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Abstract: The rapid development of vehicle cooperative 3D object-detection technology has sig-
nificantly improved the perception capabilities of autonomous driving systems. However, ship
cooperative perception technology has received limited research attention compared to autonomous
driving, primarily due to the lack of appropriate ship cooperative perception datasets. To address this
gap, this paper proposes S2S-sim, a novel ship cooperative perception dataset. Ship navigation scenar-
ios were constructed using Unity3D, and accurate ship models were incorporated while simulating
sensor parameters of real LiDAR sensors to collect data. The dataset comprises three typical ship
navigation scenarios, including ports, islands, and open waters, featuring common ship classes such
as container ships, bulk carriers, and cruise ships. It consists of 7000 frames with 96,881 annotated
ship bounding boxes. Leveraging this dataset, we assess the performance of mainstream vehicle
cooperative perception models when transferred to ship cooperative perception scenes. Furthermore,
considering the characteristics of ship navigation data, we propose a regional clustering fusion-based
ship cooperative 3D object-detection method. Experimental results demonstrate that our approach
achieves state-of-the-art performance in 3D ship object detection, indicating its suitability for ship
cooperative perception.

Keywords: cooperative perception; ship navigation; perception dataset; 3D object detection;
point clustering

1. Introduction

LiDAR-based cooperative object detection has become a core component of advanced
autonomous driving perception systems. In this process, vehicle cooperative perception
datasets covering diverse scenes have played an important role [1]. However, LiDAR
applications on ships are relatively nascent compared to vehicles, and there is currently a
lack of unified point cloud datasets in navigation scenes. This shortage has significantly
impeded the development of intelligent perception technologies for ships at sea. Therefore,
establishing a ship cooperative perception dataset for research and validation of coop-
erative perception technologies among ships is an urgent need in the field of intelligent
ship perception.

Benefiting from the application and popularity of LiDAR, LiDAR has now become
one of the core sensors for autonomous driving [2,3]. Compared to cameras, LiDAR offers
the advantage of obtaining more precise object position information, which is crucial for
the safety of autonomous driving. In recent years, datasets collected from single-source
LiDAR, such as KITTI [4], Waymo [5], and NuScenes [6], have achieved promising results
in single-source LiDAR-based object perception [7]. However, the use of a single-vehicle-
mounted LiDAR is susceptible to occlusions and distance-related limitations when sensing
the environment, which may result in insufficient object point cloud data [8]. This limitation
significantly hinders the accurate perception of object categories, shapes, poses, and other
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relevant attributes. Cooperative perception technology for vehicles thus emerged, as vehicle
cooperative perception leverages shared information obtained via vehicle-to-vehicle (V2V)
or vehicle-to-infrastructure (V2I) communication to enrich single-sensor perception and
enable more accurate sensing of objects in the driving environment. The performance
of cooperative object perception among vehicles has also gradually improved with the
maturation of datasets.

The early vehicle cooperative datasets were primarily derived from simulation. V2V-
sim [9] was one of the earliest point cloud dataset proposed for vehicle cooperative percep-
tion, obtained by resampling from real collected data. OPV2V [10] is a dataset simulated
using the OpenCDA and CARLA simulators that increased the number of collaborating
communication vehicles in scenes. V2XSet [11] and V2X-sim [12] built upon V2V (vehicle-
to-vehicle) collaboration by introducing simulated scenes of V2I (vehicle-to-infrastructure)
collaboration, making the collected data more realistic. Simulated datasets promoted the
development of vehicle cooperative perception technologies, and real collected cooperative
datasets have gradually matured over the past two years. V2V4Real [13] is the first large-
scale real-world multimodal dataset specifically designed for V2V perception. The data was
collected by two vehicles equipped with multimodal sensors driving together in different
scenes. On the other hand, the DAIR-V2X [14] dataset is the first large-scale, multimodal,
and multi-view real-world dataset collected from real scenes. Currently, the volume of
data, number of scenes, and sensor data in vehicle cooperative perception datasets are
gradually increasing. This significant advancement has greatly facilitated the development
and application of advanced autonomous driving technologies.

In contrast to the extensive application of LiDAR in autonomous driving, intelligent
ship technologies are at an earlier stage of development. Currently, ships mainly rely
on sensors such as AIS, radars and cameras to assist experienced crew in perceiving the
environment and decision-making. While these sensors or systems play an important role
in routine navigation scenes, there are also some issues. Firstly, not all ships are equipped
with AIS, making it difficult to identify ships or objects without AIS. Moreover, the AIS
system refresh rate is not fixed and can be as long as 30 s, which is disadvantageous for
real-time ship perception [15]. For radar, it is subject to high levels of noise, has a significant
short-range blind zone, and detects a limited number of object points, making it unable
to accurately discern object contours. Therefore, it can only serve as an adjunct to human
visual perception for navigation purposes. As for cameras, although cameras carried by
ships contain visible light and infrared information, they generally lack depth information
and are greatly affected by weather conditions such as rain and fog. Considering the
above analysis, to achieve intelligent perception of the environment for ships, a more
comprehensive sensor is required. LiDAR has already gained widespread application
in the field of autonomous driving, thus driving the emerging research on ship object
perception based on LiDAR.

The perception objects and ranges in ship navigation scenarios differ significantly
from those in autonomous driving scenes. Conducting research on object perception in
ship navigation scenarios also requires dataset construction first. Currently, several stud-
ies have constructed single-source ship navigation perception datasets for tasks such as
object detection and tracking in navigation scenarios [15–17]. However, these datasets
have not been widely promoted and applied. One reason for this is the relatively short
time since the introduction of these datasets. Additionally, there are issues related to the
scale and standardization of the data, which makes them less convenient to use. Addi-
tionally, the current ship navigation point cloud datasets are all based on single-source
LiDAR acquisition and do not consider information obtained through ship-to-ship (S2S)
communication, which hinders the research on ship cooperative perception, a technology
with broad application prospects.

To address the above issues, this paper presents a standardized ship cooperative
perception dataset, S2S-sim. And a regional clustering fusion method is proposed to
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enhance the precision of ship cooperative perception. The main contributions of this study
are as follows:

• We proposed the ship cooperative perception dataset S2S-sim. Based on Unity3D,
we simulated three typical navigation scenes and constructed a 64-line simulated
LiDAR mounted on typical ships to collect data according to the characteristics of real
LiDAR sensors. A total of 7000 frames of cooperative sensing data were collected for
collaboration within a range of 2 km.

• We proposed a regional clustering fusion-based ship cooperative 3D object-detection
method. The method uses region division and clustering to improve the efficiency
and accuracy of cooperative data fusion. Compared with existing multi-agent co-
operative perception methods, our proposed method achieves the state-of-the-art
object-detection performance.

• The S2S-sim dataset proposed in this study is the first ship cooperative perception
dataset, serving as a standardized dataset that is easy to use. Meanwhile, the coop-
erative perception method proposed in this paper is implemented based on the V2V
cooperative perception framework, which facilitates research on ship cooperative
perception methods as well as the transfer and application of vehicle cooperative
perception methods to the domain of ship navigation.

The remainder of this paper is organized as follows. Section 2 provides an overview of
the related work in the field. Section 3 introduces the proposed S2S-sim dataset. Section 4
presents the regional clustering fusion-based ship cooperative perception method proposed
in this paper. Section 5 provides experimental comparisons of the proposed cooperative
perception method with other multi-agent cooperative perception methods on the S2S-sim
dataset and discusses the experimental results. Section 6 concludes this work and discusses
future directions.

2. Related Work
2.1. Cooperative Perception Datasets

In recent years, with the increasingly widespread use of sensors such as LiDAR and
multi-view cameras on intelligent systems such as autonomous vehicles, unmanned aerial
vehicles (UAV) [18,19], unmanned surface vehicles (USV) [20,21], and industrial robots [22],
data collection and enhancement of system perception capabilities have been greatly
facilitated [23]. Notably, datasets from individual intelligent entities have significantly
promoted perception performance improvement in various domains [24–26]. However, due
to factors such as occlusion, truncation, distance, and blind spots in the field of view, data
obtained from sensors carried by individual agents still suffer from the issue of incomplete
information [27]. Which is highly unfavorable for fields requiring high perception accuracy
such as autonomous driving and intelligent ships. Multi-agent cooperative perception, on
the other hand, provides a promising solution to this problem [28]. Correspondingly, multi-
agent cooperative perception datasets serve as the foundation for enhancing cooperative
perception performance. Currently, multi-agent cooperative perception datasets can be
classified into two categories based on data sources: simulation-based datasets and real-
world datasets.

Simulation-based multi-agent cooperative perception datasets are primarily the result
of the lack of real-world cooperative datasets in the early stages, but the simulation sensor
parameters and data collection scenes are based on real-world conditions. V2V-sim [9]
was the earliest point cloud dataset proposed for vehicle cooperative perception, primarily
based on data collection using the high-fidelity LiDARsim sensor. OPV2V [10] was then a
dataset generated using the OpenCDA and CARLA simulator, which enhances the number
of cooperatively communicating vehicles in the scenes. As an open benchmark dataset,
OPV2V also provides a fusion framework for vehicle cooperative perception, facilitating
the testing of various methods. V2XSet [11] and V2X-sim [12] further built upon V2V
cooperation by introducing V2I cooperative scene simulations, increasing diversity of
interactions. Additionally, CoPerception-UAVs [29] is a dataset of drone swarms simulated
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based on AirSim and CARLA mainly for cooperative 3D object-detection tasks using
cameras only among drone swarms. While simulated datasets have driven progress in
cooperative perception research, they have also facilitated the creation of more real-world
collected datasets.

In terms of real-world datasets, V2V4Real [13] is the first large-scale V2V multimodal
dataset collected in the real world. To capture cooperative data, two vehicles equipped with
multimodal sensors conducted cooperative data collection in various scenes. This dataset
enables three perception tasks: cooperative 3D object detection, cooperative 3D object
tracking, and Sim2Real domain adaptation for cooperative perception. The DAIR-V2X [14]
dataset, on the other hand, consists of actual data collected from a vehicle equipped with
cameras and LiDAR, and facilities. The main collection scenes are predefined intersections
for cooperative perception between vehicles and facilities. Real-world cooperative datasets
can better reflect actual scenes, but they often require higher data collection costs. As
a result, there are currently relatively few large-scale real-world cooperative perception
datasets available.

In terms of ship cooperative perception datasets, there is currently a lack of large-
scale application of LiDAR in the field of ship navigation, resulting in the absence of such
datasets. Presently, the available datasets for ship navigation mainly focus on single-source
data. Zhang et al. [16] developed a LiDAR simulator oriented towards ocean navigation
scenes to generate point cloud data of autonomous navigation in marine environments.
They constructed a point cloud dataset containing 7 categories of ships such as cargo
ships and engineering ships. Zhang et al. [15] collected a joint point cloud and image
dataset containing 3180 frames in open waters, with 3 different scenes, for marine object-
detection tasks. Yao et al. [17] equipped a yacht with a 16-line LiDAR, a monocular camera,
an IMU, and a real-time kinematic (RTK) positioning module, and collected point cloud
data in Xuanwu Lake, Nanjing, China, which can be used for multi-object tracking tasks.
The aforementioned research related to the collected data has to some extent facilitated
the development of maritime object perception technology based on LiDAR. However,
the aforementioned datasets are all single-source perception datasets and do not take
into account the enhancement of ship perception performance through ship cooperation.
Therefore, this paper will focus on the research and construction of ship cooperative
perception datasets to fill this gap in the field.

2.2. Multi-Agent Cooperative Perception

Multi-agent cooperative perception is primarily focused on sharing and complement-
ing perception information among multiple agents to overcome the limitations of individual
agents caused by environmental disturbances and achieve a more comprehensive percep-
tion [30]. The current research in multi-agent cooperative perception technology is primarily
divided into several domains, including cooperative perception for autonomous driving
vehicles [31], cooperative perception for unmanned aerial vehicles [32], and cooperative
perception for robots [33]. Among these domains, cooperative perception technology for
autonomous driving vehicles has received the most attention and has been the closest to
practical implementation.

Early fusion in the context of cooperative perception primarily involves the exchange
and fusion of data between vehicles (or between vehicle and infrastructure) to obtain
comprehensive scene data and enhance object perception accuracy. Cooper [34] was among
the first to investigate the feasibility of cooperative perception using sparse point cloud
data between vehicles. OPV2V [10] further defined the fusion content of early fusion
and proposed an early fusion benchmark model. However, the real-time interaction of
raw data between vehicles imposes high bandwidth requirements, thereby limiting the
development of such methods. In contrast to early fusion, intermediate fusion achieves
improved interaction efficiency and reduces redundant information transmission through
feature-level fusion between vehicles [35–38]. As a result, intermediate fusion has become
the mainstream approach for cooperative perception. V2X-ViT [11] introduces Vision
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Transformer into the feature fusion stage to capture the spatial relationships between each
vehicle. When2com [39] and Where2comm [40] optimize the efficiency of intermediate
fusion from the perspectives of interaction timing and interaction objects, respectively.
Overall, the key to intermediate fusion lies in designing an appropriate fusion mechanism
to efficiently integrate features transmitted by different vehicles or facilities.

In addition to the aforementioned two types of fusion methods, there is another
approach known as late fusion, which involves combining the perception results of different
vehicles as the fusion content [14,41]. Late fusion typically involves the transmission of
perception results such as object position and object size, resulting in lower bandwidth
requirements. However, a drawback of this approach is that each vehicle’s perception
result may contain defects, which can lead to instability in the fusion of cooperative
perception results.

In summary, current research and applications of multi-agent cooperative perception
primarily focus on the field of vehicle cooperative perception, with intermediate fusion
being the predominant approach. On the other hand, intelligent perception methods in the
domain of ship navigation are still in their early stages. Therefore, it is highly significant to
explore how to transfer the research on cooperative perception from the field of autonomous
driving to the field of ship navigation.

3. S2S-Sim Dataset

To facilitate the development of ship cooperative perception research, S2S-sim, a large-
scale point cloud-based ship-to-ship cooperative simulation dataset specifically designed
for ship navigation, is proposed in this paper. The dataset is collected using Unity3D and
primarily consists of three common ship navigation scenarios: ports, islands, and open
waters. The scenes include various types of ships such as container ships, bulk carriers,
and cruise ships. In this section, we will present the construction of the scenes (Section 3.1),
sensor simulation and data collection (Section 3.2), and dataset analysis (Section 3.3) to
provide a comprehensive overview of our simulation dataset construction efforts.

3.1. Construction of Ship Navigation Scenarios

The construction of scenarios serves as the foundation for simulating data collection. In
order to achieve more realistic effects, the field of autonomous driving has made significant
exploration in scenario construction. Initially, researchers directly relied on game scenes
for data collection to reduce the time required for scene modeling. The vkitti dataset, on
the other hand, utilized the Unity engine and a real-to-virtual cloning method to construct
scenarios, thereby enriching the quantity of scenes. Datasets such as OPV2V and V2XSet
were built on CARLA, a widely used simulator for development, training, and validation in
autonomous driving, to create a digital city as the environment for cooperative perception
data collection. The construction of these datasets’ scenes was primarily aimed at data
collection services for autonomous driving. However, there is currently a lack of a publicly
available maritime navigation scene specifically designed for data collection, which presents
the first challenge in constructing a simulated dataset. To address this, we extensively drew
upon the experience of constructing simulated data scenes in autonomous driving and,
considering the freedom and richness of scene construction, decided to utilize Unity3D as
the platform for scene construction.

As depicted in Figure 1, we initially referenced authentic ship navigation environments
to establish three representative ship navigation scenarios: port scenes, island scenes, and
open sea scenes. Subsequently, as illustrated in Figure 2, our simulated scenes were
developed by considering ship categories, navigation attitudes, berthing attitudes, and
occurrence frequencies observed in real environments. Moreover, the ship composition
varied across different scenes. The ship categories primarily encompassed cruise ships,
container ships, bulk carriers, warships and fishing ships. The navigation trajectories and
speeds of each ship category were simulated to a certain extent to resemble real-world
ship behavior.
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Figure 1. Real port and island scenes. The left side of the picture shows the scene of berthing ships at
Yantai Port, and the right side shows the scene of Shengsi Island.

Figure 2. Ship navigation simulation scenes. The left side of the picture shows the scene of port, and
the right side shows the scene of island.

3.2. Sensor Simulation and Data Collection

The simulation of sensor effects has a significant impact on the weight of data collection.
The design of the LiDAR as a core sensor used for ship cooperative perception is crucial.
In the process of simulating the LiDAR, we primarily referred to a 128-line shipborne
LiDAR developed by our cooperative institution. This LiDAR is deployed on ships and
has an actual detection range of up to 2 nautical miles. The advantages of having a higher
number of lines and a longer detection range are to enhance perception accuracy and range.
However, this comes with increased data volume and a lower data acquisition frequency.
The maximum data acquisition frequency of this LiDAR model is 2 Hz, which is lower
compared to the conventional sampling frequency of 10 Hz for mainstream commercial
vehicle-mounted LiDARs. The larger data volume and lower acquisition frequency are
not conducive to real-time data transmission during ship cooperative processes, thereby
affecting the accuracy of cooperative perception. Therefore, addressing how to ensure
real-time cooperative perception while simulating the real LiDAR as faithfully as possible
is another challenge we need to tackle.

Firstly, to simulate the data collection effect of a real LiDAR, we propose a ray-based
detection method. Real mechanical LiDARs adopt a scanning approach to capture data
from the entire scene in one revolution. We refer to the horizontal and vertical resolutions
of a real LiDAR and set the rays emitted by the simulated LiDAR to detect object points.
Additionally, considering that in cooperative perception, information between ships can
be complemented through information interaction, we reduced the number of simulated
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LiDAR beams from 128 to 64 lines and the detection range to 2 km, while increasing
the collection frequency to 10 Hz. This aims to reduce the amount of data collected by
individual ships at single time instances, and improve the efficiency of cooperative data
interaction and perception timeliness. Table 1 presents the parameters of the simulated
LiDAR in comparison to the real LiDAR.

Table 1. The parameters of the simulated LiDAR and the real LiDAR.

LiDAR Type Real LiDAR Simulated LiDAR (Ours)

Beam 128 64
Frequency 2 Hz 10 Hz

Range 2n mile 2 km
horizontal FOV 360◦ 360◦

vertical FOV −20◦ to 10◦ −20◦ to 10◦

error ±2 cm ±2 cm

The ship cooperative dataset proposed in this study consists primarily of laser radar
point cloud data, making the quality of the collected LiDAR data crucial for perception
results. To obtain better data acquisition perspectives, we also took into full consideration
the mounting ships and positions of the simulated LiDAR based on real-world scenarios.
We selected three types of ships, namely bulk carriers, cruise ships, and container ships, as
carriers for the LiDAR. They were mounted at high points on the ship’s mast to achieve
better data acquisition results. Based on the characteristics of ports and islands, we designed
28 navigation segments, including ship entry and exit from ports, navigation along islands
and reefs, and ship encounters in open waters. A total of 7000 frames of ship cooperative
data were collected and filtered at different time intervals. The dataset was divided into
a training set (5000 frames), a validation set (1000 frames), and a test set (1000 frames).
Figure 3 shows a comparison sample between the actual port collection data and the
simulated data presented in this paper. It can be seen that compared to the real data, the
point density of the simulated data is sparser, as described earlier, because we reduced the
number of lines.

Figure 3. Port scene collection data comparison.On the left is the actually collected point cloud data,
while on the right is the data simulated through Unity3D.

3.3. Dataset Analysis

The overall analysis information of the dataset is presented in Table 2. Our dataset
covers three typical navigation scenarios: ports, islands, and open waters. Based on the
complexity and frequency of occurrence of different navigation scenarios, we adjusted the
data proportions for each scenario to make the research on ship cooperative 3D object detec-
tion more suitable for real-world navigation scenarios. To reduce data redundancy, we fixed
the number of frames for each segment at 250 frames, with a maximum of 5 collaborating
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ships. Furthermore, from Table 2, it can be observed that the ship cooperative dataset has a
lower ship density within the perception range compared to autonomous driving datasets.
This is due to the characteristics of ship navigation, which require maintaining a greater
safe encounter distance between ships.

Table 2. Overall analysis of S2S-sim dataset.

Scenario Type Percentage (%) Ship Number Density (/km2) Frame/Segment

Port 28.6 21.56 5.14 250
Island 57.1 10.64 2.54 250

Open water 14.3 11.21 2.67 250

The quality of dataset annotation is one of the main factors influencing the performance
of perception algorithms. The task addressed in this paper primarily focuses on ship
cooperative 3D object detection. Therefore, the annotation fields in the dataset mainly
include the coordinates (x, y, z) of the objects, their dimensions (length, width, height),
and the real-time pose angles (x-axis, y-axis, z-axis) of the objects. Prior to data collection,
we had prior knowledge of the 3D information of various ship models and recorded the
real-time pose information of the ships during data collection. As a result, our dataset
was annotated in real-time with accuracy during the data collection process. A total of
28 navigation segments consisting of 7000 frames of point cloud data were collected, and
a total of 96,881 ship annotations were made. Based on the annotation information, we
conducted statistical analysis of the length, width, and height of ships in the overall point
cloud data and compared them with the actual length, width, and height data of ships
collected during real navigation, as shown in Figure 4. From the Figure 4, it can be observed
that there are certain differences in the distribution of the length, width, and height of ships
between the simulated collected data and the real data. This discrepancy is primarily due
to the limited sample size of the actual collected data (463 frames). However, the simulated
navigation data can compensate for this limitation and enhance the diversity of scenes and
objects. In conclusion, the S2S-sim dataset proposed in this paper can provide a reference
data support for research on ship cooperative perception.

Figure 4. Comparison of data distribution between the S2S-sim dataset and actual collected ship data.
Compared with the actual collected data, S2S-sim enhances the diversity of scenes and objects.
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4. Task and Pipeline

Real-time and accurate perception of navigation scenarios is crucial for safe ship navi-
gation. Currently, ship navigation relies on systems such as GPS and AIS, which provide
unstable external perception results. Although some exploratory research has equipped
ships with advanced sensing devices such as LiDAR, the ship’s self-perception mainly
relies on radar and human observation, providing only rough perception results and posing
certain safety risks. In the field of autonomous driving, the use of LiDAR combined with ve-
hicle cooperative perception technology allows vehicles to rely less on high-precision maps
and provides precise perception results of the surrounding environment for autonomous
vehicles. 3D object detection is a typical task in vehicle cooperative perception. Therefore,
taking this as a reference, we set the research task in this paper as ship cooperative 3D
object detection.

4.1. Ship Cooperative 3D Object Detection

As mentioned earlier, the Ship Cooperative 3D Object Detection (SC3D) studied in this
paper is analogous to the Vehicle Cooperative 3D Object Detection (VC3D). The objective
of this task is to investigate the effectiveness of ship cooperative perception in enhancing
the perception capabilities of individual ships. However, there are significant differences
between SC3D and VC3D, beyond scene variations. These differences encompass the
required perception range for ships, data density and distribution in ship-collected data,
and scene complexity, among others. Therefore, before introducing the pipeline, it is
necessary to provide a definition of the SC3D task in this paper.

4.1.1. Ship Perception Range and Configuration

Firstly, considering that ship navigation requires a certain safe encounter distance,
a large perception range is needed. We refer to the detection range of actual shipborne
LiDAR and set the individual ship’s perception range as a rectangular region [−2048 m,
−2048 m, −60 m, 2048 m, 2048 m, 60 m] during training and testing. Considering the need
to maintain a certain safe distance during ship navigation, we set the communication range
to 1 km. Additionally, considering that current shipborne LiDAR devices are relatively
large, we only mount LiDAR on three types of large ships, namely bulk carriers, container
ships, and cruise ships, during simulated data collection. Furthermore, we fix the number
of collaborating ships for perception in the scene to 5.

4.1.2. Input, Output, and Ground Truth

The SC3D task, similar to the VC3D task, takes as input the perception data acquired
by each ship at a specific moment. For the dataset proposed in this paper, this corresponds
to the LiDAR point cloud data. During the task, the ego ship only communicates and
exchanges information with the connected ships (co-ships) within its communication
range, while ignoring the information from co-ships outside this range. The transmitted
information can include data, features, and detection results, depending on the fusion
methods mentioned in the related work. The output is the detection results of the objects
within the perception range of the ego ship. It is worth noting that during data annotation,
we annotated each ship object within the perception range of every co-ship. This means
that for the same ship in the scene, there can be multiple annotations. However, this does
not affect the training of the cooperative detection model, as we ultimately base our testing
on the Ground Truth annotated using the ego ship’s data.

4.1.3. Evaluation Metrics

Similar to VC3D task, this paper evaluates the performance of cooperative perception
models for the SC3D task using the average precision of 3D objects (AP40) at different IoU
thresholds. However, considering that ship cooperative perception scenarios have sparser
object data and higher detection difficulty, we also include the detection performance at an
additional IoU threshold of 0.3, in addition to the conventional IoU thresholds of 0.7 and 0.5.
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4.2. Regional Clustering Fusion
4.2.1. Motivation

As the SC3D task is introduced for the first time, it is natural to consider referring to the
VC3D task. As described in Section 2, the current VC3D methods are mainly categorized
into early fusion, intermediate fusion, and late fusion. We selected representative methods
from these categories to conduct experiments on the S2S-sim dataset (see Section 5 for
specific experimental settings). The results are presented in Table 3, which indicates
that among the baseline methods, early fusion achieves the best detection performance.
However, the intermediate fusion methods that perform well in the VC3D task did not
exhibit satisfactory detection performance in the SC3D task. This prompted us to analyze
the underlying reasons for this discrepancy.

To this end, we first analyzed the point cloud distribution at different distances in
both autonomous driving and ship navigation scenarios using the OPV2V and S2S-sim
datasets, as shown in Figure 5. It can be observed that in the context of autonomous
driving, the collected laser points are concentrated within a radius range of 0–30 m, and
the quantity decreases rapidly with increasing distance. However, the collected data in
the ship navigation scenario exhibits different characteristics. The laser points within the
closest radius range of 0–500 m are relatively sparse, while the highest number of points is
found within the radius range of 500–1000 m. Subsequently, the number of points gradually
decreases with increasing distance. The causes of this phenomenon are twofold. On the
one hand, it is related to the characteristics of ship navigation, as ships need to maintain a
safe encounter distance, resulting in objects appearing at relatively far positions. On the
other hand, the scarcity of points at close distances is due to the water surface absorbing the
laser beams emitted by the LiDAR sensor (for the current object detection LiDAR), resulting
in no laser points being returned, while the ground reflects the laser beams as expected.

Figure 5. The distribution of laser points within different perception radii of the ego agent in various
field scenarios.

Different data distributions have minimal impact on early fusion, as the fusion at
the data level does not affect the performance of the detector internally. However, large-
scale data fusion imposes certain pressures on the communication bandwidth between
ships. For various intermediate fusion methods, fusion occurs within the detector, and
the feature fusion module is designed for specific scenes. Therefore, when significant
changes occur in the data distribution, the detector’s performance is affected to varying
degrees. In conclusion, we have decided to continue our research based on early fusion.
The key question now is how to effectively reduce data transmission between ships while
improving the performance of 3D object detection in ship navigation scenarios.
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4.2.2. Method

As mentioned earlier, there is a difference between ship navigation and autonomous
driving scenarios in that the water surface absorbs laser points while the ground reflects
them. Therefore, in autonomous driving scenarios, we observe a continuity between
object points and background points, whereas in shipborne LiDAR, the detected objects
and background are relatively independent. Exploiting this characteristic, we propose a
regional clustering fusion-based ship cooperative 3D object-detection method. The method
aims to reduce data transmission redundancy and enhance the detection of object objects
by first separating foreground object regions and then requesting foreground object data
only from co-ships within the communication range.

The overall network framework is depicted in Figure 6. Our ship cooperative 3D
object-detection method adopts an early fusion strategy and consists of two main modules:
regional clustering fusion and feature extraction and detection. In the regional clustering
fusion module, considering the characteristics of ship navigation data, we first partition
the scene into regions and employ clustering algorithms to aggregate points into clusters.
Subsequently, we perform an initial point selection for object regions based on a threshold
and generate axis-aligned 3D bounding boxes. Finally, we request data within the bounding
boxes only from ships within the communication range. This approach significantly reduces
the redundancy issue in early fusion data, achieving efficient and selective data fusion
and providing more effective data for the feature extraction and detection module. We
will elaborate on this process in the following sections. In the feature extraction and
detection module, we initially extract pillar features using a 3D backbone. Then, we
employ 2D convolutional operations to acquire high-dimensional abstract features. Finally,
classification and regression are performed using detection heads to obtain the 3D object-
detection results.

Figure 6. Network architecture. The proposed regional clustering fusion-based ship cooperative 3D
object-detection method comprises two modules. The regional clustering fusion module (left) mainly
facilitates selective fusion of point cloud data in large-scale navigation scenes. The green boxes
represent the selected object regions after clustering. The feature extraction and detection module
(right) chiefly serves to extract object features and yield detection outcomes from the fused data.
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The core of our 3D object-detection method lies in the regional clustering fusion
module. As discussed earlier, the key characteristic of navigation point cloud data is that
different foreground objects or backgrounds are relatively independent. As illustrated on
the left side of Figure 7, taking the island scene data from the S2S-sim dataset as an example,
it can be observed that there are no continuous point clouds between the island regions and
different ships, while the points within each ship are relatively concentrated. Therefore, we
employ a point cloud clustering algorithm to preliminarily separate the foreground objects
and background islands within the scene. To improve clustering efficiency, prior to this
step, we first partition the data Pes of the ego ship into n blocks by dividing it into regions.

Pes = {Pes1, . . . , Pesn}, n = 4, (1)

where n is a hyper parameter that can be adjusted according to the size of the scene, we set
n = 4 as the default value. Clustering operations are simultaneously performed on each of
the regions.

Figure 7. Raw data and selected object regions after clustering. On the left are the raw data collected
by the ego ship. On the right are the clustered and selected object regions, with the green axis-aligned
bounding boxes representing the ship object regions to be fused.

In the selection of clustering algorithms, we chose the DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) algorithm for the clustering operations in this study.
This choice was primarily based on DBSCAN’s advantages over other clustering algorithms,
as it does not require a predetermined number of clusters and exhibits higher time and
space efficiency. In the DBSCAN algorithm, we need to preset the neighborhood radius R
of points (in this paper, referring to the point resolution of LiDAR, R is set to 20) and the
minimum number of neighborhood points MinPts (in this paper, MinPts is set to 30). For
each point p ∈ Pesi in the data Pesi divided in the previous step, its neighborhood points are
first found within the radius of:

N(p) = {q ∈ Pesi|dist(p, q) ≤ R}. (2)

Then, we examine the number of neighboring points N(p). If |N(p)| < MinPts, then point
p is labeled as a noise point. Conversely, if |N(p)| ≥ MinPts, a new cluster is created with
p as the core point. Recursively, points from N(p) are added to this cluster until no new
core points can be found, indicating the completion of one clustering iteration. The process



Electronics 2024, 13, 885 13 of 20

continues to iterate over the remaining points until all points are labeled, completing the
clustering process. Return the final clustering set C.

C = {(p, label(p))|p ∈ Pes, label(p) ∈ (1, 2, . . . , K)}, (3)

label(p) represents the cluster label, and K is the number of point clusters in the clustering.
As shown on the right side in Figure 7, after clustering, both the foreground objects and
background in the scene data obtained by the ego ship are partitioned into different colored
point clusters. This includes individual ships as well as the island in the top left corner of
the scene.

After completing the clustering process, the next step is to filter and select the data
regions that require fusion. It is evident that we need to exclude irrelevant areas such as
ports and islands, which may contain a large number of points. Instead, we only request
foreground object region data from co-ships. To achieve this, we first calculate the axis-
aligned bounding boxes (AABBs) for each point cluster ci. These AABBs store the center
point (x, y, z) and the three-dimensional dimensions (l, w, h) of the detection boxes,

BBox(ci) = (x, y, z, l, w, h). (4)

The reason for choosing AABB (Axis-Aligned Bounding Box) instead of MBR (Minimum
Bounding Box) or OBB (Oriented Bounding Box) is to facilitate co-ships in selecting region
data for transmission to the ego ship more conveniently. Additionally, considering that
conventional large ships, such as bulk carriers and container ships, have lengths not
exceeding 400 m, the longest object covered by the AABB box is equal to the length of the
horizontal diagonal,

D(ci) =
√

l2 + w2. (5)

Therefore, we set a threshold T = 400 m for the length of the horizontal diagonal of the
detection boxes. We filter the detection boxes accordingly to obtain the final set of requested
data regions, denoted as RDR:

RDR = RDR
⋃
{BBox(ci)|ci ∈ C, D(ci) ≤ T}, (6)

By employing this strategy, it is possible to achieve the preservation of foreground
objects and the filtering of the background. The final result is depicted on the right side
of Figure 7, where the majority of the objects within the green bounding boxes are ships,
representing the data that the ego ship needs to request for fusion from co-ships. The data
collected by co-ships within the communication range at the same time is denoted as Pmcs.

Pmcs = {Pcs1, Pcs2, . . . , Pcsn}, n ≤ 5. (7)

Thus, the requested data Prq can be represented as:

Prq = Pmcs(RDR). (8)

Based on the previous steps, the final fused data Pout can be expressed as:

Pout = Pes ∪ Prq. (9)

In summary, the specific algorithmic workflow of the regional clustering fusion module is
illustrated in Algorithm 1.

Since data fusion occupies a portion of the 3D object-detection time, in order to
enhance real-time detection, it is necessary to design a lightweight detector. For the specific
architecture design of the 3D detector, this paper selects PointPillars [42] as the lightweight
backbone network. There are two main reasons that led us to make this choice. Firstly, we
believe that through data fusion, which can be viewed as data augmentation, the stability of
detection can be ensured. Secondly, by partitioning the fused data into specialized voxels,
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namely pillars, and then performing 2D convolution, the computationally expensive 3D
convolution operation can be avoided, thereby improving detection speed.

Algorithm 1 Regional Clustering Fusion

1: input: Pes, Pmcs, R, Teav, T.
2: output: fused data Pout.
3: Pes = {Pes1, . . . , Pesn}, n = 4;
4: for Pesi in Pes do
5: for p in Pesi do
6: N(p) = {q ∈ Pesi|dist(p, q) ≤ R};
7: ci = ci ∪ {q|q ∈ N(p), unvisited(q), |N(p)| ≥ MinPts};
8: BBox(ci) = (x, y, z, l, w, h);
9: D(ci) =

√
l2 + w2;

10: RDR = RDR
⋃
{BBox(ci)|ci ∈ C, D(ci) ≤ T};

11: end for
12: end for
13: Prq = Pmcs(RDR);
14: return Pout = Pes ∪ Prq

5. Results and Experimental Discussion

In this section, we will present the transfer performance of the state-of-the-art VC3D
methods on the S2S-sim dataset. We will also analyze the suitability of our proposed
regional clustering fusion method for the SC3D task through comparative experiments.

5.1. Benchmark Models

Firstly, for VC3D tasks, it takes time for information transmission between multiple
vehicles, so higher speed is required for the basic 3D object detector during the detection
stage. Therefore, a single-stage detector is generally adopted, and PointPillars [42] is the
most commonly used in VC3D tasks. This paper will adopt this design as the benchmark
model. Secondly, as mentioned earlier, VC3D tasks can be divided into three cooperative
methods according to the fusion strategy: early fusion, intermediate fusion (IM fusion),
and late fusion. After selecting the basic 3D object detector, the three basic cooperative
methods do not require complex designs. Therefore, we use the models trained with
the three basic cooperative methods as the benchmark models to test the S2S-sim dataset
in this paper. In addition, since we are the first to propose the SV3D task, there is a
lack of comparative models. Therefore, we select mainstream high-performance vehicle
cooperative 3D detection methods such as Fcooper, V2X-ViT, and Where2comm from
the current cooperative 3D detection methods. We transfer them to the ship cooperative
scenario and train models to evaluate their performance on the SC3D task.

5.2. Experiment Details

The training set, validation set, and test set are divided into 5000, 1000, and 1000 frames,
respectively. The test set consists of three typical navigation scenarios: ports, islands, and
open waters. During training, all methods are set with a batch size of 2. Since ships have a
larger perception range ([−2048 m, −2048 m, −60 m, 2040 m, 2048 m, 60 m]), we set the
voxel size to [8 m, 8 m, 120 m]. Our method employs the widely used Adam optimizer
with an initial learning rate of 0.002. The learning rate changes at the 10th and 15th epochs,
with a decay factor of 0.1. The total training duration is 30 epochs. The selected cooperative
methods for different vehicles are trained based on their respective papers and default
settings in the code. All training processes are conducted on a single RTX 4090.
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5.3. Performance and Analysis
5.3.1. Overall Performance

Table 3 presents the detection results of the vehicle cooperative transfer methods and
our proposed method on the S2S-sim dataset. Generally, due to the larger perceptual
scope in maritime environments, the difficulty and uncertainty of cooperation are sub-
stantially increased. However, our method achieves the best detection performance at
IoU = 0.7/0.5/0.3 thresholds. Notably, at the most challenging IoU = 0.7 threshold, only
our method achieves detection results exceeding 50%. Figure 8 illustrates a comparison of
3D object-detection results between our proposed method and the early fusion baseline
method on the S2S-sim dataset. The result images provide a visual demonstration that our
proposed method effectively reduces instances of missed detections and false detections in
scenes such as ports and islands, as compared to the baseline method.

Figure 8. Visualization of detected boxes in S2S-sim dataset. Green boxes are ground-truth while red
ones are detection. While the navigation perception scene is relatively large, our method achieves
significantly more precise detection compared to the baseline.

Among the benchmark models, the early fusion method achieves the optimal detection
outcomes, primarily attributable to its data-driven fusion strategy. Additionally, we observe
that several intermediate fusion methods exhibiting strong performance in autonomous
driving scenarios exhibit significant variability in performance on the S2S-sim dataset. This
discrepancy is mainly attributed to the substantial differences in data distribution across
diverse scenes. It also indicates that feature-based fusion approaches are influenced by
data distribution and may hinder method transferability.
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Table 3. 3D detection performance comparison on S2S-sim.

Method Fusion Strategy
3D Object Detection AP@IoU

0.7 0.5 0.3

No fusion No 24.86 51.96 59.75
Early fusion Early 37.96 70.57 78.95

IM fusion Intermediate 30.32 67.20 77.64
Late fusion Late 26.17 61.99 73.81

Fcooper [35] Intermediate 43.61 73.09 80.82
Cobevt [37] Intermediate 24.98 56.61 74.49

Where2comm [40] Intermediate 25.22 65.57 77.38
V2xvit [11] Intermediate 29.67 57.35 67.15

Coalign [36] Intermediate 39.11 63.87 78.27

Ours Early 51.09 75.29 82.14

5.3.2. Performance with Different Perception Ranges

Due to the need to maintain a certain distance between ships, we set perception radii of
1 km, 1.5 km, and 2 km to test the 3D object-detection performance of different cooperative
perception methods, as shown in Table 4. The results presented in Table 4 are intriguing. For
early fusion methods based on data fusion and non-fusion methods, a smaller perception
radius corresponds to better detection performance. Notably, our method, as an early
fusion approach, achieves the optimal detection performance across different perception
radii. This observation aligns with our common knowledge, as a closer distance implies
denser distribution of object points, making it easier to extract features and obtain better
detection results.

However, for intermediate fusion, counterintuitive detection results have emerged.
The smaller the perception radius, the worse the detection performance. We believe that
this is closely related to the feature fusion module designed for intermediate fusion. The
methods transferred from VC3D tasks mainly consider the fusion of different vehicle
perception features. However, as we have analyzed earlier, there are differences in data
distribution between autonomous driving and ship navigation scenarios, resulting in
differences in features. This indicates that the feature fusion module designed for VC3D is
not suitable for SC3D tasks and instead becomes disruptive.

Table 4. 3D detection performance comparison with different perception radii (IoU = 0.5).

Method Fusion Strategy R = 1 km R = 1.5 km R = 2 km

No fusion No 55.46 54.64 51.96
Early fusion Early 80.45 77.25 70.57

IM fusion Intermediate 36.97 52.88 67.20
Late fusion Late 42.12 54.66 61.99

Fcooper Intermediate 40.65 58.02 73.09
Cobevt Intermediate 25.97 41.83 56.61

Where2comm Intermediate 42.18 61.01 65.57
V2xvit Intermediate 35.61 49.14 57.35

Coalign Intermediate 41.83 60.06 63.87

Ours Early 84.07 81.43 75.29

The late fusion benchmark models have also achieved counterintuitive detection re-
sults, which we attribute to interference from the detection results of co-ships. In summary,
data fusion is applicable to different scenario tasks with minimal interference. However,
it is challenging to achieve compatibility across different scenarios when it comes to fea-
ture and result fusion. Our proposed method, based on regional clustering fusion, serves
as a data fusion method and can serve as a fundamental approach for ship cooperation.
Improvements at the feature level can further enhance the performance of SC3D.
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5.3.3. Collaborative Efficiency Analysis

As an early fusion method, the improvement in collaborative efficiency in this study
primarily manifests in the amount of requested data. Table 5 presents a comparison of
the requested data volume from the ego ship to co-ships within the communication range
under different perception radii. Compared to the early fusion baseline method, the re-
gional clustering fusion-based ship collaborative perception method proposed in this paper,
significantly reduces the requested data volume. Moreover, this effect becomes more pro-
nounced as the perception range increases. When the ego ship’s perception radius is 2 km,
the requested data volume is reduced by 46% compared to the baseline method. This is
highly beneficial in maritime navigation environments with unstable communication condi-
tions. Simultaneously, due to the ability of regional clustering fusion to selectively enhance
object data, our method maintains superior object-detection performance. Furthermore,
our proposed method exhibits less degradation in detection performance compared to the
baseline as the distance increases, indicating that our method has better robustness.

Table 5. Comparison of data request volume between our method and baseline under different
perception radii (IoU = 0.5).

Method Range (km) AP (%)
Request

Data (KB)

Baseline 1 80.45 48.24
Ours 1 84.07 32.27

Baseline 1.5 77.25 86.44
Ours 1.5 81.43 46.09

Baseline 2 70.57 112.92
Ours 2 75.29 51.46

6. Conclusions and Future Work

Regarding the lack of dataset problem in current ship cooperative perception research,
S2S-sim, a large-scale point cloud-based ship-to-ship cooperative simulation dataset specifi-
cally designed for ship navigation, is proposed in this paper. Developed using the Unity3D
engine, the S2S-sim dataset simulates common real-world ship navigation scenarios such
as ports and islands. Moreover, it simulates the physical characteristics of a real shipborne
LiDAR sensor. The simulated ship cooperative data in S2S-sim conforms to the distribution
of real-world data, providing a solid foundation for studying ship cooperative 3D object-
detection tasks. Additionally, to address the issue that current multi-agent cooperative 3D
object-detection methods are unsuitable for ship cooperative perception tasks, a regional
clustering fusion-based ship cooperative 3D object-detection method is proposed. This
method fully leverages the characteristics of maritime point cloud data by extracting key
regions of the main ship through clustering. It only requests fusion of key region data from
co-ships. This approach enhances data fusion efficiency while selectively strengthening
the object data to be detected. Our method achieves the best performance on the S2S-sim
dataset, indicating that our proposed method is better suited for ship cooperative 3D
object detection.

Although we have constructed the first ship cooperative perception dataset and
proposed a method suitable for ship cooperative 3D object detection, there is still room
for improvement. In terms of the dataset, the data collected from cooperative ships in our
dataset are assumed to be collected at the same moment, without considering the potential
temporal deviations among data collected by different ships. Although these deviations
are very short, it indicates that there is still room for improvement in our dataset. We will
address this issue in future versions to enhance the dataset quality. Additionally, the dataset
constructed in this paper does not include data under complex weather conditions such
as rain and fog. In future versions, we will attempt to incorporate such data and discuss
its impact on the results. Regarding the ship cooperative detection method, our proposed
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method focuses primarily on optimizing the data fusion aspect, while limited attention
has been given to the design of the feature extraction module. We believe that making
improvements in the feature layer to adapt to ship cooperative data can further enhance
the accuracy of ship cooperative 3D object detection. We will investigate this aspect in our
future work.

Author Contributions: Conceptualization, W.Y. and X.L.; methodology, W.Y. and X.W.; software,
W.Y.; validation, W.Y. and X.W.; formal analysis, W.Y.; investigation, W.Y.; resources, X.L.; data
curation, W.Y. and J.C.; writing—original draft preparation, W.Y.; writing—review and editing, X.W.;
visualization, W.Y.; supervision, S.X.; project administration, X.L.; funding acquisition, S.X. All
authors have read and agreed to the published version of the manuscript.

Funding: The research reported in this paper was supported by the National Natural Science
Foundation of China under grant No. 61991415, the Development Project of Ship Situational Intelli-
gent Awareness System under grant MC-201920-X01, the National Natural Science Foundation of
China under Grant No. 72204155, and the Natural Science Foundation of Shanghai under Grant
No. 23ZR1423100.

Institutional Review Board Statement: Written informed consent for publication of this paper was
obtained from Shanghai University and all authors.

Data Availability Statement: The dataset proposed in this study are openly available at https://
github.com/yb2019/S2S-sim.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Han, Y.; Zhang, H.; Li, H.; Jin, Y.; Lang, C.; Li, Y. Collaborative perception in autonomous driving: Methods, datasets and

challenges. IEEE Intell. Transp. Syst. Mag. 2023, 15, 131–151. [CrossRef]
2. Sun, X.; Song, S.; Miao, Z.; Tang, P.; Ai, L. LiDAR Point Clouds Semantic Segmentation in Autonomous Driving Based on

Asymmetrical Convolution. Electronics 2023, 12, 4926. [CrossRef]
3. Yang, W.; Sheng, S.; Luo, X.; Xie, S. Geometric relation based point clouds classification and segmentation. Concurr. Comput.

Pract. Exp. 2022, 34, e6845. [CrossRef]
4. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The kitti vision benchmark suite. In Proceedings of the

2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; IEEE: Piscataway, NJ,
USA, 2012; pp. 3354–3361.

5. Sun, P.; Kretzschmar, H.; Dotiwalla, X.; Chouard, A.; Patnaik, V.; Tsui, P.; Guo, J.; Zhou, Y.; Chai, Y.; Caine, B.; et al. Scalability in
perception for autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2446–2454.

6. Caesar, H.; Bankiti, V.; Lang, A.H.; Vora, S.; Liong, V.E.; Xu, Q.; Krishnan, A.; Pan, Y.; Baldan, G.; Beijbom, O. nuscenes: A
multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11621–11631.

7. Yahia, Y.; Lopes, J.C.; Lopes, R.P. Computer Vision Algorithms for 3D Object Recognition and Orientation: A Bibliometric Study.
Electronics 2023, 12, 4218. [CrossRef]

8. Yuan, Y.; Cheng, H.; Sester, M. Keypoints-based deep feature fusion for cooperative vehicle detection of autonomous driving.
IEEE Robot. Autom. Lett. 2022, 7, 3054–3061. [CrossRef]

9. Wang, T.H.; Manivasagam, S.; Liang, M.; Yang, B.; Zeng, W.; Urtasun, R. V2vnet: Vehicle-to-vehicle communication for joint
perception and prediction. In Proceedings of the Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28
August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 605–621.

10. Xu, R.; Xiang, H.; Xia, X.; Han, X.; Li, J.; Ma, J. Opv2v: An open benchmark dataset and fusion pipeline for perception with
vehicle-to-vehicle communication. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA),
Philadelphia, PA, USA, 23–27 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 2583–2589.

11. Xu, R.; Xiang, H.; Tu, Z.; Xia, X.; Yang, M.H.; Ma, J. V2x-vit: Vehicle-to-everything cooperative perception with vision transformer.
In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 107–124.

12. Li, Y.; Ma, D.; An, Z.; Wang, Z.; Zhong, Y.; Chen, S.; Feng, C. V2X-Sim: Multi-agent collaborative perception dataset and
benchmark for autonomous driving. IEEE Robot. Autom. Lett. 2022, 7, 10914–10921. [CrossRef]

13. Xu, R.; Xia, X.; Li, J.; Li, H.; Zhang, S.; Tu, Z.; Meng, Z.; Xiang, H.; Dong, X.; Song, R.; et al. V2v4real: A real-world large-scale
dataset for vehicle-to-vehicle cooperative perception. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 13712–13722.

https://github.com/yb2019/S2S-sim
https://github.com/yb2019/S2S-sim
http://doi.org/10.1109/MITS.2023.3298534
http://dx.doi.org/10.3390/electronics12244926
http://dx.doi.org/10.1002/cpe.6845
http://dx.doi.org/10.3390/electronics12204218
http://dx.doi.org/10.1109/LRA.2022.3143299
http://dx.doi.org/10.1109/LRA.2022.3192802


Electronics 2024, 13, 885 19 of 20

14. Yu, H.; Luo, Y.; Shu, M.; Huo, Y.; Yang, Z.; Shi, Y.; Guo, Z.; Li, H.; Hu, X.; Yuan, J.; et al. Dair-v2x: A large-scale dataset for
vehicle-infrastructure cooperative 3d object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 21361–21370.

15. Zhang, Q.; Shan, Y.; Zhang, Z.; Lin, H.; Zhang, Y.; Huang, K. Multisensor fusion-based maritime ship object-detection method for
autonomous surface vehicles. J. Field Robot. 2023. [CrossRef]

16. Zhang, Q.; Wang, L.; Meng, H.; Zhang, W. LiDAR Simulator for Autonomous Driving in Ocean Scenes. In Proceedings of the
2023 IEEE International Conference on Mechatronics and Automation (ICMA), Harbin, China, 6–9 August 2023; IEEE: Piscataway,
NJ, USA, 2023; pp. 1082–1087.

17. Yao, Z.; Chen, X.; Xu, N.; Gao, N.; Ge, M. LiDAR-based simultaneous multi-object tracking and static mapping in nearshore
scenario. Ocean. Eng. 2023, 272, 113939. [CrossRef]

18. Zhou, B.; Xu, H.; Shen, S. Racer: Rapid collaborative exploration with a decentralized multi-uav system. IEEE Trans. Robot. 2023,
39, 1816–1835. [CrossRef]

19. Kurunathan, H.; Huang, H.; Li, K.; Ni, W.; Hossain, E. Machine learning-aided operations and communications of unmanned
aerial vehicles: A contemporary survey. IEEE Commun. Surv. Tutor. 2023. [CrossRef]

20. Shao, G.; Ma, Y.; Malekian, R.; Yan, X.; Li, Z. A novel cooperative platform design for coupled USV–UAV systems. IEEE Trans.
Ind. Inform. 2019, 15, 4913–4922. [CrossRef]

21. Sun, Z.; Sun, H.; Li, P.; Zou, J. Self-organizing cooperative pursuit strategy for multi-USV with dynamic obstacle ships. J. Mar. Sci.
Eng. 2022, 10, 562. [CrossRef]

22. Li, Y.; Zhang, J.; Ma, D.; Wang, Y.; Feng, C. Multi-robot scene completion: Towards task-agnostic collaborative perception. In
Proceedings of the Conference on Robot Learning, Atlanta, GA, USA, 6 November 2023; pp. 2062–2072.

23. Zhu, Z.; Du, Q.; Wang, Z.; Li, G. A survey of multi-agent cross domain cooperative perception. Electronics 2022, 11, 1091.
[CrossRef]

24. Yu, H.; Yang, W.; Ruan, H.; Yang, Z.; Tang, Y.; Gao, X.; Hao, X.; Shi, Y.; Pan, Y.; Sun, N.; et al. V2X-Seq: A Large-Scale Sequential
Dataset for Vehicle-Infrastructure Cooperative Perception and Forecasting. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 5486–5495.

25. Axmann, J.; Moftizadeh, R.; Su, J.; Tennstedt, B.; Zou, Q.; Yuan, Y.; Ernst, D.; Alkhatib, H.; Brenner, C.; Schön, S. LUCOOP:
Leibniz University Cooperative Perception and Urban Navigation Dataset. In Proceedings of the 2023 IEEE Intelligent Vehicles
Symposium (IV), Anchorage, AK, USA, 4–7 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–8.

26. Arnold, E.; Dianati, M.; de Temple, R.; Fallah, S. Cooperative perception for 3D object detection in driving scenarios using
infrastructure sensors. IEEE Trans. Intell. Transp. Syst. 2020, 23, 1852–1864. [CrossRef]

27. Ngo, H.; Fang, H.; Wang, H. Cooperative Perception With V2V Communication for Autonomous Vehicles. IEEE Trans. Veh.
Technol. 2023, 72, 11122–11131. [CrossRef]

28. Wang, B.; Zhang, L.; Wang, Z.; Zhao, Y.; Zhou, T. Core: Cooperative reconstruction for multi-agent perception. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 8710–8720.

29. Hu, Y.; Lu, Y.; Xu, R.; Xie, W.; Chen, S.; Wang, Y. Collaboration Helps Camera Overtake LiDAR in 3D Detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 9243–9252.

30. Yang, K.; Yang, D.; Zhang, J.; Li, M.; Liu, Y.; Liu, J.; Wang, H.; Sun, P.; Song, L. Spatio-temporal domain awareness for multi-agent
collaborative perception. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6
October 2023; pp. 23383–23392.

31. Ma, Y.; Lu, J.; Cui, C.; Zhao, S.; Cao, X.; Ye, W.; Wang, Z. MACP: Efficient Model Adaptation for Cooperative Perception. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 1–10 January 2024;
pp. 3373–3382.

32. Meng, Z.; Xia, X.; Xu, R.; Liu, W.; Ma, J. HYDRO-3D: Hybrid Object Detection and Tracking for Cooperative Perception Using 3D
LiDAR. IEEE Trans. Intell. Veh. 2023, 8, 4069–4080. [CrossRef]

33. Queralta, J.P.; Taipalmaa, J.; Pullinen, B.C.; Sarker, V.K.; Gia, T.N.; Tenhunen, H.; Gabbouj, M.; Raitoharju, J.; Westerlund,
T. Collaborative multi-robot search and rescue: Planning, coordination, perception, and active vision. IEEE Access 2020,
8, 191617–191643. [CrossRef]

34. Chen, Q.; Tang, S.; Yang, Q.; Fu, S. Cooper: Cooperative perception for connected autonomous vehicles based on 3d point clouds.
In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA,
7–9 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 514–524.

35. Chen, Q.; Ma, X.; Tang, S.; Guo, J.; Yang, Q.; Fu, S. F-cooper: Feature based cooperative perception for autonomous vehicle
edge computing system using 3D point clouds. In Proceedings of the 4th ACM/IEEE Symposium on Edge Computing,
Washington, DC, USA, 7–9 November 2019; pp. 88–100.

36. Lu, Y.; Li, Q.; Liu, B.; Dianati, M.; Feng, C.; Chen, S.; Wang, Y. Robust collaborative 3d object detection in presence of pose errors.
In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023;
IEEE: Piscataway, NJ, USA, 2023; pp. 4812–4818.

37. Xu, R.; Tu, Z.; Xiang, H.; Shao, W.; Zhou, B.; Ma, J. CoBEVT: Cooperative bird’s eye view semantic segmentation with sparse
transformers. arXiv 2022, arXiv:2207.02202.

http://dx.doi.org/10.1002/rob.22273
http://dx.doi.org/10.1016/j.oceaneng.2023.113939
http://dx.doi.org/10.1109/TRO.2023.3236945
http://dx.doi.org/10.1109/COMST.2023.3312221
http://dx.doi.org/10.1109/TII.2019.2912024
http://dx.doi.org/10.3390/jmse10050562
http://dx.doi.org/10.3390/electronics11071091
http://dx.doi.org/10.1109/TITS.2020.3028424
http://dx.doi.org/10.1109/TVT.2023.3264020
http://dx.doi.org/10.1109/TIV.2023.3282567
http://dx.doi.org/10.1109/ACCESS.2020.3030190


Electronics 2024, 13, 885 20 of 20

38. Qiao, D.; Zulkernine, F. Adaptive feature fusion for cooperative perception using lidar point clouds. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–7 January 2023; pp. 1186–1195.

39. Liu, Y.C.; Tian, J.; Glaser, N.; Kira, Z. When2com: Multi-agent perception via communication graph grouping. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4106–4115.

40. Hu, Y.; Fang, S.; Lei, Z.; Zhong, Y.; Chen, S. Where2comm: Communication-efficient collaborative perception via spatial
confidence maps. Adv. Neural Inf. Process. Syst. 2022, 35, 4874–4886.

41. Liu, C.; Chen, Y.; Chen, J.; Payton, R.; Riley, M.; Yang, S.H. Cooperative perception with learning-based V2V communications.
IEEE Wirel. Commun. Lett. 2023, 12, 1831–1835. [CrossRef]

42. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars: Fast encoders for object detection from point clouds.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 12697–12705.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LWC.2023.3295612

	Introduction
	Related Work
	Cooperative Perception Datasets
	Multi-Agent Cooperative Perception

	S2S-Sim Dataset
	Construction of Ship Navigation Scenarios
	Sensor Simulation and Data Collection
	Dataset Analysis

	Task and Pipeline
	Ship Cooperative 3D Object Detection
	Ship Perception Range and Configuration
	Input, Output, and Ground Truth
	Evaluation Metrics

	Regional Clustering Fusion
	Motivation
	Method


	Results and Experimental Discussion
	Benchmark Models
	Experiment Details
	Performance and Analysis 
	Overall Performance
	Performance with Different Perception Ranges
	Collaborative Efficiency Analysis


	Conclusions and Future Work
	References

