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Abstract: Aiming at the classification identification problem of aero-engines, this paper adopts a
telemetry Fourier transform infrared spectrometer to collect aero-engine hot jet infrared spectrum
data and proposes an aero-engine classification identification method based on spectral feature
vectors. First, aero-engine hot jet infrared spectrum data are acquired and measured; meanwhile,
the spectral feature vectors based on CO2 are constructed. Subsequently, the feature vectors are
combined with the seven mainstream classification algorithms to complete the training and prediction
of the classification model. In the experiment, two Fourier transform infrared spectrometers, EM27
developed by Bruker and a self-developed telemetry FT-IR spectrometer, were used to telemeter
the hot jet of three aero-engines to obtain infrared spectral data. The training data set and test
data set were randomly divided in a ratio of 3:1. The model training of the training data set and
the label prediction of the test data set were carried out by combining spectral feature vectors and
classification algorithms. The classification evaluation indicators were accuracy, precision, recall,
confusion matrix, and F1-score. The classification recognition accuracy of the algorithm was 98%.
This paper has considerable significance for the fault diagnosis of aero-engines and classification
recognition of aircrafts.

Keywords: infrared spectroscopic detection; spectral feature vectors; aero-engine hot jet; FT-IR

1. Introduction

Infrared spectroscopy technology [1–3] is a technique for detecting the molecular struc-
ture and chemical composition of substances. This technology utilizes the energy level tran-
sition of molecules in substances under infrared radiation to measure the wavelength and
intensity of absorbed or emitted light, producing specific spectrogram, which are used to an-
alyze and judge the chemical bonds and structures of substances. This technology has signif-
icant research applications in environmental monitoring [4], garbage classification [5], and
life chemistry [6]. The Fourier transform infrared spectrometer (FT-IR spectrometer) [7–9]
is an important means of measuring infrared spectra. It obtains interferogram through an
interferometer and restores the interferogram to spectrogram based on Fourier transform.
Passive FT-IR is frequently used for the detection of atmospheric pollutants. It has the abil-
ity to collect data from any direction, allowing for all-weather, continuous, long-distance,
real-time monitoring and rapid analysis of targets.

The classification characteristics of aero-engines are frequently related to fuel type,
combustion method, and emission characteristics. Different types of aero-engines produce
different gas components and emissions during the combustion process. The vibration
and rotation of these molecules form specific infrared absorption and emission spectra.
By analyzing the infrared spectra of aero-engine hot jet, the characteristics of the gas
components and emissions produced by aero-engine combustion can be obtained. After
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a considerable number of hot jet infrared spectra are analyzed, a spectral feature library
will be established, then the types of aero-engines are going to be determined so that the
identification of aero-engines will be realized.

In this paper, an algorithm for the classification and recognition of aero-engines is
proposed, which combines the infrared spectrum feature vectors of aero-engine hot jet with
the current mainstream classifiers. The classifiers include supervised learning method SVM,
integrated learning methods XGBoost, CatBoost, AdaBoost, Random Forest, LightGBM,
and a neural network method. Accuracy, precision, recall, F1 value, and confusion matrix
are used as classification evaluation criteria. After many experiments, the accuracy of the
classification of aero-engines has reached 98%.

The major contributions of this paper are as follows:

1. The infrared spectrum detection method for aero-engine hot jet is used as the basis
and data source input of the identification of aero-engines. Aero-engine hot jet is an
important infrared radiation characteristic of aero-engine, and the infrared spectrum
provides the characteristic information of substances at the molecular level, so it is
more scientific to utilize this method for classification.

2. FT-IR is used to measure the infrared spectrum information of aero-engine hot jet. An
FT-IR spectrometer has the advantages of fast scanning speed, excellent resolution,
wide measurement spectral range, and high measurement accuracy. It can achieve
exceptional spectral measurement, which is of great significance for the non-contact
classification and recognition of aero-engines.

The architecture of this paper is as follows: Section 1 describes the infrared spec-
troscopy technology, and this paper uses the classification method, innovation, and article
architecture; in Section 2, the spectral components of the hot jet are analyzed, and the
construction method of spectral feature vectors is proposed; Section 3 introduces seven
mainstream classifier methods; Section 4 describes the experimental content, including
the experimental design of aero-engine spectrum acquisition, data set production, spectral
feature vectors extraction, and the accuracy evaluation of classification prediction results;
Section 5 summarizes the paper and puts forward the idea of the next research direction.

2. Spectral Feature Analysis and Spectral Feature Vector Construction

In this section, the brilliant temperature spectrum (BTS) and components of aero-
engine hot jet are analyzed, and a method of constructing spectral feature vectors based on
CO2 characteristic peaks is proposed.

When passive FT-IR is used in gas detection and identification studies, the method
of calculating the BTS with a constant baseline can be utilized due to the high emis-
sivity of most of the substances in nature that serve as the background. The brilliant
temperature [10,11] of a material object is equivalent to the temperature of a blackbody at
the same wavelength when the intensity of the spectral radiation of the material object and
the blackbody are equal. It is based on equal brightness and is utilized to characterize the
material object’s own radiation. The use of BTS does not require pre-measurement of the
background spectrum and enables the target gas characteristics to be extracted directly
from the BTS analysis.

In order to obtain the BTS from the passive infrared spectrum, it is necessary to first
deduct the spectral signal measured by the spectrometer from the bias and response of the
instrument to obtain the spectral radiance spectrum entering the spectrometer, and from
the radiance spectrum obtained, the equivalent temperature of the radiance spectrum T(v)
can be calculated according to Planck’s law of radiation by transforming Planck’s formula
to obtain the following formula:

T(v) =
hcv

k ln{[L(v) + 2hc2v3]/L(v)} (1)
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where h is Planck’s constant with a value of 6.62607015 × 10ˆ−34 J·S, c represents the speed
of light with a value of 2.998 × 10ˆ8 m/s, v is the wave number in cm−1, k is Boltzmann’s
constant with a value of 1.380649 × 10ˆ−23 J/K, and L(v) represents the radiance about
the wave number.

The experimentally measured infrared spectra of aero-engine hot jets of three turbojet
engines are presented in Figure 1, where the horizontal coordinates are the wave numbers
and the vertical coordinates are the BTS.
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The emission products of an aero-engine typically include oxygen (O2), nitrogen (N2),
carbon dioxide (CO2), steam (H2O), carbon monoxide (CO), et al. The combustion products
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are primarily divided into 1© air composition not participating in combustion, including
O2 and N2, 2© products of combustion reactions, mainly NOx, 3© the end product of an
ideal combustion process, including CO2, H2O, and CO [12].

Based on the main emissions of the aero-engines and the measured infrared spectral
data of the aero-engines, the peaks of the three most likely products of combustion, CO2,
H2O, and CO, were compared and analyzed. It was discovered that in the spectral curve,
the characteristic peaks of CO2 at 667 cm−1 and 2349 cm−1 were obvious and stable, the
spectrum of CO at the characteristic band of 2000–2222 cm−1 gradually weakened with the
increase of rotational speed, and the characteristic peaks of H2O were not obvious and not
informative. Therefore, the two characteristic peaks (667 cm−1 and 2350 cm−1) of CO2 in
the mid-wave infrared (MWIR) region (400–4000 cm−1) and the two stable and obvious
characteristic peaks (719 cm−1 and 2390 cm−1) in the measured spectral curve were selected
for the construction of spectral feature vectors. In this paper, the spectral feature vectors
are constructed based on the BTS, and the numerical difference of the BTS is related to the
exhaust temperature of the aero-engines as well as the concentration and temperature of
the gas in the hot jet.

Four characteristic peaks in the MWIR region of the BTS of the measured aero-engine
hot jet were selected for the construction of spectral feature vectors, and the corresponding
wave numbers of the peaks are 2350 cm−1, 2390 cm−1, 719 cm−1, and 667 cm−1; their
locations are shown in Figure 2 below:
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Figure 2. Schematic representation of the positions of the four characteristic peaks of the three
aero-engines as measured in practice.

Spectral feature vectors a = [a1, a2] are composed of individual spectra by calculating
the peak difference between 2390 cm−1 and 2350 cm−1 and the peak difference between
719 cm−1 and 667 cm−1.

a1 = Tv=2390cm−1 − Tv=2350cm−1

a2 = Tv=719cm−1 − Tv=677cm−1
(2)

Affected by the environment, the peak positions of the selected characteristic peaks
may be shifted, the four characteristic peaks of 2350 cm−1, 2390 cm−1, 719 cm−1, and
667 cm−1 of the experimentally measured infrared spectral data are extracted from the area
range where the maximum and minimum peaks are located for the extraction of spectral
feature vectors, and the specific selection of the threshold range is shown in Table 1:

Table 1. Characteristic peak threshold takes the value range.

Characteristic Peak
Type Emission Peak (cm−1) Absorption

Peak (cm−1)

Peak standard features 2350 2390 719 667
Characteristic peak

range values 2350.5–2348 2377–2392 722–718 666.7–670.5
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3. Spectral Eigenvector Classification Methods

This section provides a brief description of the mainstream classifiers SVM [13–15], XG-
Boost 1.0 [16,17], CatBoost 1.0.4 [18–20], AdaBoost [21], Random Forest [22], LightGBM [23],
and neural network [24,25] classifiers.

The current mainstream classification methods are supervised learning methods,
unsupervised learning methods, semi-supervised learning methods, reinforcement learning
methods, deep learning methods, and ensemble learning methods. Supervised learning
methods are methods that use training data with labels to construct a model used to
classify new samples, including decision tree, support vector machines (SVM), and logistic
regression. Ensemble learning methods include Bagging and Boosting, where Bagging is
characterized by the absence of strong dependencies between individual evaluators, and
a series of individual learners can be generated in parallel, representing the algorithm
Random Forest; Boosting is characterized by the presence of strong dependencies between
individual learners, and a series of individual learners basically Boosting is characterized
by a strong dependency relationship between individual learners, and a series of individual
learners basically need to be generated serially, representing algorithms like AdaBoost,
XGBoost, LightGBM, etc.

In view of the characteristics of the aero-engine infrared spectral data and the way of
measurement in this paper, it is more appropriate to use the training data set, test data set,
and label set for model training to carry out classification and prediction. In this paper, SVM,
XGBoost, CatBoost, AdaBoost, Random Forest, LightGBM, and neural network algorithms
are used in conjunction with spectral feature vectors to complete the classification task of
the aero-engines.
1© Support vector machine (SVM) classification method

SVM is a kernel function-based classification algorithm machine learning binary
classification model for both binary and multi-classification problems. The main task of the
SVM model is to find the optimal over-planning for classifying the data points. For binary
classification, the SVM algorithm is shown in Figure 3:
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SVM classifies the data by hyperplane y, which can be expressed as

y = ωTx + b (3)

Calculate the hyperplane equations, the thresholds on both sides, and the optimization
function for the best vector in the hyperplane. Define the margin line as passing through
the nearest point in each class to obtain the equation for the boundary line as:

ωTx + b = 0
ωTx + b = 1

ωTx + b = −1
(4)
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where, ωTx + b = 0 is the hyperplane equation, ωTx + b = 1 is the edge line equation
for the positive region, and ωTx + b = −1 is the edge line equation for the region with
negative values.

Finding the distance between two edges can be accomplished by the following:

ωT(x2 − x1) = 2
x2 − x1 = 2

‖ωT‖
(5)

Maximize the margin line function to find the optimal threshold. The final SVM model
is obtained:

(ω∗, b∗)mx
2

‖ wT ‖y∗i (ω
Txi + bi) >= 1 (6)

The SVM algorithm is suitable for high-dimensional spatial data processing and has
good performance in the field of text classification and image recognition, and at the
same time, it can maintain good performance when small amounts of sample data are
processed. The SVM algorithm is also one of the most commonly used algorithms in current
classification tasks.
2© XGBoost classification method

XGBoost is an efficient classification and regression algorithm based on gradient
boosted decision trees. The XGBoost algorithm generates multiple decision trees in an
iterative manner by integrating weak classifiers and training based on the residuals of the
previous decision tree and completely integrates multiple decision trees to improve the
performance of the model and complete the classification.

In the XGBoost classifier, firstly, the training data set {(xi · yi)}N
i=1, the differentiable

loss function L(y, F(x)), multiple weak learning M, and the learning rate α are defined as
the input parameters of the XGBoost model.

Initialization operations are performed on the model manipulating constant values:

ˆ
f (0)(x) = argmin

θ

N

∑
i=1

L(yi, θ) (7)

As the model starts from 1 iteration to M, the gradient is first calculated:

ˆ
gm(xi) =

[
∂L(yi, f (xi))

∂ f (xi)

]
f (x)−

ˆ
f (m−1)(x)

(8)

Second, calculate the Hessians matrix:

ˆ
hm(xi) =

[
∂2L(yi, f (xi))

∂ f (xi)
2

]
f (x)−

ˆ
f (m−1)(x)

(9)

Fit the base learner to the training data set

{
xi,−

ˆ
gm(xi)
ˆ
hm(xi)

}N

i=1

evolutionary optimization

of the formula is obtained:

ˆ
ϕm = argmin

ϕ∈Φ

N

∑
i=1

1
2

hm(xi)

ϕ(xi)−
ˆ
gm(xi)

ˆ
hm(xi)

2

(10)

ˆ
f m(x) = α

ˆ
φm(x) (11)
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Finally, the model is updated:

ˆ
f (m)(x) =

ˆ
f (m−1)(x) +

ˆ
f m(x) (12)

After the iteration is completed, the output of the final model equation is:

ˆ
f (x) =

ˆ
f (M)(x) =

M

∑
m=0

ˆ
f m(x) (13)

The XGBoost algorithm shows higher performance and efficiency in classification
tasks on large-scale data sets. The following are some benefits of the XGBoost algorithm:
firstly, it is extraordinarily efficient in handling large-scale data; it supports L1 and L2
regularization, which helps to prevent over-fitting; it is effective to automatically select the
salient features, which reduces the work of feature engineering; it supports a variety of loss
functions, which can handle multiple tasks, such as regression, classification, sorting, etc.;
it is capable of utilizing multiple core processors in parallel, sorting, and many other tasks;
it is able to perform parallel computation using multi-core processors.
3© AdaBoost classification method

The AdaBoost algorithm is an adaptive enhancement algorithm for ensemble learning;
the method is used to add and train new weak decision makers serially and weigh the
combination of decision makers so that the loss function continues to decrease until the
addition of decision makers is ineffective and finally all the decision makers are integrated
into one whole for decision making. The AdaBoost algorithm is illustrated in Figure 4, and
the arrows in the figure indicate the data flow direction:

Electronics 2024, 13, x FOR PEER REVIEW 7 of 21 
 

 

�̂�( )(𝑥) = �̂�( )(𝑥) + �̂� (𝑥) (12)

After the iteration is completed, the output of the final model equation is: 

�̂�(𝑥) = �̂�( )(𝑥) = �̂� (𝑥) (13)

The XGBoost algorithm shows higher performance and efficiency in classification 
tasks on large-scale data sets. The following are some benefits of the XGBoost algorithm: 
firstly, it is extraordinarily efficient in handling large-scale data; it supports L1 and L2 
regularization, which helps to prevent over-fitting; it is effective to automatically select 
the salient features, which reduces the work of feature engineering; it supports a variety 
of loss functions, which can handle multiple tasks, such as regression, classification, sort-
ing, etc.; it is capable of utilizing multiple core processors in parallel, sorting, and many 
other tasks; it is able to perform parallel computation using multi-core processors. ③ AdaBoost classification method 

The AdaBoost algorithm is an adaptive enhancement algorithm for ensemble learn-
ing; the method is used to add and train new weak decision makers serially and weigh 
the combination of decision makers so that the loss function continues to decrease until 
the addition of decision makers is ineffective and finally all the decision makers are inte-
grated into one whole for decision making. The AdaBoost algorithm is illustrated in Fig-
ure 4, and the arrows in the figure indicate the data flow direction: 

 
Figure 4. Schematic representation of the AdaBoost algorithm. 

First, the AdaBoost algorithm defines the training data set as 𝑇 ={(𝑥 , 𝑦 ), (𝑥 , 𝑦 ), … , (𝑥 , 𝑦 )} , where 𝑦 ∈ {−1, +1} , the learner is defined as 𝐺 (𝑥) , the 
training session is set as M, and the initial weight distribution is set as 𝑤( ) = , where 𝑖 = 1,2,3, … , 𝑁. 

During the training iterations, the base learner 𝐺 (𝑥) is first obtained by learning 
using a training data set with a distribution of power values: 

𝐺 (𝑥) = arg 𝑚𝑖𝑛( ) 𝑤( )𝕀(𝑦 𝐺(𝑥 )) (14)

Based on 𝐺 (𝑥), calculate the error rate of the learner 𝐺 (𝑥) on the training data set: 

𝜖 = ∑ 𝑤( )𝕀(𝑦 𝐺 (𝑥 ))∑ 𝑤( )  (15)

Calculate the coefficient 𝛼  of 𝐺 (𝑥): 

Figure 4. Schematic representation of the AdaBoost algorithm.

First, the AdaBoost algorithm defines the training data set as T = {(x1, y1), (x2, y2), . . .,
(xn, yn)}, where y ∈ {−1,+1}, the learner is defined as Gm(x), the training session is set
as M, and the initial weight distribution is set as w(1)

i = 1
N , where i = 1, 2, 3, . . . , N.

During the training iterations, the base learner Gm(x) is first obtained by learning
using a training data set with a distribution of power values:

Gm(x) = argmin
G(x)

N

∑
i=1

w(m)
i I(yi 6= G(xi)) (14)

Based on Gm(x), calculate the error rate of the learner Gm(x) on the training data set:

εm =
∑N

i=1 w(m)
i I(yi 6= Gm(xi))

∑N
i=1 w(m)

i

(15)
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Calculate the coefficient αm of Gm(x):

αm =
1
2

ln
1− εm

εm
(16)

Update the sample weight distribution w(m+1)
i :

w(m+1)
i =

w(m)
i e−yiαm(ξm(xi)

Z(m)
, i = 1, 2, 3 · · ·N (17)

where Z(m) is the normalization factor, Z(m) =
N
∑

i=1
w(m)ie−yiαmGm(xi), which ensures that all

w(m+1)
i constitute a distribution.

The final output of the model G(x):

G(x) = sign

[
M

∑
m=1

Gm(x)

]
(18)

The AdaBoost algorithm can adapt to the respective training error rates of weak
learners and is suitable for a variety of classification problems that do not frequently
require tuning. The benefits of the AdaBoost algorithm are as follows: it is simple to
implement and adjust and does not require too much parameter tuning; becoming overly
fit is difficult, and by iteratively lowering the weight of the wrong samples, the risk of over-
fitting can be reduced; it can be utilized in conjunction with a variety of basic classifiers of
weak learners such as decision trees, neural networks, etc.; it is applicable with unbalanced
data sets and deals with unbalanced data through the adjustment of weights.
4© Light gradient boosting machine (LightGBM) classification method

Developed by the Microsoft team, LightGBM is a fast classification and regression
algorithm based on a gradient boosting decision tree, which represents an optimized
improvement of the XGBoost algorithm. The improvement of the LightGBM algorithm
lies in the use of the Histogram algorithm to process the data, leaf-wise growth strategy to
construct the tree, and the optimal splitting point by optimizing the objective function to
select the optimal splitting point. It can be comprehended that the LightGBM algorithm is
a combination of XGBoost, Histogram, GOSS, and EFB algorithms.

The construction of the LightGBM algorithm model is explained in Figure 5:
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Figure 5. Schematic representation of the LightGBM algorithm.

The LightGBM algorithm has a fast, efficient, distributed structure and high-performance
characteristics that can be used in sorting, classification, regression, and many other ma-
chine learning tasks. The LightGBM algorithm’s advantages are the following: the introduc-
tion of the Histogram algorithm, which reduces the time complexity consumed by traversal;
during the training process, the one-sided gradient algorithm can filter the samples with
small gradient to reduce the amount of computation; the leaf-wise growth strategy to
construct the tree is also introduced to reduce the computational expense; the optimized
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feature-parallel and data-parallel methods are used to accelerate the computation, and
the ticket-parallel strategy can be adopted when the data volume is large and the cache is
also optimized.
5© CatBoost classification method

The CatBoost algorithm is an open-source gradient boosting classification algorithm
that uses symmetric binary tree structure for training and introduces a new loss function
and optimization method. A fully symmetric binary tree, based on symmetric decision
trees (oblivious trees), is used by the CatBoost algorithm’s base learner. This algorithm
provides fewer parameters and supports categorical variables and an extremely accurate
GBDT framework, which can efficiently and reasonably process categorical features. It also
proposes methods for dealing with gradient bias and prediction shift problems to improve
the accuracy and generalization ability of the algorithm.

First, the CatBoost algorithm defines the training data set as |D| = {(x1, y1), (x2, y2), . . .,
(xn, yn)}., and then the prediction set is as:

ˆ
yi = φ(xi) =

K

∑
k=1

fk(xi) (19)

where fk represent the regression trees and K is the number of regression trees. The formula
proves that after performing an input xi, the output K regression tree adds up to the
predicted values.

Define the objective function, the loss function, and the regular term to obtain the
optimized objective function:

L(φ) = ∑
i

l
(

ˆ
yi, yi

)
+ ∑

k
Ω( fk) (20)

where Ω( f ) = YT + 1
2 λ ‖ w ‖2.

The CatBoost algorithm automatically handles category features and excels in both
performance and effectiveness. The CatBoost algorithm has several benefits, including
its remarkable capacity to manage category characteristics, resilience, exceptional perfor-
mance, support for GPU acceleration, automated feature selection, and compatibility on
sparse data.
6© Random Forest (RF) classification method

RF is a supervised classification algorithm based on decision trees, which predicts
classification results by assembling multiple decision trees. In 2001, Bremen combined
classification trees into a Random Forest, i.e., randomized the use of variables (columns)
and the use of data (rows) to generate many classification trees and then aggregated the
results of the classification trees. RF improves the prediction accuracy without significant
increase in arithmetic.

RF is an extension of Bagging, the model input is defined as the training data set
D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, the base learning algorithm I, and the number of
training rounds T.

Conduct the T iteration of the learning algorithm, and the base learning algorithm I is
updated in the iteration:

ht = I(D, Dbx) (21)

The output model H(x) was obtained:

H(x) = argmax
y∈T

T

∑
t=1
‖ (ht(x) = y) (22)

RF is an extended variant of Bagging that further introduces the selection of random
attributes in the training process of decision trees based on the decision tree as the base
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learner to build the Bagging integration. RF is shown in Figure 6, and the yellow in the
figure represents the flow of data:
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Figure 6. Schematic representation of the RF algorithm.

RF increases the differences between classification models by constructing different
training data sets, thereby improving the extrapolated prediction ability of the combined
classification model. Through training, a sequence of classification models is obtained, and
then they are utilized to form a multi-classification model system with the final classification
decision as H(x), as in Equation (22).

RF supports parallel processing and does not require normalization of features or
processing of missing values; the model is stable, generalizes well, and can output the
importance of features; it uses Out of Bag and does not need to divide the test set separately.
However, it takes a long time to construct the tree, and the algorithm occupies a large
amount of memory.
7© Neural network (NN) classification method

Neural networks utilize neural networks for classification by modeling the way the
human nervous system works.

A neuron can be understood as a multi-dimensional linear function or a unit that
achieves a linear combination. In the figure, {x} is the input to the neuron, H(θ) is the
threshold function, and f represents the output.ω is the weights in the linear combination
or the slope of the line. To facilitate the representation and computation of a considerable
number of weights, they are typically represented as vectors or matrices.

The NN approach is shown in Figure 7:
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NN is the current mainstream algorithm used for image classification, which supports
automatic learning of features and patterns in the data and has good adaptability to
non-linear relationships, Its computational units support highly paralleled computation,
which speeds up the training speed, its distributed storage and processing improves
the fault tolerance of the system, and it has a good generalization ability after sufficient
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training and is able to perform accurate classification on unseen data. When dealing
with large-scale data and complex tasks, NN requires longer training time and more
massive computational resources and can be improved in terms of reasonable choice of
network structure, adjustment of hyper parameters, and avoidance of over-fitting to address
the problem.

The categories, application directions, advantages, and disadvantages of the seven
algorithms are compared in Table 2, which is shown underneath:

Table 2. Comparison table of classification algorithms.

Methods Categories Application Scenarios Advantages Disadvantages

SVM Supervised learning
method

Classification and
regression, text

classification, image
recognition

Adaptability of
high-dimensional spatial
data processing and small

sample data processing

Less efficient processing of
large data sets

XGBoost Ensemble learning
Biclassification,

multiclassification, and
regression problems

High efficiency, flexibility,
automatic selection of

important features,
prevention of overfitting,

parallel computation

Less efficient processing of
large data sets

Catboost Ensemble learning
Biclassification,

multiclassification, and
regression problems

Strong ability of handling
categorical features,

robustness, high
performance, GPU

acceleration support,
automatic feature selection,
and friendly treatment of

sparse data

Poor robustness of
large-scale data and

non-linear relationship
processing

Adaboost Ensemble learning
Biclassification,

multiclassification, and
regression problems

Easy to implement and
adjust, not easy to overfit,
combination with various

basic classifiers

Noise sensitive

Random Forest Ensemble learning Image recognition, data
prediction

Parallel processing, stable
model, good generalization

ability

Noise sensitive, long tree
construction time, large
memory consumption

LightGBM Ensemble learning Machine learning and
data mining areas

Efficient, distributed
structure, and high

performance
Noise sensitive

Neural Network Machine learning

Image classification,
computer vision,
natural language

processing

High classification
accuracy, strong parallel
distributed processing,

noise robustness

Extensive parameter
adjustment, non-intuitive
learning process, and long

learning time

4. Experiments and the Results

This section describes the specific experimental process and methodology of the
aero-engine classification experiment, which consists of three parts: aero-engines, spectral
acquisition experimental design, data set production and spectral feature vector extrac-
tion, and classification prediction result accuracy assessment. Among them, the part of
aero-engines spectral measurement experiment design describes the field arrangement of
the aero-engine hot jet spectral measurement experiment, the part of data set fabrication
and spectral feature vector extraction describes the training data set, test data set, label
set production, and spectral feature vector extraction adopted in the classification exper-
iment, and the classification prediction result accuracy assessment section evaluates the
prediction of the classification method used in this paper on the real data set. Ultimately,
the experimental result graphs and evaluation index tables are provided.
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4.1. Experimental Design of Aero-Engine Spectral Measurement

In the first place, the infrared spectral data of three different aero-engines’ types were
collected by field measurement. The FT-IR spectrometers used in the experiment are the
EM27 and the telemetry FT-IR spectrometer developed by the Aerospace Information
Research Institute. The specific parameters of the two devices are shown in Table 3:

Table 3. Parameters of the Fourier transform infrared spectrometers used for the experiment.

Name Manufacturer Measurement
Pattern

Spectral
Resolution (cm−1)

Spectral
Measurement
Range (µm)

Full Field of View
Angle

EM27 Bruker Active/Passive Active: 0.5/1
Passive: 0.5/1/4 2.5~12 30 mrad (no

telescope) (1.7◦)
Telemetry Fourier

Transform Infrared
Spectrometer

Aerospace
Information

Research Institute
Passive 1 2.5~12 1.5◦

The experimental preparation stage requires the experimental devices to be set up
according to the experimental conditions in the external field.

Initially, according to the spectrometers’ field of view angle and hot jet information,
the measurement distance was adjusted with a telescope to ensure the hot jet fills the field
of view. The EM27 and telemetry FT-IR spectrometer were mounted on two tripods, the
laser and scopes were used to assist the aiming, and the height and angle of the tripod
were adjusted so that the optical axis of the equipment was aligned with the center of the
aero-engine tail nozzle.

Next, after fixing the position, increase the tripod counterweight to improve stability
and fix the thermos-hygrometer near the measurement position. Determine the position of
the infrared thermal camera to clearly photograph the hot jet to be measured.

Finally, the workstation display time and the control room control system time were
strictly aligned. After the cooling process is finished, launch the two computer programs
listed above in that order. In the EM27 program, adjust the measurement mode, spectral
resolution, and number of superimposed cycles. Then, work with the displayed ADJUST
value to adjust the tripod angle until the highest value is recorded. Following the comple-
tion of the settings, background data were collected from the spectrum during the times
when the aero-engine was not running.

The layout of the experimental site is presented in Figure 8:
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During the experiment, real-time communication was conducted with the person in
charge of the aero-engine through walkie-talkies, requesting real-time prompts when the
rotational speed was changed, and requesting that each test rotational speed be stabilized
for 1 min as much as possible (since 100% rotational speed is difficult to be maintained for
1 min in the actual measurement process, the amount of spectral data collected in this part
is small). The ambient temperature and humidity were recorded at each adjustment of the
rotational speed. The environmental factors of the experiment were recorded as shown
in Table 4:

Table 4. Table of experimental aero-engines and environmental factors.

Aero-Engine Serial
Number

Environmental
Temperature

Environmental
Humidity Detection Distance

1 30 ◦C 43.5% Rh 11.8 m
2 20 ◦C 71.5% Rh 5 m
3 19 ◦C 73.5% Rh 10 m

Table 4 provides the conditions under which the experiment was carried out. The
temperature and humidity in the environment cause an absorbing and attenuating effect
on the spectrum, which responds to atmospheric radiative transfer. When solar radiation
and surface thermal radiation are transmitted in the atmosphere, they are affected by the
absorption and scattering of atmospheric molecules like H2O, mixed gases (CO2, CO, N2O,
CH4, O2), O3, N2, etc., on the one hand, and by the scattering or absorption of aerosolized
particulate matter on the other hand, which results in the attenuation of the solar radiation
and surface thermal radiation. At a distance from the target, the atmosphere will have a
non-negligible effect on the collected spectrum. As of currently, we utilize the method of
ground testing, the experimental distance is relatively close, and the difference between
aero-engines’ hot jets and the background is very large, so the attenuation can be ignored.

4.2. Data Set Production and Spectral Feature Vectors Extraction

Based on the actual measurements of the aero-engines in the field, the controllable
rotational speed ratios differed for each engine. Therefore, the infrared spectral data
of 70%, 80%, 90%, and 100% of the maximum rotational speed ratios common to the
three aero-engines were selected as the data source. There are a total of 211 spectral data in
the data source, and after removing 2 erroneous data, 209 reliable data remain.

The experiment was conducted based on the aero-engine models, so the original data
were divided by the aero-engines’ types. In the first place, 209 pieces of data were assigned
random numbers from 1 to 209 to ensure the numbers were unrepeated, and the labels
corresponding to the data were recorded (the labels corresponded to the engine model),
3/4 of them and their labels were selected at random as the training data set, and the rest
of the data with the labels were used as the test data set.

The spectral features of the experimentally measured three aero-engines at 70%, 80%,
90%, and 100% of the maximum rotational speed were counted, and the statistical results
were plotted as a two-dimensional feature map (as shown in the figure below), where the
horizontal coordinates are a1 and the vertical coordinates are a2, as shown in Figure 9.

The aero-engines of the three aircraft are relatively sufficient for fuel combustion, and
the exhaust gas spectrum at different speeds is close, so the gas composition characteristics
of the gas discharged at the cruise speed of the three aircraft aero-engines are compared.
Due to the various environment, temperature, and other conditions of the three field
experiments, the spectrograms were compared after deducting the background. From the
two-dimensional feature map, it can be regarded that the two-dimensional feature vectors
of the three types of engines have been distributed in different regions of the feature space,
and the overlap region between each other is relatively small, so the constructed spectral
feature vectors initially have the ability to classify.



Electronics 2024, 13, 915 14 of 20

Electronics 2024, 13, x FOR PEER REVIEW 14 of 21 
 

 

aero-engines were selected as the data source. There are a total of 211 spectral data in the 
data source, and after removing 2 erroneous data, 209 reliable data remain. 

The experiment was conducted based on the aero-engine models, so the original data 
were divided by the aero-engines’ types. In the first place, 209 pieces of data were assigned 
random numbers from 1 to 209 to ensure the numbers were unrepeated, and the labels 
corresponding to the data were recorded (the labels corresponded to the engine model), 
3/4 of them and their labels were selected at random as the training data set, and the rest 
of the data with the labels were used as the test data set. 

The spectral features of the experimentally measured three aero-engines at 70%, 80%, 
90%, and 100% of the maximum rotational speed were counted, and the statistical results 
were plotted as a two-dimensional feature map (as shown in the figure below), where the 
horizontal coordinates are  𝑎  and the vertical coordinates are 𝑎 , as shown in Figure 9.

 
Figure 9. Characteristic statistical results of three different turbojet aero-engines at 70%, 80%, 90%, 
and 100% maximum speed. 

The aero-engines of the three aircraft are relatively sufficient for fuel combustion, and 
the exhaust gas spectrum at different speeds is close, so the gas composition characteris-
tics of the gas discharged at the cruise speed of the three aircraft aero-engines are com-
pared. Due to the various environment, temperature, and other conditions of the three 
field experiments, the spectrograms were compared after deducting the background. 
From the two-dimensional feature map, it can be regarded that the two-dimensional fea-
ture vectors of the three types of engines have been distributed in different regions of the 
feature space, and the overlap region between each other is relatively small, so the con-
structed spectral feature vectors initially have the ability to classify. 

The spectral feature vectors and the classifier are combined to train and predict the 
spectral data. The flow chart of the classification algorithm used in the experiment is 
shown in Figure 10: 

Figure 9. Characteristic statistical results of three different turbojet aero-engines at 70%, 80%, 90%,
and 100% maximum speed.

The spectral feature vectors and the classifier are combined to train and predict the
spectral data. The flow chart of the classification algorithm used in the experiment is shown
in Figure 10:
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4.3. Assessment of the Accuracy of Classification Prediction Results

The experimentally constructed infrared spectra training data set and test data set are
tested for classification of spectral feature vectors with seven classifiers, SVM, XGBoost,
CatBoost, AdaBoost, Random Forest, LightGBM, and neural networks, and the classification
results are shown in Figure 11:
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Where, red, green, and blue represent the feature vectors of the three correctly classified
aero-engine hot jet infrared spectra, while black represents the misclassified feature vectors.

At the same time, the parameters of the seven classification algorithms are given in
Table 5, which is shown below:

Table 5. Parameter list of classification algorithms.

Methods Parameter Settings

SVM decision_function_shape = ‘ovr’, kernel = ‘rbf’

XGBoost objective = ‘multi:softmax’, num_classes =
num_classes

CatBoost loss_function = ‘MultiClass’
Adaboost n_estimators = 200

Random Forest n_estimators = 300

LightGBM objective’: ‘multiclass’,
‘num_class’: num_classes

Neural Network hidden_layer_sizes = (100), activation = ‘relu’, solver
= ‘adam’, max_iter = 200

The evaluation criteria for aero-engine spectral classification consist of accuracy, preci-
sion, recall, F1 value (F1-score), and confusion matrix [26]. It is assumed that if the instance
is a positive class and is predicted to be positive, i.e., true class, it is denoted as TP (true
positive), and if it is predicted to be negative, i.e., false negative, it is denoted as FN (false
negative); on the contrary, if the instance is a negative class and it is predicted to be positive,
i.e., false positive, it is denoted as FP (false positive), and if it is predicted to be negative,
i.e., true negative, it is denoted as TN (true negative). Based on the above assumptions,
the accuracy, precision, recall, F1 value, and confusion matrix of the evaluation criteria are
defined separately:

1© Accuracy: proportion of correctly categorized samples to total samples.

Accuracy =
TP + TN

TP + TN + FP + FN
(23)
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2© Precision: the ratio of the number of samples correctly predicted to be positive to
the number of all samples predicted to be positive.

Precision =
TP

TP + FP
(24)

3© Recall: the ratio of the number of samples correctly predicted to be in the positive
category to the number of samples in the true positive category.

Recall =
TP

TP + FN
(25)

4© F1-score: the F1 value combines the harmonic mean of precision and recall and is
used to measure the overall performance of the model.

F1− score =
2∗P∗R
P + R

(26)

Among them, P represents Precision, R represents Recall.
5© Confusion matrix: The confusion matrix shows how well the classifier categorized

the different categories, including true examples, false positive examples, true negative
examples, and false negative examples. It proves the difference between the actual and
predicted values, and the values on the diagonal of the confusion matrix indicate the
number of correct predictions made by the classifier for that category. The confusion matrix
is shown in Table 6:

Table 6. Confusion matrix.

Forecast Results

Positive samples Negative samples

Real results
Positive samples TP TN

Negative samples FP FN

According to the above five evaluation criteria for the algorithm of combining spectral
feature vectors and classifiers used in this paper to predict the labels of the prediction set,
the prediction results are shown in Table 7:

Table 7. Table of classification and evaluation indexes of aero-engine hot jet infrared spectrum feature
vectors and seven classifier algorithms.

Evaluation Criterion

Classification Methods

Accuracy Precision
Score Recall F1 Confusion

Matrix
Running
Time/s

feature vectors + SVM 98.04% 98.77% 97.78% 98.22%
26 0 0

0 10 0
1 0 14

 2.48

Feature vectors + XGBoost 98.04% 98.77% 97.78% 98.22%
26 0 0

0 10 0
1 0 14

 2.62

Feature vectors + CatBoost 98.04% 98.77% 97.78% 98.22%
26 0 0

0 10 0
1 0 14

 5.27

Feature vectors + AdaBoost 98.04% 98.77% 97.78% 98.22%
26 0 0

0 10 0
1 0 14

 2.91
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Table 7. Cont.

Evaluation Criterion

Classification Methods

Accuracy Precision
Score Recall F1 Confusion

Matrix
Running
Time/s

Feature vectors + Random
Forest 98.04% 98.77% 97.78% 98.22%

26 0 0
0 10 0
1 0 14

 3.09

Feature vectors + LightGBM 96.08% 96.38% 96.38% 96.38%
26 0 1

0 10 0
1 0 13

 2.63

Feature vectors + Neural
Networks 80.39% 76.19% 90.99% 76.27%

27 0 10
0 10 0
0 0 4

 2.41

The evaluation criteria for combining the aero-engine hot jet infrared spectral feature
vectors with the seven classifier combination algorithms are analyzed according to the
preceding table. Since the experimental data set is generated by random numbering based
on the experimental measurement spectra, the probability of predicting the data possesses
a certain degree of chance. Therefore, several experiments were conducted to evaluate the
general accuracy, and the correctness is shown in Figure 12, where the data of CatBoost
(shown yellow) basically overlaps with AdaBoost.
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The data from the 30 experiments conducted were counted to obtain the classifier
prediction probability statistics as shown in Table 8:

Table 8. Statistics of prediction probability of classifiers.

Method
Order SVM XGBoost CatBoost AdaBoost Random

Forest LightGBM Neural
Networks

Average
value 97.17% 97.74% 98.13% 98.00% 98.32% 98.07% 74.52%

Variance 0.06% 0.04% 0.03% 0.04% 0.03% 0.02% 1.84%
Standard
deviation 2.41% 1.96% 1.71% 1.92% 1.73% 1.52% 13.56%

According to Table 8, in terms of accuracy, CatBoost, AdaBoost, Random Forest, and
LightGBM in repeated experiments maintain good accuracy and can achieve relatively
accurate prediction in multiple experiments. The prediction accuracy of SVM is average,
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while the performance of neural networks is unsatisfactory. In terms of time measures, the
seven methods have a similar running time, while CatBoost is slightly slower. Substantially,
the mainstream classifiers have achieved a relatively ideal classification accuracy.

5. Conclusions

In this paper, for the aero-engine classification problem, two Fourier transform infrared
spectrometers, Bruker’s EM27 and self-developed telemetry FT-IR spectrometer, were used
to telemetry the infrared spectra of the hot jet of three aero-engine engines in different
states, the training data set and test data set were randomly divided in the ratio of 3:1, and
the spectral feature vectors were used to combine with the classification algorithm for the
training of the training data set and the labeling of the test set. The classification evaluation
indexes are accuracy, precision, recall, confusion matrix, and F1-score, and the classification
accuracy of the algorithm is about 98%.

The spectral feature vectors proposed in this paper remain a preliminary concept for
the aero-engine classification and identification problem, and in the subsequent stage, we
will further study the infrared radiation model of the aero-engines’ hot jet and statistically
analyze the more stable feature peaks in the infrared spectrum of the hot jet to find out
the most stable feature peaks to build more robust spectral feature vectors, which can
be used for more accurate classification of the aero-engines; furthermore, the spectral
feature vectors proposed in this paper can be used for more accurate classification of the
aero-engines. Expand the hot jet infrared spectral data of aero-engines and try using the
measured spectral data to expand the aero-engine hot jet infrared spectral library, so as to
develop a foundation for the recognition of aero-engines; under the premise of insufficient
data, the method of deep migration learning can be introduced to expand the amount of
training samples, so as to improve the training degree of the model.

Author Contributions: Formal analysis, Y.L.; Investigation, S.D. and Z.L.; Software, W.H.; Validation,
Z.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study is available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Razeghi, M.; Nguyen, B.M. Advances in mid-infrared detection and imaging: A key issues review. Rep. Prog. Phys. 2014,

77, 082401. [CrossRef]
2. Chikkaraddy, R.; Arul, R.; Jakob, L.A.; Baumberg, J.J. Single-molecule mid-IR detection through vibration ally-assisted lumines-

cence. arXiv 2022, arXiv:2205.07792.
3. Knez, D.; Toulson, B.W.; Chen, A.; Ettenberg, M.H.; Nguyen, H.; Potma, E.O.; Fishman, D.A. Spectral imaging at high definition

and high speed in the mid-infrared. Sci. Adv. 2022, 8, eade4247. [CrossRef]
4. Zhang, J.; Gong, Y. Automated identification of infrared spectra of hazardous clouds by passive FTIR remote sensing. In

Multispectral and Hyperspectral Image Acquisition and Processing; SPIE: Bellingham, DC, USA, 2001; Volume 4548, pp. 356–362.
5. Roh, S.B.; Oh, S.K. Identification of Plastic Wastes by Using Fuzzy Radial Basis Function Neural Networks Classifier with

Conditional Fuzzy C-Means Clustering. J. Electr. Eng. Technol. 2016, 11, 103–116. [CrossRef]
6. Kumar, V.; Kashyap, M.; Gautam, S.; Shukla, P.; Joshi, K.B.; Vinayak, V. Fast Fourier infrared spectroscopy to characterize the

biochemical composition in diatoms. J. Biosci. 2018, 43, 717–729. [CrossRef]
7. Han, X.; Li, X.; Gao, M.; Tong, J.; Wei, X.; Li, S.; Ye, S.; Li, Y. Emissions of Airport Monitoring with Solar Occultation Flux-Fourier

Transform Infrared Spectrometer. J. Spectrosc. 2018, 2018, 1069612. [CrossRef]
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