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Abstract: To solve the problem of reverse car searching in intelligent multi-story garages or parking
lots, the reverse car searching method based on the intelligent garage of the PC client and mobile
client APP was studied, and the interface design and function development of the system’s PC and
mobile client APP were carried out. YOLOv5 network and LPRNet network were used for license
plate location and recognition to realize parking and entry detection. The indoor pedestrian location
method based on RSSI fingerprint signal fusion BPNet network and KNN algorithm was studied,
and the location accuracy within 2.5 m was found to be 100%. The research on the A* algorithm
based on spatial accessibility was conducted to realize the reverse car search function. The research
results indicate that the guidance of the vehicle finding path can be completed while the number
of invalid search nodes for the example maps was reduced by more than 55.0%, and the operating
efficiency of the algorithm increased to 28.5%.

Keywords: intelligent garages; license plate positioning; license plate recognition; improved A*
algorithm; path planning

1. Introduction

In the 21st century, as the most important mode of travel in modern society, the
automobile has brought many conveniences to people’s lives in the aspect of dynamic traffic.
Resulting problems are issues of automation and intelligent updates during vehicle parking
management in urban static traffic management [1–3]. In the development of automatic
measuring technology and intelligent controlling algorithms of parking management [4–6],
due to indoor positioning of GPS signals not being applied, the bottleneck is the problem of
accurate location within the garage or indoor parking lots [7,8], the setting up and updating
of indoor maps [9], the path optimization algorithm [10], and other key issues [11] in
parking guidance and reverse car searching. Therefore, this is one of the positive means
and practical technical problems to be solved in the field of measurement and control
management for static traffic to explore the reverse car searching technology of intelligent
parking garages.

With the rapid development of computer vision, measurement and control technology,
and embedded technology, the measurement and control mode of garage management is
constantly being updated, society-wide demand of users for parking guidance and reverse
car searching functions continue to rise for large and medium-sized garages or parking
lots. In this research background, to meet social needs, it is of great practical significance
to promote the development of static traffic automation to study vehicle access intelligent
management and control technology in time [12].

Take China, for example, according to the latest statistics released by the 2023 Police
Department [13], by the end of September, the total number of Chinese automobiles in 2023
had exceeded 430 million. The number of people who own cars had passed 520 million,
with drivers accounting for 480 million. Nationwide, there are more than 2 million cars
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within 43 cities, while there are more than 3 million within 25 cities. Car ownership in
booming cities such as Beijing has topped 6 million [14]. However, with the rapid growth
of commercial vehicles and passenger vehicles, the pressure of motor vehicle parking
management is gradually rising. The increase in the number and scale of parking lots
is to ease the parking problem; the accompanying problem is that it is difficult to find
a car in a large or medium-sized multi-story garage all having a similar structure and
passageways [15,16]. At the same time, due to the intelligent management level being
low in current large- or medium-sized garages, it might cause users to wander around
in parking lots with hundreds or thousands of parking spaces, wasting the valuable time
of car owners, and perhaps cause hidden dangers to traffic safety in the garage or indoor
parking lots [17].

Therefore, in areas such as hospitals, supermarkets, and shopping centers, where
there is a higher frequency and density of population movement, integrated services
such as convenient parking guidance and reverse car searching are provided. While
meeting the needs for convenient transportation, they are important means to increase the
passenger flow and improve the satisfaction degree, and has reached consensus in many
countries of the worldwide [18]. At present, the possibility can be provided of realizing
automation and intelligence management for parking lots within garages following the fast
development of machine learning, big data, image recognition, edge computing, and other
technologies [19,20]. Nowadays, parking guidance and automatic charge management
have been realized to a certain extent for automatic parking management systems, but the
reverse car searching system has not been popularized in most garages. In the problem of
finding a car with the reverse car searching system, there are still some technical problems
to be improved such as vehicle identification, indoor location, path planning, and software
development, etc. To explore the indoor location technology and path planning algorithm
for management of large- or medium-sized multi-story parking lots, to design a reverse car
searching system based software service, simple and, easy to operate, are effective ways to
fill up the gap of people’s demand for car services in the Parking Guidance and Information
System (PGIS) [21]. Therefore, this paper focuses on system design, user locating in indoor
parking lots within a garage, map setting, the route optimization algorithm, and other
linking problems, as well as the design of an applicable intelligent garage reverse car
searching system, to overcome the weak condition restriction of the GPS signal in large- or
medium-sized or underground parking scenarios, in order to meet the needs of car owners
for parking in garages and finding intelligent guidance.

2. Scheme Design

The schematic diagram of the car searching system in the multi-story garage is shown
in Figure 1.

The reverse car searching system was improved based on the existing intelligent
parking management system [22]. The image captured by the surveillance camera is stored
in the local video storage device of the garage, and the license plate image is uploaded to
the central server of the reverse car searching system for recognition.

The user terminal processing logic diagram is shown in Figure 2. The PTZ (Pan Tilt
Zoom Camera, Model: DS-2DE3Q122MY-T/GLSE, Hikvision, Hangzhou, China) device is
used to monitor the parking space in the garages in real-time, and the monitoring video
images are uploaded to the local server for storage and reported to the system center server
for vehicle data processing.
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When the server recognizes the status update of the vehicle entry, it updates the
binding status of the vehicle license plate information and the parking space in the database.
When the user enters the target vehicle information in the car search terminal, the user
initiates a data retrieval request to the server to query the coordinate information of the
parking space of the vehicle. At the same time, the terminal sends the WIFI signal source
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information within range to the server, and uses the RSSI fingerprint information for
positioning [23,24]. The point information of the client and the target parking space is
planned [25,26], the optimal path information is returned to the client, and the data are
refreshed in real-time to achieve the effect of real-time positioning.

3. Method Research

The multi-story parking lot of a large- and medium-sized underground garage was
selected as a subject to study the intelligent reverse car searching methods. The key
technologies to be solved include parking location detection [27], license plate image
location [28,29], license plate recognition [30], indoor location [31–34], indoor mapping
simulation [35], path planning [36], etc.

3.1. Parking Vehicle Detection and Identification Module

The module consists of hardware parts such as a camera and power supply. The
algorithm processes the parking monitoring data collected by the hardware, locates the
license plate information by using the YOLOv5 algorithm, and obtains the license plate
location information from the video images of the camera. According to the binding
information between the camera and the parking space recorded in the database, the point
range of the hot spot area is obtained, and whether there is a vehicle parked in the hot spot
area of the parking space is determined in the monitoring image of the camera. LPRnet is
used to identify the license plate of parked vehicles and write the license plate information
into the database for license plate parking space binding [37–39].

3.1.1. YOLOv5 Network

The license plate location algorithm uses the YOLOv5 algorithm, which has the
advantages of high recognition accuracy and fast response speed. Its principle structure
diagram is shown in Figure 3.
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Figure 3. Schematic structure diagram of the YOLOv5 algorithm.

YOLOv5 is a bottleneck composed of Focus, bottleneck, bottleneck CSP, and SPP.
The Focus layer is similar to the pass through layer of YOLOv3, converting information

from width and length to channel dimensions, and then separating different features by
convolution. The Focus layer is used for downsampling (downsampling in neural networks
is mainly used to reduce the number of parameters, reduce the dimension, and increase
local sensitivity). Compared with the convolution layer and pooling layer whose step
size is less than 2, the Focus layer can effectively reduce the information loss caused by
subsampling and reduce the calculation amount.

The structure of the bottleneck identifies the features of the image through 1 × 1
and 3 × 3 convolution, where the convolution process first halves and then doubles the
number of channels. Therefore, the number of channels does not change before and after
the Bottleneck module is passed.
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On the input side, YOLOv5 did not change much compared with YOLOv4, and
Mosaic data enhancement was used in both cases. Mosaic was proposed in 2019, and the
data enhancement method of CutMix was used to improve it. The previous two images
were randomly cut, combined, and assembled into four images. In this way, many data
containing small targets are obtained which enrich the data set, and improve the detection
ability of small targets.

3.1.2. License Plate Correction Module Design

After passing the YOLOv7 target detection network, the four vertex coordinates of the
license plate are obtained. To obtain a more accurate license plate image, it is necessary to
use perspective transformation for processing. Perspective transformation, also known as
projection mapping, works by remapping an image onto another visual plane, as shown in
Figure 4.
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Perspective transformation can convert a rectangle into any quadrilateral, or convert
any quadrilateral into a rectangle. Perspective transformation is crucial for obtaining
accurate license plate images. This process involves remapping an image onto another
visual plane, which is essential for license plate recognition systems [40]. The calculation
procedure can be referred to as in Formula (1):

[x, y, w] = [u, v, w]

a11 a12 a13
a21 a22 a23
a31 a32 a33

 (1)

Perspective transformation before and after the relationship between the angular
point hypothesis is as follows: (0, 0) → (x0, y0), (1, 0) → (x1, y1), (1, 1) → (x2, y2),
(0, 1) → (x3, y3). The transformation matrix is derived as shown in Formula (2):

x0 = a31
x1 = a11 + a31 − a13x2
x2 = a11 + a21 − a13x2 − a23x2
x3 = a21 + a21 − a23x3
y0 = a32
y1 = a12 + a32 − a13y1
y2 = a12 + a22 + a32 − a23y2 − a23y2
y3 = a22 + a32 − a23y3

(2)

According to perspective transformation, the rotationally distorted image is corrected
to the front-facing image after perspective transformation, as shown in Figure 5.
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According to the result of the correction, perspective transformation can effectively
correct the image. The corrected license plate image provides input for subsequent charac-
ter recognition.

3.1.3. Design of License Plate Recognition Module

LPRnet is an end-to-end LPR (license plate recognition) algorithm without
pre-segmentation of characters, demonstrating effectiveness in complex scenarios, such
as recognizing Chinese license plates, a testament to the advancements in deep learning
applied to computer vision tasks [41]. Convolutional neural networks emphasize their
effectiveness and advantages in computer vision tasks such as image classification, object
detection, and semantic segmentation.

The LPRnet architecture does not use an RNN real-time recognition system, and the
lightweight LPRnet network still has better performance when detecting relatively complex
Chinese license plates. The LPRnet backbone network receives the rawest RGB image
as input and computes the spatial distribution of a large number of functions. The wide
convolution (1 × 13 convolution core) replaces the LSTM-based RNN neural network with
a context structure of local characters, thereby removing the reliance on RNNS. The output
of a subnetwork can be viewed as a sequence with probabilities representing the likelihood
of corresponding characters, the length of which is only equal to the width of the input
image. Since the decoder output does not correspond to the length of the target sequence, a
CTC loss function is introduced without the need for segmented end-to-end training. The
CTC loss function is a widely used method to solve inconsistencies between input and
output sequences.

A raw RGB image is an RGB image with a source network that is used as input to a
CNN and to extract image features. The context-associated 1 × 13 is used to connect the
kernel instead of LSTM-based RNNS. The output of the backbone subnet can be a sequence
representing the corresponding character probabilities, the length of which is related to the
width of the input image. Because the network output code is not equal to the length of
the license plate, this experiment adopts the CTC loss method for end-to-end training. In
addition, CTC converts the probability of each time step into the output probability.

3.1.4. Model Results and Analysis

The positioning results of the license plate using the YOLOv5 model for the video
image are shown in Figure 6.
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The main parameters of theLPRnet network model are shown in Table 1. It is run
on Windows of the LPRnet model, with an CPU of Intel(R) Core™ i5-12490F, GPU of the
GTX3060Ti, and Python version 3.9.

Table 1. Parameter list of the LPRnet model.

Key Value

img_size [94, 24]
max_epoch 200

dropout_rate 0.5
UnFreeze_Epoch 300

learning_rate 0.001
lpr_max_len 8

train_batch_size 64
test_batch_size 64
weight_decay 2e−5

lr_schedule [20, 40, 60, 80, 100]

The recognition results using the LPRNet model are shown in Figure 7.
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3.2. Indoor Positioning Service Module

In the study, an indoor location method based on RSSI fingerprint identification
technology was chosen to locate car-seeking users in the parking lot [42]. A simulated un-
derground parking lot is selected to draw and simulate a map under the off-line conditions.
By collecting off-line WIFI fingerprint data and using the BP neural network-based depth
learning method for location regression prediction, the position information of floor and
plane coordinates can be obtained [43]. Then, the KNN nearest neighbor location algo-
rithm [44] is used to locate K known data points near BP neural network prediction points.

3.2.1. WIFI Fingerprint Database Positioning Technology

The WIFI fingerprint positioning technology is an effective method for indoor position-
ing in complex garage layouts, leveraging RSSI values for precise location mapping [45,46].
The layout of the indoor garages is complicated. With the different settings of the spatial
facilities of the building structure, various physical environmental factors have an impact
on the RSSI value during the WIFI signal propagation. Therefore, in the same space, each
RSSI value of each location is different, and the location fingerprint positioning method
takes advantage of this feature to use each different RSSI value of each location to represent
the RSSI database of different locations, which is divided into offline stage and online stage
according to the operating mechanism [47].

(1) Off-line phase

The indoor environment is divided into small areas of the same shape and size,
and RSSI data information received by the AP nodes in each small area and the location
coordinates of samples located in the small area are collected. Then all indoor location
sample points are collected to build the location fingerprint database of sample data.

(2) On-line phase

In the study, after obtaining the unknown sample information, RSSI data transmitted
by all AP nodes in the room are collected in real-time, and the location coordinates located
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in the small area are matched with the location fingerprint data generated in the offline
stage for fingerprint positioning. The location area and its coordinates are obtained through
data comparison.

The KNN algorithm has a good positioning effect for indoor positioning, but the accu-
racy of this algorithm strongly depends on the density of the sampling points. To reduce
the difficulty of RSSI fingerprint sampling in large-scale garages, BP neural network was
introduced in this study to reduce the cost of the offline RSSI fingerprint sampling process.

The operation diagram of the RSSI fingerprint positioning module is shown in Figure 8.
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3.2.2. BP Neural Network

The BP neural network, a multi-layer feedforward network, is integral in optimiz-
ing the indoor positioning process, contributing to more efficient and accurate location
determination [48–50].

(1) Network structure and principle

In forward propagation, the input information passes through the input layer through
the hidden layer, and is processed layer by layer and transmitted to the output layer.
The loss function in the forward propagation process is passed into the backpropagation
process, and the partial derivative of the loss function concerning the weight of each
neuron is obtained layer by layer, which is used as the gradient of the objective function
concerning the weight. According to this calculated gradient, the weights are modified,
and the learning of the network is completed in the process of weight modification. When
the error reaches the expected value, the network learning ends, and the network structure
is shown in Figure 9.
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Figure 9. Structure of the BP neural network.

(2) Model hyperparameters

The neural network uses layers composed of mathematical structures, and each layer
has many units, which are simulated biological neurons, and each neuron is connected.
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The number of hidden layers of the neural network model is three, and the number of
neurons in each layer is 96, 256, and 512. In the hidden layer, the ReLU function is used as
the activation function. The epoch is set to 8000 in the study. The model parameters are
shown in Table 2.

Table 2. Parameter list of the BP neural network model.

Parameter Settings

Batch 64
Epochs 8000

Optimizer Adam
Initial Learning rate 0.01

Learning Rate Decreasing Step Size 0.01
Weight decay 0.0005

3.2.3. KNN Algorithm

When a new wireless signal strength x appears (x is not in the fingerprint database)
during the operation of the car searching system, it is not feasible to match the location
of the wireless signal strength x only by relying on the fingerprint database. The KNN
proximity algorithm is used to compare x in the fingerprint database with the filter items
that meet the conditions, i.e., data in the circle domain within a certain limited range, and
then the K adjacent nodes that are closest to x are obtained, as shown in Figure 10. The K
adjacent nodes are located by the weighted average method [51].
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In Figure 10, the symbols with different colors are represented the different match
results in the fingerprint database using the KNN adjacent nodes. The points within the
red circle represent the results closest to x, that x is the wireless signal strength.

3.2.4. Simulation Map Generation

In the study, the plane layout of the three-story example garage is shown in Figure 10.
The actual map size is 80 m × 60 m, and the comparison scale is 1:850. There are
150 standard parking spaces of 2.5 m × 5.0 m in the garage, and there are four walk-
ing stairways, one driving exit, three sides of interference signal wall, and two elevator
shafts. Among them, WIFI through the wall will cause 15% signal attenuation, and around
the strong magnetic field will cause about 30% signal attenuation. According to the above
conditions, the WIFI signal source location is arranged, and to ensure the relative accuracy
of positioning, a WIFI signal transmitter is arranged every 10 m on the map. According to
the WIFI signal attenuation formula, RSSI information of WIFI signal strength at every 5 m
interval in the garage is calculated, and the calculation formula is shown in Formula (3):

RSSI = A + 10 ∗ n∗ log10d (3)
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In the above equation, A is the signal strength at a distance of 1 m from the transmitting
end, n is the environmental attenuation factor, d is the distance between the transmitting
end and the receiving end, and RSSI is the WIFI signal strength value.

The three-dimensional effect of the three-layer map used in the study is shown in
Figure 11.
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3.2.5. Simulation Result and Analysis

Python language was used to conduct algorithm programming and prediction on the
simulation map, and the prediction results were obtained as shown in Figure 12.
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The relationship between prediction error and accuracy of global map points is shown
in Figure 13. From Figure 13, it can be seen that when the allowable error is 2.5 m, the
predicted positioning accuracy is close to 100%.
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3.3. Path Planning Service Module

To design the path planning method followed by users’ needs, it is necessary to
consider the standardization of parking space characteristics and the subjective initiative of
users. Considering that the A* algorithm in the previous scheme of the research group has
some invalid search behavior, and is inspired by the Chebyshev distance, Euclid distance,
and Manhattan distance, the A* algorithm is improved based on the spatial accessibility
of car-seeking users. By improving the A* path planning method, invalid search behavior
may be abandoned, which forces the A* algorithm to approach the endpoint of the target,
thus improving the efficiency of the algorithm.

3.3.1. Improved A* Algorithm

The traditional breadth-first algorithm in the path planning problem is based on
two-dimensional coordinates, each time to point up, down, left, and right in four directions
of traversal search, until the endpoint is found. Because people can travel in a diagonal
direction, the eight squares of the current point are searched for. In the worst case, the
algorithm needs to traverse all the points on the whole map, which greatly reduces the
efficiency of the search. The A* algorithm introduces the concept of cost, and the total cost
of the actual search point is composed of two parts, namely, the estimated cost and the
current point cost. The current cost is the actual search distance from the starting point
to the current point, while the estimated cost is the Manhattan distance. When the search
node generates results with the total cost during the search process, the direction with the
minimum total cost is always chosen to search until the search reaches the endpoint, in
which case the search efficiency of the algorithm is greatly improved [52,53].

However, the A* algorithm still has many invalid search ranges in the parking lot
or garage scene with a large number of semi-closed spaces. In the following, a typical
35 × 35 network topology legend is set to discuss the solution to the problem. In the
2D planar map of size 35 × 35 in Figure 14, green grids are all invalid search paths, and
for the case in Figure 14, it can be explained that the improved A* algorithm is based on
spatial reachability.

In Figure 14, the green invalid search area in the invalid search space is called the
semi-closed structure space. When there is a semi-closed interface in the two-dimensional
space formed by the point and the end point of the search neighborhood, the nodes in the
semi-closed structure are marked as unreachable points.

The inaccessible point is defined as whether there is an inaccessible building or another
non-passable road, that divides the rectangular area into at least two parts with the target
point and the current node as the vertices, and the target point and the current point
belonging to different areas, as shown in Figure 15.
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In Figure 15, in the process of searching from the starting point (22, 5) to the target
point (13, 32), the neighborhood passing point (17, 11) of a certain point in the rectangular
area formed by the neighborhood passing point and the target point, there is a building wall,
(13, 19) to (17, 19), to divide the rectangular area into left and right parts. The neighborhood
pass points (17, 11) and the target points (13, 32) are divided into two unconnected areas in
the rectangular area, then the spatial accessibility of the pass points in the rectangular area
is updated and marked as unreachable, that is, the light green nodes in Figure 15.

The process, after introducing unreachable nodes into the A* algorithm, is shown in
Figure 16.
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3.3.2. The Correction of Path

The sliding window is a kind of double pointer algorithm; the basic idea is to maintain
a window, and then traverse the elements from front to back for calculation. The sliding
window algorithm is shown in Figure 17.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 25 
 

 

 
Figure 16. Flowchart of improved A* algorithm. 

3.3.2. The Correction of Path 
The sliding window is a kind of double pointer algorithm; the basic idea is to 

maintain a window, and then traverse the elements from front to back for calculation. 
The sliding window algorithm is shown in Figure 17. 

 
Figure 17. Schematic diagram of sliding window algorithm. 

In Figure 17, it represents the sliding window of the pink rectangle region during 
execution of the algorithm for the correction of path. 

In the sliding window algorithm, a series of judgment conditions are selected to op-
timize the A* algorithm results. The judgment logic in the algorithm is as follows. 
1. Initialize the window with length 1 and contain only the first node in the A* result 

path. 
2. In the current window, whether there is an element with the same horizontal and 

vertical coordinates as the first element in the window. 
3. If so, whether the nodes between two nodes with equal horizontal and vertical co-

ordinates are all reachable. 

Figure 17. Schematic diagram of sliding window algorithm.

In Figure 17, it represents the sliding window of the pink rectangle region during
execution of the algorithm for the correction of path.

In the sliding window algorithm, a series of judgment conditions are selected to
optimize the A* algorithm results. The judgment logic in the algorithm is as follows.

1. Initialize the window with length 1 and contain only the first node in the A* re-
sult path.

2. In the current window, whether there is an element with the same horizontal and
vertical coordinates as the first element in the window.

3. If so, whether the nodes between two nodes with equal horizontal and vertical
coordinates are all reachable.

(1) If all can be reached, update the result path in the window according to the
straight line on the left of the horizontal and vertical, move the position of the
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window, and take the rightmost position of the current window as the starting
position of the next window

(2) If an unreachable point exists, maintain the original path and go to Step 4.

4. If no, expand the window backward and repeat steps 2 and 3.
5. When the starting node of the sliding window is the end point of the A* algorithm,

the algorithm is cut off and the path update is completed.

3.3.3. Simulation Results

In this study, two groups of network topology maps with different sizes were selected
for simulation experiments. For a 2D planar map of size 35 × 35 in Figure 18, and a 2D
planar map of size 41 × 50 in Figure 19, the 8-direction neighborhood search A* algorithm
with better performance Manhattan distance formula as the heuristic function is compared
before and after the improved scheme based on spatial accessibility. The results are shown
separately in Figures 18 and 19.
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It can be seen that in Figures 18 and 19, the blue area in the algorithm search process is
significantly reduced, and the yellow final output path is more consistent with the logic of
pedestrian walking. In terms of the result performance of the algorithm, the improved A*
algorithm combined with the sliding window correction greatly reduces the invalid search
area, and the optimal path is finally shorter.

The data description of the algorithm evaluation indexes is shown in Tables 3 and 4.
In Tables 3 and 4, the results are separately the average of three experiments performed.
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Table 3. Detailed table of algorithm evaluation in 35 × 35 size of improved A* algorithm.

Old New Increase Rate

Length of the shortest path 45 45 0%
The size of the search space 387 174 55.0%

Running time 0.07 s 0.05 s 28.5%

Table 4. Detailed table of algorithm evaluation in 40 × 51 size of improved A * algorithm.

Old New Increase Rate

Length of the shortest path 74 74 0%
The size of the search space 1526 493 67.0%

Running time 0.93 s 0.70 s 24.5%

As can be seen from the results in Table 3, before and after using the improved A*
algorithm for the map of 35 × 35 size, the size of the searching space for invalid nodes was
reduced by 55.0%, and the operation efficiency was improved by 28.5%. It can also be seen
from the results in Table 4, that before and after using the improved A* algorithm for the
map of 40 × 51 size, the size of the searching space for invalid nodes was reduced by 67.0%,
and the operation efficiency was improved by 24.5%.

The experimental and analytical results show that the improved A* algorithm based
on reachability is feasible in the path planning of the reverse car-seeking system.

4. System Design

The design and implementation of an intelligent reverse car-seeking system include
three parts: Web management, PC client, and App Mobile. Web management is mainly
responsible for the generation of parking lot maps and the binding of monitoring equipment
and parking spaces. As a fixed navigation device in the parking lot, the PC terminal
provides users with the function of finding a car at a fixed location. The mobile side is
embodied in the App phone application, which supports the user to locate the indoor
parking lot through the WIFI function module, by inputting the vehicle information to look
for, such as the license plate number, the parking space number, etc., and complete the
route guidance, with real-time location update and route planning adjustment function.

4.1. Management Side Design

The design of car searching Web management is based on a web browser, with HTML,
CSS, and JS as the front-end basic language, using VUE. JS Progressive JavaScript frame-
work provides a declarative, component-based programming model for performing effi-
cient user interface development.

The main functions of the intelligent reverse car search system management end
include the following: editing garage maps, inputting monitoring equipment, and binding
monitoring equipment to parking spaces. The above functions correspond to different
pages on the management end, and the page design is shown in Figures 20–23.

The parking lot model map is a proportional parking lot map with vector coordinates.
It is the foundation of the following indoor location and reverse car searching to realize the
function of path planning. The standard parking model map should scale the real map to
the same scale, and the scale function is the requirement of measuring the map’s precision.

To make the map model general, the elevator well, walking ladder, column, wall, etc.,
which are set in the example parking lot as shown in Figure 20, need to be represented in
the model in proportion.
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The relationship between different floors of the parking lot is related by the passage
such as the stairs, and the relationship between the stairs is added or removed by the Add
function key in the relation menu in Figure 21.

In the reverse car searching system, the acquisition of BIT information depends on
the monitoring equipment. Considering the improvement of the indoor parking lot, the
existing equipment is compatible, and the deployment cost is minimized. In the binding,
the spot area of the parking space in the image of the monitoring device area is identified.
According to the corresponding example of the garage situation, here, the optimal ratio is
set to 1:3 in the software development. The sketch of the image acquisition equipment and
parking space binding module is shown in Figure 22.

In Figure 22, in the image acquisition device screen, the box selects the specified
quadrilateral area as the parking space monitoring area. Under the condition that the ratio
of collecting equipment and parking space is 1:3, a maximum of four areas can be generated.
After binding the image acquisition equipment and parking space relationship are listed as
shown in Figure 23.

In Figure 23, when the license plate information appears in the image area, the license
plate information recognition service is called, and the vehicle information is bound to the
parking space and uploaded to the database.

4.2. Client Side Design

The PC client software system of an intelligent reverse car search system mainly
involves the query interface, search result interface, and path navigation interface. Query
interface users can choose license plate search or parking spot search according to their own
needs. According to the different input information of the user, the MySQL database query
language is used reasonably to speed up the data processing process, the data processing is
carried out in the server, the queried vehicle information is displayed on the result interface,
and the relevant path guidance interface is designed to facilitate the user’s reverse car
search requirements. The overall operation flow of the PC client is shown in Figure 24.

4.2.1. PC-Client Design

Note The PC-client is a fixed PC installation device. Therefore, one only needs to record
the actual IP address of the current PC to plan paths. Since the fixed position cannot be
updated with the user’s movement, you need to add the download and guide of the mobile
APP on the PC client to guide the user to use the mobile APP for real-time positioning and
navigation while traveling. PC-client design takes into account the needs of users looking
for cars, divided into two schemes according to license plate positioning and according to
parking space positioning. The page to achieve license plate input, parking space input
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search, parking information display, and other functions is shown in Figures 25–27 which
show the content on the page.
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Figure 27. Path navigation page of the PC client.

In Figure 27, it represents the parking space of the orange rectangular block, and it
represent the car searching path of the blue line.

4.2.2. Mobile Design

The interface design of the mobile App is shown in Figure 28.
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Figure 28. Overview of the feature of the Mobile terminal APP.

The mobile App interface is mainly divided into the car search function and the “Mine”
account setting function. The search method is divided into license plate search and parking
space search. In the design, the incorrect license plate input or the current search license
plate that is not in the current garage is fully considered, and the user can be supported to
search through the parking number when the user knows the parking number.

The mobile App interface design is shown in Figures 29–33. After debugging and
running, the corresponding basic functions can be realized.
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Figure 29. Home page of the reverse car searching App.

Figure 30. Search interface according to license plate of the reverse search App.
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Figure 31. Search interface according to parking space of the reverse car searching App.

Figure 32. Path navigation interface of the reverse searching App.
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Figure 33. “Mine” interface of the reverse searching App.

In Figure 32, it represents the current position of the user of the orange point, it
represent the optimal path of the blue line, and it represents the destination parking space
of the red rectangular block.

5. Conclusions

In this paper, a reverse search method for the multi-story intelligent parking lot
of a garage was presented with the implementation scheme. Vehicle parking location
detection, license plate image recognition, pedestrian indoor positioning, and path planning
algorithms were researched. In connection with the above, an intelligent reverse car
searching system was designed, which provides Web-site management, fixed-point use in
the parking lot of PC clients, and real-time location function of App mobile clients.

In the detection phase, through the building of the Yolov7 target detection network,
the function of parking position detection was realized. The experimental results show that
the detection accuracy of three-target or four-target license plate images is about 98.80%. On
this basis, the LPRnet network can be used to recognize the license plate of the vehicle in the
parking space. To improve the recognition accuracy of the network model, a 3D perspective
transform was introduced to correct the rotation of the input image. Experimental results
on the CCPD dataset demonstrate the competitive performance of our method. The overall
recognition accuracy achieved 99.75%, with also good generalization ability for the dark,
remote, and spatial rotation distortion license plate data sets.

In the indoor location phase, based on RSSI fingerprint database location technology
of the WIFI signal source, the BPnet network was used to carry out regression prediction,
increase the running speed of KNN nearest neighbor location algorithm, and revolve the
strong dependence problem of the WIFI fingerprint database data acquisition accuracy for
the KNN network during the off-line stage. The accuracy of the final model is about 100%
under the allowable error of 2.5 m.

In the path planning phase, based on the A* algorithm and spatial accessibility, the
algorithm was further improved to solve the problem that the A* algorithm produces a
large number of meaningless nodes in the process of finding a path. The result of Python
simulation shows that the improved A* algorithm based on spatial accessibility reduces the
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range of searching nodes by more than 55.0%, and improves the running speed to 28.5%
compared with the A* algorithm.

In the system design phase, an intelligent reverse car searching system based on Web
management, PC client, and App client was designed. In the design, the management of
parking space, the management of monitoring equipment, the binding of the relationship
between monitoring equipment and parking space, generating a module of a parking map,
and the binding module of floor relationship were considered, and the client PC and APP
car searching function design were completed.

This paper involved the study of the indoor pedestrian location method based on
RSSI fingerprint; it combined the BPNet network with the KNN network; and proposed
an improved A* path planning algorithm based on spatial accessibility. It is of positive
practical significance for research methods to realize car searching guidance in intelligent
garage management. The design scheme of the car searching management system proposed
in this paper is easy to implement and has scalability. It can meet the market’s requirements
for practicality and low cost of smart parking. The research work of this paper can provide
a software deployment scheme for the construction of static traffic management. However,
the location accuracy of the indoor positioning methods proposed in this paper needs to be
further improved, and the related research will be continued in the future.
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