective defense against cyberattacks, the attack process used by ad-
versaries must be understood, and the attack process from the attacker’s perspective must
be analyzed. Executing a sophisticated and impactful attack on a major network operator,
financial organization, government institution, etc., requires substantial financial invest-
ments. Attacks on such entities are carried out by Advanced Persistent Threat (APT) groups,
sponsored by wealthy organizations or states, driven by economic or political motives. An
APT gains access to a computer network and remains undetected for an extended period.



Electronics 2024, 13, 918 7 of 24

To counteract such activities, understanding what data can be collected by the APT
with access to the network is crucial. Identifying the categories of data accessible to the
attacking entity enables the pinpointing of potential attack types.

To better understand the entire attack process, the Cyber Kill Chain (CKC) defined
in [42] can be used. It consists of the following stages:

1. Reconnaissance—This phase involves gathering data about the environment where
the attack will take place. The monitoring area can be extensive, including network
parameters such as used protocols and their versions, IP addresses, port numbers,
load information, types and versions of applications and operating systems, and the
types of services being used or provided.

2. Weaponization—Based on the data obtained in the first stage, the attacker employs
various tools and techniques to prepare a payload for a targeted attack. This takes the
form of a phishing email, an infected document, or even a modification of a delivered
update (by tampering with the supply chain).

3. Delivery—The payload prepared in the previous step must be delivered to the targeted
system to initiate infection. The attacker often leverages human factors, typically in-
volving employees of the company or institution, to bypass authentication procedures.
Another method of payload delivery may involve exploiting system vulnerabilities or
compromising the supply chain.

4. Exploitation—This stage involves executing malicious code, rendering the infected
system accessible to the attacker. The attacker gains increased privileges, typically
through exploiting a known vulnerability or a zero-day exploit

5. Installation—With increased privileges, the attacker can install malicious software on
the victim’s computer or begin gathering information from the victim’s databases for
further actions.

6. Command and Control—This stage includes actions aimed at maintaining remote
control over the victim’s machine.

7. Actions on Objectives—This is the final stage of the attack, involving actions related
to achieving the attacker’s objectives. These actions may include downloading critical
data, disrupting services, or using the victim’s system to conduct further attacks, this
time from a trusted system.

MTD is a cybersecurity strategy classified as a dynamic strategy, aimed at actively
protecting computer systems, networks, and data by continuously changing the parameters
that constitute the so-called attack surface. The attack surface is the space that attackers
must explore or reconstruct to determine the configuration of the target system before
initiating the actual attack. It comprises all the points through which attackers can enter
the system, indicating which components can be exploited.

MTD is an extremely broad concept, encompassing virtually all levels of networks
and computer systems:

• At the data level, where the data format or representation can be changed;
• At the application level, considering dynamic changes to application code, such as

during compilation;
• At the runtime environment level, dynamic changes may include random memory

allocation for storing critical data;
• At the operating systems level, utilizing dynamic changes in instruction sets or entire

operating systems;
• At the hardware level, involving techniques related to memory, processors, and

networks. The first two techniques can utilize methods proposed for operating systems.
Techniques used for dynamic changes are much broader and can include, among other
things, changes to layer 2 and/or layer 3 addresses, TCP and UDP protocol port
numbers, protocol types, and other network parameters.

Changes can be made periodically or randomly. It is also possible to use decoys in the
form of servers or stub networks, where the detection of events unrelated to the standard



Electronics 2024, 13, 918 8 of 24

network operations triggers MTD mechanisms. MTD confuses attackers, making it difficult
for them to establish a foothold and exploit vulnerabilities in the system.

Implementing MTD mechanisms provides an advantage over attackers by forcing
them to confront a constantly evolving and challenging target, thereby increasing the
complexity and cost of attacks. This dynamic state is not present in traditional networks,
which are characterized by static security measures stemming from fixed configurations
and patterns.

5. Protocol-Independent Packet Processors Programming

The first version of the P4 language was developed by a team from Stanford University
in 2014 [43]. The first language specification was also published in 2014, and was designated
P414. Two years later, in 2016, the P414 standard was replaced by the P416 standard, which
is currently in use. The latest version of the P416 standard is version 1.2.4 [44].

The P4 language is a programming language for the data plane in SDNs, meaning
it is a programming language for SDN switches (although code written in P4 indirectly
affects the control plane as well). Systems that use central processing units (CPUs) are
Multi-Instruction stream Multidata stream (MIMD) systems. In contrast, data processing
in programs written in the P4 language is of the Multi-Instruction stream Single-Data
stream (MISD) type. The differences between these types are presented in Figure 4. Pro-
grams and data processing in the P4 language closely resemble the operation of EasyChip
network processors, which are divided into Task-Optimized Processors (TOP), special-
ized for performing specific tasks. To enhance the performance of network processors,
individual tasks are parallelized. The TOP processors include the following:

• TOPparser: processors responsible for extracting relevant operations from processed
protocol units.

• TOPsearch: processors optimized for data search, such as finding the next hop for a
packet or the port number through which a specific MAC address is accessible.

• TOPresolve: processors optimized for making decisions based on data provided by
TOPSearch processors.

• TOPmodify: processors optimized for modifying the structure of processed protocol units.

The P4 language specification not only includes the definition of command syntax,
control instructions, built-in functions, and data structures but also outlines two types
of architectures:

• Portable NIC Architecture (PNA): This architecture describes the common capabilities
of Network Interface Cards (NICs) in network devices that process and transmit
packets between one or more network interface and the host system.

• PSA: An architecture that details the common capabilities of network switches in
terms of packet processing and forwarding.

PNA and PSA architectures facilitate the construction of any computer network (al-
though they do not support the construction of access networks built on specific technolo-
gies like Passive Optical Networks (PONs)). They are used to build hosts and network
nodes. Each architecture is associated with a defined platform, known as a target. This
platform can range from general-purpose CPU, Field Programmable Gate Array (FPGA)
devices, specialized Intel Tofino devices, or even Raspberry Pi boards. A significant dif-
ference among targets is their achievable performance, which varies from 10 Mbps (for
Raspberry Pi devices) to 12 Tbps (when using Intel Tofino devices).

The general PSA architecture, as presented in Figure 5, can be divided into three parts:

• Ingress processing blocks;
• Egress processing blocks;
• A buffering and replication block.

Depending on the target, the number of blocks may be smaller. Not all platforms support
the implementation of all processing stages, and implementing all blocks may reduce
performance without significantly affecting achievable functionality. The parser blocks



Electronics 2024, 13, 918 9 of 24

shown in the figure are used to extract data relevant to applications. Fields of constant
length are straightforward to extract from headers. It is sufficient to define the header of
interest by specifying the number of bits the particular field occupies, and individual fields
can be retrieved with a single command. However, for variable-length fields, the process
is more complex, especially since there are many methods for determining the length of
header fields.

Memory (instructions and data)

Control 
Unit

Processing 
Unit

Control 
Unit

Processing 
Unit

Control 
Unit

Processing 
Unit

D
at
a 
St
re
am Instruction 

Stream

D
at
a 
St
re
amInstruction 

Stream
Instruction 
Stream

(a) MISD
Memory (instructions and data)

Control 
Unit

Processing 
Unit

Control 
Unit

Processing 
Unit

Control 
Unit

Processing 
Unit

D
at
a

St
re
am

In
st
ru
ct
io
n 
St
re
am

Memory 
Unit

Memory 
Unit

Memory 
Unit

In
st
ru
ct
io
n 
St
re
am

In
st
ru
ct
io
n 
St
re
am

D
at
a

St
re
am

D
at
a

St
re
am

(b) MIMD
Figure 4. Data and instruction streams in MISD and MIMD systems.

A
rb
ite

r

Parser Deparser
Packet 
buffer

Normal packet 
from port

Normal packet 
from CPU port

Normal unicast 
packet  

Normal multicast 
packet

Normal packet 
to port

Normal packet 
to CPU port

Clone ingress to 
egress

Resubmit Clone egress to egress

Recilculate

Ingress DeparserEgressParser

Ingress  processing blocks Egress  processing blocksBuffering and replication 
blocks

Figure 5. PSA architecture.

The last block in the packet path for both ingress and egress processing is the deparser
block. Its task is reassembling the entire message. The data extracted by the parser must
be reattached to the portion of the message that has not undergone processing. During
deparsing, it is not necessary to add back the exact number of bits that were removed from
the packet during the parsing process. This flexibility means that the outgoing packet from
the node or NIC card can have not only altered data in the headers but also headers of
varying lengths. It is also possible to encapsulate a protocol unit in another protocol.

6. Implementation
6.1. Environment Description

The P4 language specification defines the PSA architecture, which is illustrated in
Figure 5. This architecture can be considered a blueprint for P4 switch architecture, and
it may vary depending on the device in which it is implemented. Several products on
the market facilitate the creation of a data path using the P4 language. Among these are
Intel’s Application-Specific Integrated Circuit (ASIC) devices, such as Tofino I, Tofino 2, and
Tofino 3 [45–47]. Additionally, there is the option to implement an SDN switch in FPGA
circuits, for which the special NetFPGA SUME [48], AMD Alveo [49], or Intel [50] platforms
have been designed. The models defined for these products vary in the number of blocks on
the packet processing path. A significant drawback of all these listed products is their cost.
Therefore, in the proposed solution, it was decided to utilize a widely available and free



Electronics 2024, 13, 918 10 of 24

option, the Mininet environment [51], the main component of which is the SimpleSwitch
software switch with V1 model implemented. Similar to SimpleSwitch, the V1 model also
programmatically realizes the entire pipeline structure [52,53]. The V1 model is depicted
in Figure 6. Comparing it to the PSA architecture, shown in Figure 5, differences are
easy to identify. The parser block appears only once, at the switch’s input, whereas the
deparser block is implemented at the switch’s output. In contrast, in the PSA architecture,
both blocks appear in both the input and output pipelines. Additionally, in the input
pipeline, there is also a checksum verification block (IP header), while the output pipeline
includes a checksum update block. Both blocks must be utilized when implementing layer
3 functions, where the SDN switch acts as a router. The implementation uses external
objects, which can be perceived as built-in functions. Their usage is limited to passing on
function call parameters only; therefore, they are not presented in the following description
of the implementation.

Packet queuing, 
replication, and 
scheduling

Parser

Checksum 
verification

Match Actions Match Actions Checksum 
update

DeparserIngress pipeline Egress pipelineTraffic manager

Figure 6. V1 model architecture.

The V1 model architecture is is known as the target architecture for the P4 language.
Each target architecture is supported by one or more targets. In the V1 model, the most
commonly used target is the Behavioral Model v.2 (BMv2), which is implemented as
a programmable switch in the Mininet environment for simulating computer network
functions [51,54,55]. It is important to note that not every target architecture may fully
implement the P4 language, or the implementation might not fully comply with the
language standard. This means that implementing the presented solution may require
changes, even at the conceptual level, when used with a different target architecture. Before
applying the presented solution to another target architecture, readers are encouraged
to familiarize themselves with the BMv2 documentation and the documentation of the
selected target architecture.

The BMv2 software switch and Mininet run on PC-class computers and are used
for development, testing, and debugging new functionalities, both in the data plane and
control plane. Although designed for use in a multithreaded environment, they exhibit
significant limitations, affecting its performance. One such limitation is the use of only one
thread to handle the input pipeline for all packets arriving at all ports of the switch, while
output pipeline processing is, by default, carried out by four threads.

Figure 7 shows the structure of the network, which serves as the basis for preparing
algorithms that implement the considered MTD technique. The presented structure in-
cludes four hosts and six switches. From the perspective of the functions performed by the
switches, we can identify two types of switches:

• Core switches, which are connected only to other switches;
• Border switches, which have connections both to hosts and other switches.

All switches also have a connection to the SDN controller, which controls the operation of
the entire network. These connections are only for the transmission of control information,
such as entries to flow tables. To simplify the understanding of the algorithm, their
participation is not further detailed here. Before describing the functions performed by
both types of switches, let us introduce the concept of IP address generation. (Note: In
the proposed implementation of the MTD technique, only IPv4 (IP version 4) addresses



Electronics 2024, 13, 918 11 of 24

are used. However, the proposed mechanism can also be applied using IPv6 (IP version 6)
addresses. The limitation to IPv4 was chosen to simplify the diagrams and enhance their
comprehensibility.)

1

1

1

1

1

1

2

22

2

2

2

3 3 3

333

4 4 4

444

H11

H12

H21

H22

H31

H32

H41

H42

SB1

SB2

SC1

SC2

SB3

SB4

10.10.1.1/24

10.10.1.2/24

10.10.2.3/24

10.10.2.4/24

10.10.5.5/24

10.10.5.6/24

10.10.6.7/24

10.10.6.8/24

Controler SDN
P4.Runtime

Application MTD

LB C2,2

LB C1,1

LB C2,1

LB C1,1

LB C4,2

LB C3,1

LB C4,1

LB C3,2

LS
B

1

LS
C

1

Figure 7. Network structure using lossless MTD mechanisms.

Definition 1. Define the generation of an IP address as a group of IP addresses that describes an
entire computer network secured using MTD mechanisms. These addresses are exchanged in IP
packets between border and core nodes, as well as among core nodes, in a specific state of the network.

Definition 2. Let us define a coherent network state as a state in which all border devices use only
one logically consistent set of IP addresses.

The dynamic mutation of IP addresses in computer networks can proceed in two
ways, synchronously and asynchronously. In synchronous mode, all network nodes should
change the used group of IP addresses simultaneously. This necessitates the introduction
of network synchronization mechanisms. An example of synchronous network parameter
change can be observed in passive optical networks, where the Next-Generation Passive
Optical Network 2 (NG-PON2) standard includes a mechanism for dynamically chang-
ing the wavelength used for data transmission between Optical Line Termination (OLT)
and Optical Network Unit (ONU). To indicate the moment when the wavelength used
by the ONU should change, a superframe counter is utilized, which is increased with
each transmitted frame. Since only two devices (the OLT and one ONU) participate in
synchronization, this mechanism works reliably. The structure of computer networks is
much more complex than that of NG-PON2 networks, which only have point-to-multipoint
connections. In computer networks, many nodes connect to many nodes, so achieving
synchronization using the method used in NG-PON2 is virtually impossible. Another
method of achieving synchronization is the use of synchronous ethernet, described in [56].
Synchronous ethernet does not address the issue of changing IP addresses, which would
not affect established TCP connections. Synchronous ethernet only offers synchronization
at the bit or byte level. A problem arises if IP address changes occur during the transmission
of an ethernet frame: a node might begin transmitting an ethernet frame containing an
IP packet with a specific IP address, and, if IP addresses in the network change during
transmission, the IP addresses upon reception could fall outside the correct address space.
While it might be feasible to introduce a protective period to complete the transmission
of the started frames, determining the precise duration of this protective period would



Electronics 2024, 13, 918 12 of 24

be challenging. This duration would need to account for frame propagation times, their
processing in nodes, etc., for any pair of nodes. It is possible to assume a sufficiently long
protective time, but this would likely result in a deterioration in service quality (reduced
network throughput, extended transmission time). Furthermore, periodic breaks in data
transmission would be a signal to an observer that some change in the network structure is
taking place. To avoid problems with synchronous mode, the proposed solution uses an
asynchronous method. In this approach, network nodes are allowed to use two generations
of IP addresses—old and new—for a certain period. To make this possible, the following
requirements must be met: Before using the new generation of IP addresses, it is necessary
to distribute all necessary entries related to the new generation in the flow tables in all
network nodes, i.e., in both border and core nodes. The start of using the new generation
of IP addresses occurs when the SDN controller introduces information about the new
generation into the appropriate flow table in at least one network node. In this scenario,
the process of changing generations throughout the entire network lasts for a specified
period. Unlike the wavelength-changing methods in NG-PON2 networks, it is impossible
to precisely predict when information about the next generation of IP addresses will reach
the switch. The change in the current generation in the switch can occur in two way: either
by an entry into the flow table or by the switch detecting the new generation by the switch
during packet processing. This necessitates storing information about the generation not
only in the flow table but also in a structure the data plane’s program code can modify.
This structure could be a register. Each target of the P4 language offers several registers
that can be utilized in the program code. One feature of registers is their ability to store
data between subsequent packet processing events, meaning that changes introduced in
the register during the processing of packet n are available during the processing of packet
n + 1. Each switch, when detecting a new generation of IP addresses, modifies the contents
of the register. If the contents of the register contain a newer (different) generation, it
sends a message to the SDN controller. The removal of entries related to the outdated
generation of IP addresses from flow tables is possible when the network reaches a specific
state, i.e., when each switch in the network receives an entry from the SDN controller to
the appropriate flow table about the new version or detects the new generation during
packet processing and successfully informs the SDN controller about it. Immediately after
removing outdated (old) entries from the flow tables, the network should be prepared for
the use of the next generation of IP addresses by delivering new entries to all switches. This
preparation involves an algorithm for controlling the core switch. Core switches aggregate
traffic from many border switches. Their functions are limited to determining to which
port of the switch the packet should be sent.

6.2. Lossless Dynamic IP Address Mutation Algorithms

As mentioned in the previous subsection, the network comprises two types of network
elements: core switches and border switches. In the proposed solution, both types of
switches implement a different algorithm. For core switches, the algorithm (illustrated
in Figure 8 and, as pseudocode, in Algorithm 1) is confined to directing the packet to the
appropriate output interface or deleting the packet in the absence of a corresponding entry.
Since the entire network is assumed to use IP addresses assigned by the SDN controller,
the appearance of a packet directed to an IP address not within the group of addresses
assigned to hosts can, at most, activate functions that inform the controller about such an
event. It is crucial that before adopting a new generation of IP addresses, the flow tables of
all core switches contain all the necessary entries related to that generation. Core switches
do not modify packet headers, except for the standard operation of the IP protocol, namely,
the decrease in the Time-To-Live (TTL) field. Since this is a standard operation, it is not
included in Figure 8 or Algorithm 1. The processing algorithm us presented in two ways,
as a diagram and as pseudocode, enabling readers to more easily grasp the operation of the
proposed method. While the diagram does not indicate all the keys used in searching the
flow tables, it significantly aids in analyzing the algorithm.



Electronics 2024, 13, 918 13 of 24

Algorithm 1: Packet processing algorithm in core switch.
Data: headers struct, standardmetadata struct
Result: output packet
match_key← (headers.IPv4.dest_addr);
if coreIPv4Table.apply(match_key) == acction_ForwardPacket() then

Set output port based on parameters from acction_ForwardPacket();
else

Mark packet to drop;
end

Start

Parse packet

Define search key

Key match
table entry?

Apply match action to
packet

Drop packet

Stop

Emit packet to port

Figure 8. Packet processing algorithm in a core switch.

In the case of border switches, whose algorithms are illustrated in Figure 9 and
Algorithm 2, the processing process includes a larger number of conditional instructions.
The common step in all paths of the algorithm is determining the input interface and the
interface through which the packet must be sent. The number of the input interface is already
provided in the parser block as standard metadata. The number of the output interface can
only be determined in the ingress match block after searching the appropriate flow table.
Input and output interfaces can be categorized into local and core interfaces. Based on the
pair <input interface, output interface>, we can identify four packet processing processes:

• <local, local>: In this mode, the packet is directed to a specific local interface. The only
modification that may occur is updating the TTL field and the checksum field of the
IP header.



Electronics 2024, 13, 918 14 of 24

• <local, core>: In this scenario, it is necessary to modify both the source and destination
IP addresses, which are contained in the respective flow tables. The search involves
IP addresses and a value representing the current generation, which can be stored in
a separate flow table or register (register is a special type of data in the P4 language,
and a variable, uniquely retains a value determined during the processing of the
previous packet).

• <core, local>: The scenario very similar to the <local, core> case. The modification
of the IP addresses to those used in the local network is also required. To find the
IP addresses that will replace the IP addresses present in the packet headers, only
the IP addresses from the header are utilized. The result of the search also returns
the generation of IP addresses. If the searched generation is newer than the current
generation, it indicates that the system has started using a new generation. In such a
case, modifying the generation table or register and sending a message to the SDN
controller once is necessary.

• <core, core>: This scenario, not included in the diagrams to avoid further expanding
them, is possible to implement. The operation mirrors that of the <local, local> case,
albeit with different flow tables.

Start

Parse packet

Define search key

Packet from
LAN port?

Packet to LAN port?

Find IP address version

Yes No

Find source and
destination IP address

based on current
address version

Modify IP addresses
in headers structure

Find destination port

Define search key

Key match
table entry?

Set destination portDrop packet

Emit packet to
destination port

Yes

Start

No

Yes

No

IP address
version > current IP

version

Current Version := IP
address Version

Find source and
destination IP address

based on current
address version

Modify IP addresses in
headers structure

Find destination port

Yes

No

Figure 9. Packet processing algorithm in an border switch.



Electronics 2024, 13, 918 15 of 24

Algorithm 2: Packet processing algorithm in border switch.
Data: headers struct, standardmetadata struct
Result: output packet
match_key← (headers.IPv4.src_addr);
if borderLanPortSrcTable.apply(match_key) == acction_PacketFromLanPort()
then

match_key← (headers.IPv4.dest_address);
if borderLanDstTable.apply(match_key) == acction_PacketToLanPort() then

match_key← (headers.IPv4.dst_addr);
if borderLanPortDstTable.apply(match_key) then

Set destination port based on action parameters;
else

Mark packet to drop;
end

else
match_keyA← (headers.IPv4.dst_addr, currentI Pversion);
match_keyB← (headers.IPv4.src_addr, currentI Pversion);
Translate destination IP address and set output port number according to

acction_TranslateDstAddress() executed by
borderTranslationDstTable.apply(match_keyA);

Translate source IP address according to acction_TranslateSrcAddress()
executed by borderTranslationSrcTable.apply(match_keyB)

end
else

match_key← (headers.IPv4.src_addr);
Get IP_address_version from acction_PacketFromLanPort() executed by

borderLanPortSrcTable.apply(match_key);
if IP_address_version > current_IP_version then

current_IP_version← IP_address_version;
end
match_keyA← (headers.IPv4.dst_addr, current_IP_version);
match_keyB← (headers.IPv4.src_addr, current_IP_version);
Translate destination IP address and set output port number according to

acction_TranslateDstToLanAddress() executed by
borderTranslationDstToLanTable.apply(match_keyA);

Translate source IP address according to acction_TranslateSrcToLanAddress()
executed by borderTranslationSrcToLanTable.apply(match_keyB)

end
if Packet is not marked to drop then

Emit Packet
else

Drop Packet
end

Implementing the proposed mechanism in traditional computer networks is practi-
cally impossible. Routers make packet routing decisions based on the entries in the routing
table, the contents of which are supplied by specific routing protocols. Changing the
contents of routing tables is possible, for example, by using static entries that would be
supplied through the Representational State Transfer Configuration (RESTCONF) proto-
col [57]. However, such a procedure would be quite time consuming. This means that
services provided by networks would be temporarily unavailable for a certain period,
which, in modern networks with throughput expressed in tens of GB/s, is unacceptable.
Moreover, changing the IP addresses of router interfaces forces the change in addresses
for all hosts connected to the router (directly or via layer 2 switches). This requirement



Electronics 2024, 13, 918 16 of 24

could be addressed by using the DHCP protocol. However, introducing another traditional
mechanism would further extend the service unavailability. Even using NAT functions
would not solve the problem due to functional limitations (changing IP addresses affects
existing TCP sessions, problems with UDP protocol handling, the need for port forward-
ing). Implementing such a solution in a traditional computer network, from the network
administrator’s perspective, would be an unimaginable endeavor.

7. Performance Evaluation
7.1. Convergence Time

To conduct the optimization process and assess the effectiveness of the solution, it is
necessary to determine the system’s convergence time, meaning the time required for all
switches to exclusively use addresses from the current generation (this also includes the IP
addresses of packets in the network interface buffers and packet memories). Two scenarios
should be considered.

Scenario I: All modification are introduced simultaneously by CSDN in all border
switches. In this scenario, the convergence time is determined by two components:

• The time to update the flow tables in all border switches (TControler);
• The longest packet transfer time between two border switches (TTrans f er).

For formal notation, let us introduce designations for the active elements (such as core
and border switches, hosts, and the SDN controller) and passive elements, namely, links.
Let SC

i denote the ith core switch. Similarly, let us denote the jth border switch as SB
j . Host

number k, connected to SB
j , is denoted as H j

k. The SDN controller, having only one instance,

is simply denoted as CSDN. The link between SC
i1

and SC
i2

(i.e., the link between the i1th and

i2th core switches) is denoted as LC−C
i1,i2

, the link between SB
j1

and SB
j2

(i.e., the link between

the j1th and j2th border switches) is denoted as LB−B
j1,j2

, while the link between H j
k and SB

j is

denoted as LC−B
i,j . The link between the controller and SC

i1
or SB

i2
is denoted as LSC

i1 or LSB
i2 ,

respectively. Figure 7 illustrates these network elements along with their designations.
Additionally, let us introduce the notation of the function T(x), which returns the

time value in which an IP packet is in element (which can be either an active and a passive
element) x.

The first component of convergence time is defined by the following equation:

TControler = max
(

T
(

ICSDN
i

)
+ T

(
ICSDN

j

)
+ T

(
LSC

i

)
+ T

(
ISB

j
))

, (1)

where T
(

ICSDN
i

)
(T

(
ICSDN

j

)
) is the time of generation, buffering, and sending a mes-

sage in the SDN controller on the interface to SC
i (SB

j ); T
(

ISB
j
)

is the time of receiving,

verifying correctness, buffering, and updating the flow table in switch SB
j ; and T

(
LSC i1

)
is

the propagation time between CSDN and SB
j . Assuming that CSDN sends almost identical

messages to all SB
j (only differing in IP and MAC addresses), that all interfaces of CSDN

are identical, and that all SB
j switches are identical, Equation (1) can be simplified to

TControler = T
(

ICSDN j
)
+ T

(
ISB

j
)
+ max

(
T
(

LSB j
))

. (2)

This means that the time of the first component is equal to the time of updating the flow
table in the border switch most distant from CSDN.

The second component of the convergence time is equal to the longest duration for an
IP packet to pass between two edge switches. Excluding situations where a packet may



Electronics 2024, 13, 918 17 of 24

be buffered in switches (due to temporary disconnection/switching of the network link),
unusually long packet handling in the switch, etc., this time can be calculated from

TTrans f er = max
(

T
(

ISB
j1

)
+ T

(
ISB

j2

)
+ T

(
LC−B

i1,j1

)
+ T

(
LC−B

i2,j2

)
+

+ ∑ T
(

SC
i

)
+ ∑ T

(
LC−C

i1,i2

)) (3)

where T
(

ISB
j1

)
is the time of generating and sending an IP packet from SB

j1
, while T

(
ISB

j2

)
is

the time of receiving and processing an IP packet in SB
j1

. The times T
(

LC−B
i1,j1

)
and T

(
LC−B

i2,j2

)
are the propagation times on the links connecting border switches to core switches. The
time T

(
SC

i
)

is the time of receiving the packet, processing it (finding the route for the packet,

modifying IP header fields), and sending it to the next switch. The time T
(

LC−C
i1,i2

)
is the

propagation time between two core switches. Similar to TControler, we can assume that all
active elements are identical, so Formula (3) can be simplified to

TTrans f er = T
(

ISB j1
)
+ T

(
ISB

j2

)
+ min

(
T
(

LC−B
i1,j1

)
+ T

(
LC−Bi2, j2

)
+

+c · T
(

SC
i

)
+ ∑ T

(
LC−C

i1,i2

)) (4)

where c is the number of core switches located on the path between two border switches.
The signal in a fiber optic link is transmitted at the speed of light (3 · 108 m/s), which means
that sending a frame over a distance of 1 km takes 3.3 µs. Assuming that the protected
network is located in a limited area, where the length of links between core switches is
similar and does not exceed the length DL (e.g., 1 km), Formula (4) can be simplified to

TTrans f er = T
(

ISB
j1

)
+ T

(
ISB

j2

)
+ min

(
T
(

LC−B
i1,j1

)
+ T

(
LC−B

i2,j2

)
+

+c · T
(

SC
i

)
+ (c− 1) · T(DL)

) (5)

Considering all time components, the convergence time in scenario I is calculated as

T I
convergence = TControler + TTrans f er (6)

Scenario II: In this scenario, it is assumed that the SDN controller cannot send informa-
tion about the change in IP address generation to all switches simultaneously. Instead, the
data exchange operation follows a sequential algorithm, where the controller only proceeds
to modify the flow tables in the next switch after receiving confirmation of the modifica-
tion’s completion from the currently modified switch. The controller can proceed to modify
the flow tables in the next switch only after receiving confirmation of the completion of
the modification from the switch currently being modified. According to Algorithm 2, the
change in IP address generation, enforced by messages from the SDN controller, can be
supplemented by propagating information about the new generation through the exchange
of IP packets in the data plane. It is worth noting a potential Scenario III, where the SDN
controller informs only one switch about the generation change, and the other switches
adjust the generation of IP addresses based on packet exchanges in the data plane. This
approach has a significant limitation: if a given edge switch does not receive IP packets
with addresses from the new generation—or receives no IP packets at all—it will continue
using the previous generation of IP addresses. While using generation propagation in
the data plane can speed up the generation change in individual switches, informing all
switches through the SDN controller is necessary to achieve a converged state.

In such a case, the convergence time in scenario II (denoted as T I I
convergence) is equal to

the sum of the message transfer times between the SDN controller and all SDN switches, as



Electronics 2024, 13, 918 18 of 24

well as the longest packet transmission time between two border switches. T I I
convergence is

given by
T I I

convergence = (c + b) · TController + TTrans f er (7)

where c is the number of core switches, and b is the number of border switches.

7.2. Numerical Experiment

In Section 7.1, considerations regarding the convergence time of the system were
presented, which is the time required for all switches to use only the set of IP addresses
belonging to a given generation. Table 1 presents the time characteristics of the SDN
elements that are necessary to calculate the convergence times in scenarios I and II. Figure 10
compares the convergence times of networks using scenarios I and II for different link
bandwidths (10 Gbps and 40 Gbps) and different numbers of switches. The chart shows the
total number of border and core switches. It was assumed that the ratio of core to border
switches was 1:5. As can be observed, the convergence time did not exceed 350 µs.

Table 1. Time characteristics of SDN elements.

System Element Processing Time

Serialization on ethernet port (1 Gbps, packet size 1518 bytes) [58] 7.2 µs
Serialization on ethernet port (10 Gbps, packet size 1518 bytes) [58] 1.2 µs
Serialization on ethernet port (25 Gbps, packet size 1518 bytes) [58] 0.48 µs
Serialization on ethernet port (40 Gbps, packet size 1518 bytes) [58] 0.3 µs
IP packet transmission over a distance of 1 km [59] ∼5 µs
Packet forwarding in SDN switch (depends on ASIC) [60] ∼0.2 µs
Flow table update (500 Mbps, packet size 1500B) [61] ∼90 ms

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40

C
o

n
v

e
rg

e
n

ce
 t

im
e

 [
µ

s]

Number of switches (border and core) [/]

Scenario I (10 Gbps) Scneario II (10Gbps)

Scenario I (40 Gbps) Scenario II (40 Gbps)

Figure 10. Comparison of convergence times in scenarios I and II for different link bandwidths and
different numbers of switches.

In order to assess the performance of the proposed solution, we needed to consider
the time required to prepare the switches for the application of IP addresses of the next
generation. For all switches to be able to use the new generation, the SDN switch must
update the flow tables in all switches. According to Algorithms 1 and 2, it is necessary to
modify the tables:

• coreIPV4Table in core switches, which contains h2 entries, where h is the number of
hosts in the supported network,

• borderTanslationDstTabl in border switches, which contains h entries;



Electronics 2024, 13, 918 19 of 24

• borderTanslationSrcTabl in border switches, which also contains h entries.

The time required to modify flow tables is dependent on the amount of modifying
data, which in turn depends on the number of commands and parameters contained in
the packet [61]. Modifying commands are transmitted between the SDN controller and
the switches as text, formatted according to JSON notation. The number of bytes in such
a command depends on the number of characters. However, it should be noted that
determining the exact number is impossible, as, for example, an IP address in version 4
is made up of 4 bytes, but in JSON notation, it can occupy from 7 bytes (e.g., 1.1.1.1) to
15 bytes (e.g., 192.168.136.200). The names of tables and the functions called also affect the
number of characters transmitted in a single command. For simplicity, let us assume that
one command is 60 bytes (characters) long.

Let us determine the time necessary to update a table involving the exchange of R rows.
Based on the research results presented in [61], we can assume that updating 25 entries
(according to the assumption, the modifying command is 60 bytes long) in a table takes
approximately 90 ms. Let Tmodi f y(R) denote the time needed to modify R rows in the flow
table. Tmodi f y(R) can be determined using

Tmodi f y(R) = R · Tmod, (8)

Taking into account the modification times presented in [61], Formula (8) can be
simplified to the form

Tmodi f y(R) = 90
⌈

R
25

⌉
, (9)

Meanwhile, the time required to modify tables (denoted as Tprepare(k, b, c)) in all the
switches of the considered network, which is composed of h hosts connected to each border
switch, b border switches, and c core switches, is

Tprepare(k, b, c) = b · Tmodi f y(k) + b · Tmodi f y(k(b− 1)) + c · Tmodi f y((b · k)2) (10)

In Figure 11, the changes in the time necessary for updating the flow tables in all
network switches are presented. It was assumed that each border switch was connected
to 24 hosts. Meanwhile, the ratio of the number of core hosts to the number of border
switches was 1:5 (similar to the comparison presented in Figure 10). As can be observed,
the time required to prepare the switches for the change in IP address generation increases
exponentially with the increase in the number of switches (and consequently with the
increase in the number of hosts) from a few seconds to 3 h. It should be noted that this
solution was not optimized in this respect.

1

10

100

1,000

10,000

100,000

0 5 10 15 20 25 30 35 40

P
re

p
a

ra
ti

o
n

 t
im

e
 [

s]

Number of switches (border and core)[/]

Figure 11. Comparison of switch preparation time for different number of border and core switches.



Electronics 2024, 13, 918 20 of 24

8. Conclusions and Future Works

Our civilization’s dependence on IT solutions, as well as the geopolitical situation,
requires new research tasks and the delivery of new solutions in the field of cybersecurity.
This article proposed a new approach to one of the MTD technologies using IP address
mutation. We used an SDN and programming in the P4 language, which adds a new
dimension to shaping the functionality of the data plane. In research on the effectiveness
of MTD mechanisms, studies have rarely been conducted on the impact of the applied
techniques on the quality of services provided to users [62]. The use of MTD techniques can
lead to disruptions in service availability [7,8] or, as is the case with IP address mutation
mechanisms that utilize DHCP or DNS services, to connection interruptions [9]. The
presented solution is distinguished from other proposed solutions by its ability to maintain
the continuity of services. By applying the described solution, any interruption in TCP
connections is avoided, which is significant for networks operating at bandwidths above
10 Gbps. The inability to transmit data even for a few seconds can result in significant data
loss. Another important advantage of the proposed solution is its flexibility. This solution
does not require modifications to the operation of services such as DHCP or DNS and thus
is not limited by their functioning.

Performance analysis of the proposed solution indicated that with an increasing
number of hosts in the network, the permissible speed of IP address mutation drastically
decreases. This is due to the use of an extremely simple mutation algorithm, in which
IP addresses were mutated in a completely random manner at each step, necessitating
the modification of entire flow tables. Such an algorithm is not optimal. In further work,
researchers can attempt to optimize the mutation algorithm, in which IP addresses will
be changed only for a portion of the hosts in subsequent mutations. Another scenario to
consider is mutating addresses only for devices providing critical services. Considering the
flexibility of implementation provided by the P4 language, further studies can introduce
additional mutation scenarios.

Another direction for future research involves conducting a detailed analysis of the
proposed solution. The Mininet environment used in this study only allowed for the
confirmation of the proposed solution’s functionality. Since preparing a sufficiently large
research environment, where programmable SDN switches would be utilized, is an ex-
tremely difficult and costly endeavor, there is a plan to develop an appropriate simulator in
the OMNET++ environment.

Author Contributions: M.Ż., M.M. and P.Z.: conceptualization, validation, writing—review and
editing; M.Ż.: data curation, formal analysis, investigation, methodology, resources, software, visual-
ization, and writing—original draft; P.Z.: funding acquisition, project administration, supervision.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Polish Ministry of Science and Higher Education
(No. 0313/SBAD/1310).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
APT Advanced Persistent Threat
ASIC Application-Specific Integrated Circuit
BGP Border Gateway Protocol
BMv2 Behavioral Model v.2



Electronics 2024, 13, 918 21 of 24

CKC Cyber Kill Chain
CPU Central Processing Unit
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
FPGA Field Programmable Gate Array
IGRP Interior Gateway Routing Protocol
IP Internet Protocol
IS-IS Intermediate System to Intermediate System
IT Information Technology
JSON JavaScript Object Notation
MAC Media Access Control
MIMD Multi-Instruction stream Multidata stream
MISD Multi-Instruction stream Single-Data stream
MTD Moving Target Defense
NAT Network Address Translation
NG-PON2 Next-Generation Passive Optical Network 2
NIC Network Interface Card
ONF Open Networking Foundation
OSPF Open Shortest Path First
ONU Optical Network Unit
OLT Optical Line Termination
OSINT Open Source Intelligence
P4 Protocol-Independent Packet Processor Programming
PON Passive Optical Network
PNA Portable NIC Architecture
PSA Portable Switch Architecture
QoS Quality of Service
RESTCONF Representational State Transfer Configuration
SDN Software Defined Network
STP Spanning Tree Protocol
TCP Transmission Control Protocol
TOP Task-Optimized Processors
TTL Time-To-Live
UDP User Datagram Protocol

References
1. Safjański, T.; Łabez, P. Counter-Detection Activities Of Criminal Organizations Aimed At Reducing The Effectiveness Of

Surveillance Conducted As Part Of Law Enforcement Operational Activities. Issues Forensic Sci. 2017, 298, 62–68. [CrossRef]
2. Alani, M.M.; Damiani, E. XRecon: An Explainbale IoT Reconnaissance Attack Detection System Based on Ensemble Learning.

Sensors 2023, 23, 5298. [CrossRef] [PubMed]
3. Grigaliũnas, v.u.; Brũzgienė, R.; Venčkauskas, A. The Method for Identifying the Scope of Cyberattack Stages in Relation to Their

Impact on Cyber-Sustainability Control over a System. Electronics 2023, 12, 591. [CrossRef]
4. Belalis, I.; Spathoulas, G.; Anagnostopoulos, I. Modeling Intruder Reconnaissance Behavior through State Diagrams to Support

Defensive Deception. J. Cybersecur. Priv. 2023, 3, 275–302. [CrossRef]
5. Huang, Y.T.; Lin, C.Y.; Guo, Y.R.; Lo, K.C.; Sun, Y.S.; Chen, M.C. Open Source Intelligence for Malicious Behavior Discovery and

Interpretation. IEEE Trans. Dependable Secur. Comput. 2022, 19, 776–789. [CrossRef]
6. Jalowski, L.; Zmuda, M.; Rawski, M. A Survey on Moving Target Defense for Networks: A Practical View. Electronics 2022, 11,

2886. [CrossRef]
7. Han, Y.; Lu, W.; Xu, S. Characterizing the Power of Moving Target Defense via Cyber Epidemic Dynamics. arXiv 2014,

arXiv:1404.6785.
8. Wright, M.; Venkatesan, S.; Albanese, M.; Wellman, M. Moving Target Defense against DDoS Attacks: An Empirical Game-

Theoretic Analysis. In Proceedings of the CCS’16: 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, 24 October 2016; Volume 10, pp. 93–104. [CrossRef]

9. Clark, A.; Sun, K.; Poovendran, R. Effectiveness of IP address randomization in decoy-based moving target defense. In
Proceedings of the 52nd IEEE Conference on Decision and Control, Firenze, Italy, 10–13 December 2013; pp. 678–685. [CrossRef]

10. Javadpour, A.; Ja’fari, F.; Taleb, T.; Shojafar, M.; Yang, B. SCEMA: An SDN-Oriented Cost-Effective Edge-Based MTD Approach.
IEEE Trans. Inf. Forensics Secur. 2023, 18, 667–682. [CrossRef]

http://doi.org/10.13140/RG.2.2.25928.01289
http://dx.doi.org/10.3390/s23115298
http://www.ncbi.nlm.nih.gov/pubmed/37300025
http://dx.doi.org/10.3390/electronics12030591
http://dx.doi.org/10.3390/jcp3020015
http://dx.doi.org/10.1109/TDSC.2021.3119008
http://dx.doi.org/10.3390/electronics11182886
http://dx.doi.org/10.1145/2995272.2995279
http://dx.doi.org/10.1109/CDC.2013.6759960
http://dx.doi.org/10.1109/TIFS.2022.3220939


Electronics 2024, 13, 918 22 of 24

11. Yan, J.; Zhou, Y.; Wang, T. A Port-Hopping Technology against Remote Attacks and Its Effectiveness Evaluation. Electronics 2023,
12, 2477. [CrossRef]

12. Chang, S.Y.; Park, Y.; Ashok Babu, B.B. Fast IP Hopping Randomization to Secure Hop-by-Hop Access in SDN. IEEE Trans. Netw.
Serv. Manag. 2019, 16, 308–320. [CrossRef]

13. Volckaert, S. Randomization-based Defenses against Data-Oriented Attacks. In Proceedings of the 8th ACM Workshop on
Moving Target Defense, MTD’21, Virtual Event, Republic of Korea, 15 November 2021; pp. 1–2. [CrossRef]

14. Thompson, M.; Mendolla, M.; Muggler, M.; Ike, M. Dynamic Application Rotation Environment for Moving Target Defense. In
Proceedings of the 2016 Resilience Week (RWS), Chicago, IL, USA, 16–18 August 2016; pp. 17–26. [CrossRef]

15. Morphisec. Optimizing the Security Stack with Morphisec and Windows Defender; Whitepaper; Morphisec Labs: Beersheba, Israel,
2020. Available online: https://www.morphisec.com/hubfs/Optimizing-Sec-Stack-Morphisec-Dfndr-200929.pdf (accessed on
30 October 2023).

16. Okhravi, H.; Comella, A.; Robinson, E.; Haines, J. Creating a cyber moving target for critical infrastructure applications using
platform diversity. Int. J. Crit. Infrastruct. Prot. 2012, 5, 30–39. : 10.1016/j.ijcip.2012.01.002 [CrossRef]

17. Salamat, B.; Gal, A.; Jackson, T.; Manivannan, K.; Wagner, G.; Franz, M. Multi-variant Program Execution: Using Multi-core
Systems to Defuse Buffer-Overflow Vulnerabilities. In Proceedings of the 2008 International Conference on Complex, Intelligent
and Software Intensive Systems, Barcelona, Spain, 4–7 March 2008; pp. 843–848. [CrossRef]

18. Okhravi, H.; Riordan, J.; Carter, K. Quantitative Evaluation of Dynamic Platform Techniques as a Defensive Mechanism. In
Proceedings of the Research in Attacks, Intrusions and Defenses, Gothenburg, Sweden, 17–19 September 2014; pp. 405–425.

19. Rawski, M. Network Topology Mutation as Moving Target Defense for Corporate Networks. Int. J. Electron. Telecommun. 2019,
65, 571–577. [CrossRef]

20. Wang, L.; Wu, D. Moving Target Defense Against Network Reconnaissance with Software Defined Networking. In Proceedings
of the Information Security, Honolulu, HI, USA, 3–6 September 2016; pp. 203–217.

21. Hong, J.B.; Yoon, S.; Lim, H.; Kim, D.S. Optimal Network Reconfiguration for Software Defined Networks Using Shuffle-Based
Online MTD. In Proceedings of the 2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS), Hong Kong, China,
26–29 September 2017; pp. 234–243. [CrossRef]

22. Steinberger, J.; Kuhnert, B.; Dietz, C.; Ball, L.; Sperotto, A.; Baier, H.; Pras, A.; Dreo, G. DDoS defense using MTD and SDN. In
Proceedings of the NOMS 2018—2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, 23–27 April
2018; pp. 1–9. [CrossRef]

23. Luo, Y.B.; Wang, B.S.; Wang, X.F.; Zhang, B.F. A keyed-hashing based self-synchronizationmechanism for port address hopping
communication. Front. Inf. Technol. Electron. Eng. 2017, 18, 719. [CrossRef]

24. Zhang, L.; Wei, Q.; Gu, K.; Yuwen, H. Path hopping based SDN network defense technology. In Proceedings of the 2016 12th
International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Changsha, China,
13–15 August 2016; pp. 2058–2063. [CrossRef]

25. Aydeger, A.; Saputro, N.; Akkaya, K.; Rahman, M. Mitigating Crossfire Attacks Using SDN-Based Moving Target Defense. In
Proceedings of the 2016 IEEE 41st Conference on Local Computer Networks (LCN), Dubai, United Arab Emirates, 7–10 November
2016; pp. 627–630. [CrossRef]

26. Zhao, Z.; Gong, D.; Lu, B.; Liu, F.; Zhang, C. SDN-Based Double Hopping Communication against Sniffer Attack. Math. Probl.
Eng. 2016, 2016, 8927169. [CrossRef]

27. Hyder, M.F.; Fatima, T. Towards Crossfire Distributed Denial of Service Attack Protection Using Intent-Based Moving Target
Defense Over Software-Defined Networking. IEEE Access 2021, 9, 112792–112804. [CrossRef]

28. Zhou, Z.; Xu, C.; Kuang, X.; Zhang, T.; Sun, L. An Efficient and Agile Spatio-Temporal Route Mutation Moving Target Defense
Mechanism. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China,
20–24 May 2019; pp. 1–6. [CrossRef]

29. Chowdhary, A.; Alshamrani, A.; Huang, D.; Liang, H. MTD Analysis and evaluation framework in Software Defined Network
(MASON). In SDN-NFV Sec’18: Proceedings of the Proceedings of the 2018 ACM International Workshop on Security in Software Defined
Networks & Network Function Virtualization; ACM: New York, NY, USA, 2018; pp. 43–48. [CrossRef]

30. Wang, J.; Xiao, F.; Huang, J.; Zha, D.; Hu, H.; Zhan, H. CHAOS: An SDN-based Moving Target Defense System. Secur. Commun.
Netw. 2017, 2017, 3659167. [CrossRef]

31. Luo, Y.B.; Wang, B.S.; Wang, X.F.; Hu, X.F.; Cai, G.L.; Sun, H. RPAH: Random Port and Address Hopping for Thwarting Internal
and External Adversaries. In Proceedings of the 2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, Finland, 20–22 August 2015;
Volume 1, pp. 263–270. [CrossRef]

32. Macwan, S.; Lung, C.H. Investigation of Moving Target Defense Technique to Prevent Poisoning Attacks in SDN. In Proceedings
of the 2019 IEEE World Congress on Services (SERVICES), Milan, Italy, 8–13 July 2019; Volume 2642-939X, pp. 178–183.
[CrossRef]

33. Sharma, D.P.; Kim, D.S.; Yoon, S.; Lim, H.; Cho, J.H.; Moore, T.J. FRVM: Flexible Random Virtual IP Multiplexing in Software-
Defined Networks. In Proceedings of the 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing
and Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), New
York, NY, USA, 1–3 August 2018; pp. 579–587. [CrossRef]

http://dx.doi.org/10.3390/electronics12112477
http://dx.doi.org/10.1109/TNSM.2018.2889842
http://dx.doi.org/10.1145/3474370.3485657
http://dx.doi.org/10.1109/RWEEK.2016.7573301
https://www.morphisec.com/hubfs/Optimizing-Sec-Stack-Morphisec-Dfndr-200929.pdf
http://dx.doi.org/10.1016/j.ijcip.2012.01.002
http://dx.doi.org/10.1109/CISIS.2008.136
http://dx.doi.org/10.24425/ijet.2019.129814
http://dx.doi.org/10.1109/SRDS.2017.32
http://dx.doi.org/10.1109/NOMS.2018.8406221
http://dx.doi.org/10.1631/FITEE.1601548
http://dx.doi.org/10.1109/FSKD.2016.7603498
http://dx.doi.org/10.1109/LCN.2016.108
http://dx.doi.org/10.1155/2016/8927169
http://dx.doi.org/10.1109/ACCESS.2021.3103845
http://dx.doi.org/10.1109/ICC.2019.8761927
http://dx.doi.org/10.1145/3180465.3180473
http://dx.doi.org/10.1155/2017/3659167
http://dx.doi.org/10.1109/Trustcom.2015.383
http://dx.doi.org/10.1109/SERVICES.2019.00050
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00088


Electronics 2024, 13, 918 23 of 24

34. Xu, X.; Hu, H.; Liu, Y.; Zhang, H.; Chang, D. An Adaptive IP Hopping Approach for Moving Target Defense Using a Light-Weight
CNN Detector. Secur. Commun. Netw. 2021, 2021, 8848473. [CrossRef]

35. Gudla, C.; Sung, A.H. Moving Target Defense Discrete Host Address Mutation and Analysis in SDN. In Proceedings of the
2020 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 16–18
December 2020; pp. 55–61. [CrossRef]

36. Sun, J.; Sun, K. DESIR: Decoy-enhanced seamless IP randomization. In Proceedings of the IEEE INFOCOM 2016—The 35th
Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016; pp. 1–9.
[CrossRef]

37. Achleitner, S.; La Porta, T.; McDaniel, P.; Sugrim, S.; Krishnamurthy, S.V.; Chadha, R. Cyber Deception: Virtual Networks to
Defend Insider Reconnaissance. In Proceedings of the 8th ACM CCS International Workshop on Managing Insider Security
Threats, MIST ’16, Vienna, Austria, 28 October 2016; pp. 57–68. [CrossRef]

38. Clark, A.; Sun, K.; Bushnell, L.; Poovendran, R. A Game-Theoretic Approach to IP Address Randomization in Decoy-Based Cyber
Defense. In Proceedings of the Decision and Game Theory for Security, London, UK, 4–5 November 2015; pp. 3–21.

39. Wang, K.; Chen, X.; Zhu, Y. Random domain name and address mutation (RDAM) for thwarting reconnaissance attacks. PLoS
ONE 2017, 12, e0177111. [CrossRef]

40. ONF. TS-012: SDN Architecture. Technical Standard; ONF—Open Networking Fundation: Palo Alto, CA, USA, 2013.
41. ONF. TR-521: OpenFlow Switch Specification; Technical Reference; ONF—Open Networking Fundation: Palo Alto, CA, USA, 2016.
42. Lockheed Martin. The Cyber Kill Chain. Available online: https://www.lockheedmartin.com/en-us/capabilities/cyber.html

(accessed on 30 October 2023).
43. Bosshart, P.; Daly, D.; Gibb, G.; Izzard, M.; McKeown, N.; Rexford, J.; Schlesinger, C.; Talayco, D.; Vahdat, A.; Varghese, G.; et al.

P4: Programming Protocol-Independent Packet Processors. SIGCOMM Comput. Commun. Rev. 2014, 44, 87–95. [CrossRef]
44. ONF. P416 Language Specification—Version 1.2.4; Standard, The P4 Language Consortium: Palo Alto, CA, USA, 2023.
45. Intel. Intel Tofino. Available online: https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-

fabric-processors/tofino/products.html (accessed on 18 February 2024).
46. Intel. Intel Tofino 2. Available online: https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-

fabric-processors/tofino-2/products.html (accessed on 18 February 2024).
47. Intel. Intel Tofino 3 Intelligent Fabric Processors; Sepecification; Intel Corporation: Santa Clara, CA, USA, 2023.
48. AMD XILINX. NetFPGA-SUME FPGA Development Board. Available online: https://www.xilinx.com/products/boards-and-

kits/1-6ogkf5.html (accessed on 18 February 2024).
49. AMD XILINX. Alveo SN1000 SmartNIC Accelerator Card. Available online: https://www.xilinx.com/products/boards-and-

kits/alveo/sn1000.html (accessed on 18 February 2024).
50. Intel. Intel® FPGA PAC N3000. Available online: https://www.intel.com/content/www/us/en/products/sku/193920/intel-

fpga-pac-n3000/specifications.html (accessed on 18 February 2024).
51. Contributors, M.P. Mininet—An Instant Virtual Network on your Laptop (or Other PC). Available online: https://mininet.org/

(accessed on 18 February 2024).
52. Manzanares-Lopez, P.; Muñoz Gea, J.P.; Malgosa-Sanahuja, J. Passive In-Band Network Telemetry Systems: The Potential of

Programmable Data Plane on Network-Wide Telemetry. IEEE Access 2021, 9, 20391–20409. [CrossRef]
53. Robin, D.D.; Khan, J.I. Open Source Compiling for V1Model RMT Switch: Making Data Center Networking Innovation Accessible.

In Proceedings of the 2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC), Vancouver, WA,
USA, 6–9 December 2022; pp. 133–138.

54. Kumazoe, K.; Shibata, M.; Tsuru, M. A P4 BMv2-Based Feasibility Study on a Dynamic In-Band Control Channel for SDN.
In Advances in Intelligent Networking and Collaborative Systems; Barolli, L., Miwa, H., Eds.; Springer: Cham, Switzerland, 2022;
pp. 442–451.

55. p4language. The Reference P4 Software Switch: Behavioral Model. Available online: https://github.com/p4lang/behavioral-
model (accessed on 18 February 2024).

56. ITU-T. Recommendation G.8261: Timing and Synchronization Aspects in Packet Networks; Recommendation, ITU-T—International
Telecommunication Union—Telecommunication Standardization Sector: Geneva, Switzerland, 2019.

57. Bierman, A.; Björklund, M.; Watsen, K. RESTCONF Protocol; RFC 8040; IETF—Internet Engineering Task Force: Wilmington, NC,
USA 2017. [CrossRef]

58. Deanna Woodward. 100 G Sub-Categories of Data Center. Available online: https://copyprogramming.com/howto/serialization-
and-serialization-times-in-40g-10g-and-100g-25g-ethernet (accessed on 30 October 2023).

59. Miller, K. Calculating Optical Fiber Latency. Available online: https://www.m2optics.com/blog/bid/70587/calculating-optical-
fiber-latency (accessed on 30 October 2023).

60. Edgecore Networks Corporation. Ethernet Serialization and Times for Different Speeds. Available online: https://www.edge-
core.com/cloud-data-center-100g/ (accessed on 30 October 2023).

http://dx.doi.org/10.1155/2021/8848473
http://dx.doi.org/10.1109/CSCI51800.2020.00017
http://dx.doi.org/10.1109/INFOCOM.2016.7524602
http://dx.doi.org/10.1145/2995959.2995962
http://dx.doi.org/10.1371/journal.pone.0177111
https://www.lockheedmartin.com/en-us/capabilities/cyber.html
http://dx.doi.org/10.1145/2656877.2656890
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino/products.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino/products.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino-2/products.html
https://www.intel.com/content/www/us/en/products/details/network-io/intelligent-fabric-processors/tofino-2/products.html
https://www.xilinx.com/products/boards-and-kits/1-6ogkf5.html
https://www.xilinx.com/products/boards-and-kits/1-6ogkf5.html
https://www.xilinx.com/products/boards-and-kits/alveo/sn1000.html
https://www.xilinx.com/products/boards-and-kits/alveo/sn1000.html
https://www.intel.com/content/www/us/en/products/sku/193920/intel-fpga-pac-n3000/specifications.html
https://www.intel.com/content/www/us/en/products/sku/193920/intel-fpga-pac-n3000/specifications.html
https://mininet.org/
http://dx.doi.org/10.1109/ACCESS.2021.3055462
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
http://dx.doi.org/10.17487/RFC8040
https://copyprogramming.com/howto/serialization-and-serialization-times-in-40g-10g-and-100g-25g-ethernet
https://copyprogramming.com/howto/serialization-and-serialization-times-in-40g-10g-and-100g-25g-ethernet
https://www.m2optics.com/blog/bid/70587/calculating-optical-fiber-latency
https://www.m2optics.com/blog/bid/70587/calculating-optical-fiber-latency
https://www.edge-core.com/cloud-data-center-100g/
https://www.edge-core.com/cloud-data-center-100g/


Electronics 2024, 13, 918 24 of 24

61. Harkous, H.; He, M.; Jarschel, M.; Pries, R.; Mansour, E.; Kellerer, W. Performance Study of P4 Programmable Devices: Flow
Scalability and Rule Update Responsiveness. In Proceedings of the 2021 IFIP Networking Conference (IFIP Networking), Helsinki,
Finland, 21–24 June 2021; pp. 1–6. [CrossRef]

62. Cho, J.H.; Sharma, D.P.; Alavizadeh, H.; Yoon, S.; Ben-Asher, N.; Moore, T.J.; Kim, D.S.; Lim, H.; Nelson, F.F. Toward Proactive,
Adaptive Defense: A Survey on Moving Target Defense. arXiv 2019, arXiv:1909.08092.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.23919/IFIPNetworking52078.2021.9472782

	Introduction
	State of the Art
	SDN Concept
	Moving Target Defense
	Protocol-Independent Packet Processors Programming
	Implementation
	Environment Description
	Lossless Dynamic IP Address Mutation Algorithms

	Performance Evaluation
	Convergence Time
	Numerical Experiment

	Conclusions and Future Works
	References

