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Abstract: Keyword spotting is an important part of modern speech recognition pipelines. Typical
contemporary keyword-spotting systems are based on Mel-Frequency Cepstral Coefficient (MFCC)
audio features, which are relatively complex to compute. Considering the always-on nature of
many keyword-spotting systems, it is prudent to optimize this part of the detection pipeline. We
explore the simplifications of the MFCC audio features and derive a simplified version that can
be more easily used in embedded applications. Additionally, we implement a hardware generator
that generates an appropriate hardware pipeline for the simplified audio feature extraction. Using
Chisel4ml framework, we integrate hardware generators into Python-based Keras framework, which
facilitates the training process of the machine learning models using our simplified audio features.

Keywords: FPGA; MFCC; keyword spotting; chisel

1. Introduction

The development of deep neural networks has opened up possibilities for applications
in diverse areas. One such area is speech recognition, where researchers have been able
to show promising results using large transformer-based neural networks [1]. These
networks are, however, very computationally expensive and thus are hard to implement
on battery-powered devices. This can be overcome using a simpler keyword detection
system that merely listens for specific keywords (e.g., Hey Siri) and then wakes up a more
powerful system generally implemented in the cloud. In this way, the simpler low-power
system acts as an always-on listener, and the more powerful system is used only when
needed. Henceforth, we will refer to the first kind of system as the keyword-spotting (KWS)
system [2], and the second type as the Large Vocabulary Speech Recognition system.

The keyword-spotting system is an always-on system. This requirement facilitates
the need for it to be as energy-efficient as possible. The authors of [3] recognized this
problem and explored an integer-only implementation of the MFCC algorithm. They
achieved good results. However, they refrained from modifying the MFCC algorithm.
Furthermore, they targeted a DSP processing unit. Dedicated hardware circuits could make
this process even more energy-efficient. The authors of [4] developed a custom MFCC
extraction processing unit. However, they also failed to explore simplifications of the MFCC
algorithm and instead focused exclusively on the hardware implementation. The authors
of [5] showcased a system that simplifies the MFCC features to a certain degree. While
they did obtain satisfactory classification performance, they again focused on the actual
hardware implementation and did not show how the MFCC simplification affects the final
accuracy of the KWS system. Yet another stream of research explores the optimization of
the MFCC with analog circuits. In [6], the authors explored the moving parts of the MFCC
pipeline into the analog domain. However, the computations performed in the analog
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domain are prone to environmental influence. Our study focuses on digital processing
using custom hardware accelerators.

The main contributions of this paper are as follows: First, we formulate a simplified
version of the MFCC features. Second, we explore how simplifications of the MFCC
algorithm affect the performance achieved by KWS systems. Third, we develop hardware
generators and evaluate generated hardware circuits that can compute these features in
a resource-efficient manner. And fourth, we connect our hardware generators with the
Python-based machine learning framework Keras. This software-based implementation
allows for a user-friendly way of training machine learning models that can exploit the
aforementioned simplified features.

The rest of this paper is structured as follows. Section 2 explains how the standard
MFCC features are calculated, as well as which simplifications we studied to make them
more amenable to an efficient hardware implementation. Section 3 details the modules
that compute the simplified MFCC features. In Section 4, we discuss Chisel4ml [7]. It is a
Python/Chisel-based framework, which we developed, that is the basis of how we connect
our hardware generators with the Python ecosystem. In Section 5, we study how various
simplifications of the MFCC algorithm affect the accuracy of a KWS system. In Section 6,
we give the synthesis results of the hardware circuits generated by our generators. And
finally, in Section 7, we conclude and give some indications of future work.

2. Audio Preprocessing

A common way to detect keywords from audio is to use convolutional neural networks
on two-dimensional features representing audio. One of the frequently used features is
Mel-Frequency Cepstrum Coefficients (MFCCs) [8]. Figure 1 shows how raw audio is
converted to obtain MFCC features.

Figure 1. From raw audio to MFCC features.

2.1. Classic MFCC Features

The procedure to compute MFCC features for approximately one second of audio
sampled at 16 kHz is as follows:

1. We start by sampling the audio with a microphone and an Analog-to-Digital converter.
We take 16,384 samples because it simplifies framing in the next step.

X[n], n ∈ [0, 16,383] (1)

2. Next, we separate the audio into frames and use a windowing function to reduce the
effect of spectral leakage. In the illustrated example, we employ a frame size of 512,
thus obtaining 32 frames (32 × 512 = 16,384). A commonly used windowing function
is the Hamming window shown in Figure 2:

X[n] → X′[w, n′] · win[n′] = X′′[w, n′], w ∈ [0, 31], n′ ∈ [0, 511] (2)

3. We perform the Short-Time Fourier Transform (STFT) [9], which is essentially a
Discrete Fourier Transform (DFT) applied to each frame. Due to the symmetry of the
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DFT for real signals, it suffices to consider only the first half and one of the frequency
bins of the DFT (512/2 + 1 = 257):

X′′[w, n′] → STFT(X′′) → Y[w, k], w ∈ [0, 31], k ∈ [0, 256] (3)

4. We filter the power spectrum by a mel-frequency filter bank matrix. The mel-frequency
filter bank is a set of triangle filters where the triangle width increases exponentially
to mimic the non-linear human ear perception of sound. The number of filters in the
bank is a settable parameter. In our example, it is set to 6. Figure 3 shows an example
mel-frequency filter bank with 6 filters:

Y[w, k] → |Y[w, k]| · M = Y′, shape(M) = (257, 6), shape(Y′) = (32, 6) (4)

5. We apply the logarithmic function to each element of matrix Y′.
6. Finally, we compute the Discrete Cosine Transform (DCT) on Y′ to obtain the MFCC features.

Figure 2. Hamming window.

Figure 3. Mel-frequency filter bank with 6 bins. Each color represents a bin.

2.2. Simplified MFCC

The MFCC feature calculation involves some mathematical operations that, in order
to implement them in hardware exactly, require substantial hardware resources and larger
processing time. Thus, we make the following simplifications:

1. The arithmetic in floating-point number representation requires complex circuits to
implement the multiplication and addition operations. Therefore, we use fixed-point
arithmetic, which is simpler to implement and is more energy-efficient.

2. Instead of computing the full power spectrum, we use just the real part of the DFT
result. We do this because the real part holds most of the information.

3. Instead of the natural logarithm, we use an approximation of the logarithm of number
two. Essentially, we take an integer part of the result and determine the position of
the leading one bit.

4. We noticed that due to the logarithm approximation, low-amplitude sound intervals
were indistinguishable from completely silent intervals. To mitigate this, we added
the value 1.0 to each DFT frequency bin, which increased the frequency bin amplitude
while preserving their variations.

5. We skip the DCT calculation entirely.
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The simplifications above do affect the final accuracy of the KWS system. However, we
can still achieve good performance, as we will show in Section 5. We call these simplified
features the Log-Mel Filter Bank Real Energy (LMFE) representation.

3. Hardware

We break the steps described in Section 2 into two separate hardware modules. The
first module SDF-FFT performs the windowing and the STFT, while the second module
Mel-Engine performs the mel-frequency filtering and logarithm calculation. The modules
are connected by an AXI4-Stream interface as shown in Figure 4. A real system would
additionally need a pre-emphasis filter after the Analog-to-Digital conversion of the sound.

The hardware implementation may vary, depending on the LMFE parameters (frame
size, number of frames, number of mel-frequency bins, windowing function). Therefore,
we decided to write a hardware generator that is parameterized by the aforementioned
parameters. We used the Chisel Hardware Construction Language (HCL) [10] for the
implementation. Chisel is a Scala framework for writing reusable generators of synchronous
digital circuits. Chisel is a library of special class definitions that correspond to various
hardware constructs: registers, multiplexers, adders, etc. When using Chisel, you are
writing a Scala program that, when executed, constructs a set of Chisel objects and connects
them. The interconnected Chisel objects represent a hardware graph, which can be exported
as Verilog.

Figure 4. The preprocessing pipeline.

3.1. SDF-FFT

To calculate the Fast Fourier Transform (FFT), we use a publicly available SDF-FFT
Chisel generator [11]. It uses the Single-path Delay Feedback topology to calculate the
FFT in a pipelined fashion. SDF-FFT is parameterized by the frame size and the radix of
the butterfly (2, 4, or 22). We use the radix-2 butterfly and set the frame size according
to the parameters of the LMFE features. Since the SDF-FFT module does not properly
support windowing, we extend it by implementing the required windowing. The original
module is available at the link: https://github.com/milovanovic/sdf-fft (accessed on 30
January 2024).

3.2. Mel-Engine

Mel-Engine is the hardware module that performs the process of extracting LMFE
features from the FFT results.

Figure 5 shows the hardware architecture of the Mel-Engine. We obtain the FFT
results on an AXI4-Stream input bus, take the real part, and increment it by one to improve
low-volume audio signal sensitivity, as described in Section 2.2. Next, we square the
intermediate result to obtain the power approximation of the given frequency bin. To
efficiently filter the approximate power spectrum with mel-frequency filter banks, we
design two parallel multiply-and-accumulate units that simultaneously process two sets of
mel-frequency filter parameters. Finally, the accumulated results are passed through the
base-2 logarithm approximation unit. This unit outputs the position of the leading one bit
of the integer part of the accumulated result.

The key observation that inspired the shown architecture is the property that, at most,
two mel-frequency filters are non-zero for each frequency bin. This property can be seen
in Figure 3. We store the mel-frequency filter bank parameters in the Mel-Filter ROM
(MFROM). The MFROM length is equal to the number of frequency bins. We split each
MFROM word into the left and right halfwords, and each halfword holds a parameter
stored as a 16-bit fixed-point number. The left halfwords hold all the odd filter parameters,
and the right halfwords hold all the even filter parameters.

https://github.com/milovanovic/sdf-fft
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Figure 5. Hardware architecture of the Mel-Engine.

Figure 6 shows how we store the mel-frequency filters in MFROM. The colored
triangles on the left represent the mel-frequency filters, and the MFROM is depicted on the
right. MFROM addresses correspond to FFT frequency bins. The colored memory cells
store the mel-frequency filter parameters of the corresponding triangle filter. An additional
data structure is required to distinguish the filter parameters of individual mel-frequency
filters. This data structure is implemented by an additional small look-up table. Its size is the
number of mel-frequency filters, and it stores the last non-zero element of the corresponding
mel-frequency filter. This look-up table is a part of the control logic, which is not depicted
in Figure 5, to reduce figure complexity. The source code for the Mel-Engine accelerator is
available at the following link: https://github.com/jurevreca12/mel-engine (accessed on
30 January 2024).

Figure 6. Mel-filter ROM in the Mel-Engine accelerator.

4. Python Integration-Chisel4ml

Following the hardware design, we provide support for the proposed LMFE features in
the Keras framework by creating the FFTLayer and LMFELayer Python classes. The created
classes mimic the calculations of the hardware modules SDF-FFT and Mel-Engine, which
enable efficient training of neural networks that use the proposed LMFE features. The main
reason that FFTLayer and LMFELayer classes are not bit-accurate is that they use floating-
point arithmetic, while the hardware implementations use fixed-point arithmetic. However,
we found that the differences between these two implementations are negligible as is clearly
illustrated in Figure 7, which shows a comparison of 12 spoken words from the Google
Speech Commands dataset [12]. The spoken words are down, go, left, no, off, on, right, stop,
up, and yes. There are also two other classes, “silence” and “unknown”. The subfigures
with HW in the subcaption show the LMFE features generated via RTL simulation of the
hardware, and subfigures with SW in the subcaption are obtained by using the FFTLayer
and LMFELayer classes. We chose to implement FFTLayer and LMFELayer with floating-
point arithmetic because of the existence of high-performance floating-point libraries and
because modern high-performance hardware is optimized for floating-point operations.

https://github.com/jurevreca12/mel-engine
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(a) Down-HW (b) Down-SW (c) Go-HW (d) Go-SW

(e) Left-HW (f) Left-SW (g) No-HW (h) No-SW

(i) Off-HW (j) Off-SW (k) On-HW (l) On-SW

(m) Right-HW (n) Right-SW (o) Stop-HW (p) Stop-SW

(q) Up-HW (r) Up-SW (s) Yes-HW (t) Yes-SW

(u) Silence-HW (v) Silence-SW (w) Unknown-HW (x) Unknown-SW
Figure 7. LMFE features obtained from hardware and software.

We provide a direct path from the FFTLayer and LMFELayer class definition to gener-
ated hardware via our Python/Chisel framework Chisel4ml [7]. The software architecture
of Chisel4ml is shown in Figure 8. The Python frontend of Chisel4ml directly maps the
configuration of FFTLayer and LMFELayer to SDF-FFT and Mel-Engine generator configu-
ration. It then sends the configuration to the Chisel backend, which generates the hardware.
The backend then returns the circuit ID number to the Python frontend, which can be used
to drive the RTL simulation of the generated circuit on the backend. This functionality
allowed us to evaluate the generated circuits directly from Python. In this work we have
used Chisel4ml 0.2.1 running on Python 3.10. The source code of the Chisel4ml framework
is available at the following link: https://github.com/cs-jsi/chisel4ml (accessed on 30
January 2024).

https://github.com/cs-jsi/chisel4ml
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Figure 8. Software architecture of Chisel4ml.

Listing A1 in Appendix A shows an example of a Python script that uses the FFTLayer and
LMFELayer classes to generate the hardware and compare the software and hardware results.

5. Case Study: Keyword Spotting on Google Speech Commands

We investigate the impact of MFCC feature configurations on the accuracy of keyword
spotting using a Depthwise Convolutional Neural Network (CNN) model. Our experimen-
tal design involves comparing the classification accuracy of the baseline, which utilized
the traditional MFCC features, against three modified feature sets. Firstly, we examine
the performance without the commonly applied Discrete Cosine Transform (DCT) step in
MFCC computation. The omission of DCT in calculating MFCC is a common approach to
reduce the complexity of the feature extraction stage. Subsequently, we explore the effect of
replacing the natural logarithm with base-2 logarithm approximation, which outputs only
the integer part of the logarithm. Finally, we evaluate the performance of the proposed
LMFE features, which, besides the mentioned modifications, take only the real part of the
frequency spectrum into account.

5.1. Depthwise Separable Convolutional Neural Network

We employ a Depthwise Separable Convolutional Neural Network (DS-CNN) [13],
a widely recognized and efficient CNN architecture for various tasks, e.g., computer vi-
sion [14], audio recognition [2] and many others. The basic building block represents
depthwise separable convolution, where each channel within the input feature map un-
dergoes convolution with a dedicated 2-D filter. Then, pointwise convolutions (1 × 1)
are employed to fuse the resulting outputs along the depth dimension. The DS-CNN
decomposes 3-D convolutions into sequential 2-D and 1-D convolutions, which reduces the
number of parameters and operations and enables the construction of deeper and broader
architectures. Significantly, these characteristics make DS-CNN well suited for deployment
in microcontroller devices with limited computational resources. The utilized network is
depicted in Figure 9. It starts with two convolution layers with filter dimensions 10 × 4 and
1 × 1, respectively. The network core represents four depthwise separable convolution
layers, comprising 3 × 3 depthwise convolution and a pointwise (1 × 1) convolution. The
final layer of the network consists of two fully connected layers designed to determine the
class of input samples. The first fully connected layer has 512 neurons, while the second has
12 neurons. The convolution and depthwise convolution layers employ the Rectified Linear
Unit (ReLU) activation function, contributing to non-linearity in the network’s learning
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process. In contrast, the activation function for the last fully connected layer is softmax,
which outputs probability scores for each class label.
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Figure 9. Depthwise separable convolutional network.

5.2. Experimental Settings

For assessing examined MFCC features, we rely on the Google Speech Commands
dataset [12] to conduct experiments. This dataset comprises 65,000 1-second-long audio
clips featuring 30 different keywords. These audio clips were contributed by thousands
of individuals, with each clip containing a singular keyword. The primary task for the
employed network models is to classify incoming audio into one of ten specified keywords:
“Yes”, “No”, “Up”, “Down”, “Left”, “Right,” “On”, “Off”, “Stop”, and “Go”. Additionally,
the dataset includes categories for “silence” (indicating no spoken word) and “unknown”,
encompassing the remaining 20 keywords from the dataset. We partition the dataset
into training, validation, and test sets in an 80:10:10 ratio. The DS-CNN model is trained
using the Keras framework, employing sparse cross-entropy loss and the Adam optimizer.
Training is conducted with a batch size of 128 over 20 epochs, utilizing a learning rate of
5 × 10−3.

5.3. Keyword-Spotting Results

In this section, we justify the choice of the proposed simplifications of the MFCC
algorithm, which we described in Section 2.2. We differentiate the following audio fea-
ture representations:

1. MFCC—The full floating-point MFCC as described in Section 2.1.
2. W/O DCT—Same as MFCC but without the DCT at the end.
3. LOG2APPROX—Same as W/O DCT but using the logarithm base-2 approximation

instead of the natural logarithm.
4. LMFE—The LMFE features as described in Section 2.2.

The results depicted in Figure 10 offer insight into keyword recognition performance
across different audio feature representations and varying numbers of mel-frequency filters.
The baseline MFCC features do not necessarily lead to the best classification accuracy. The
W/O DCT and LOG2APPROX features deliver similar or even better classification accuracy.
The LMFE features show a slight decrease in classification performance. However, the
difference is in the order of 1% on average. We attribute this to the information lost by
discarding the imaginary part of the spectrogram. Although LMFE features have the worst
classification performance of the four shown versions, they still perform satisfactorily.
We consider this to be a worthwhile tradeoff, as LMFE features are significantly less
computationally expensive. The source code of this experiment is available at the following
link: https://github.com/RatkoFri/kws_preprocess_test (accessed on 30 January 2024).

https://github.com/RatkoFri/kws_preprocess_test
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Figure 10. Simplifications effect on final accuracy.

6. Hardware Synthesis Results

In this section, we present the synthesis results on a range of parameter settings for
the hardware generators. We vary the following parameters of the LMFE features:

• frame_size—The size of the frame in STFT (128, 256, 512, and 1024).
• num_frames—Number windows that together make a frame (8, 16, 32, and 64).
• num_mels—Number of mel filters (10, 13, 15, 20).

For each of the parameters listed above, we have four different settings. Taking all com-
binations of them, we generate and characterize a total of 64 different circuits. Table A1 in
Appendix B gives the synthesis results for the combined SDF-FFT and Mel-Engine prepro-
cessing modules in different parameterizations. We synthesize the circuits for the Xilinx
XC7Z010-1CLG225C FPGA device using Xilinx Vivado 2022.2. The Parameterization col-
umn gives the trio of parameter values: f rame_size, num_ f rames, num_mels, in that order.
The LUT, FF, and DSP columns give the number of look-up tables, flip-flops, and DSP
blocks, respectively, used by the combined preprocessing modules. The CYCLES column
shows the cycles needed to compute one set of LMFE features. The T column gives the
maximum throughput in millions of audio samples per second. The throughput results
significantly surpass actual sound processing requirements; thus, the hardware clock can
be significantly reduced in practical implementation. Finally, the DP column gives the
dynamic power in watts. As the circuits have a similar structure, they all achieved an equal
maximum clock of 15.1 ns or the maximum frequency of 66.3 MHz. All circuits use fewer
than 4 Block RAM elements.

Figure 11 shows the number of look-up tables and flip-flops consumed by designs
with 64 frames (num_ f rames) and 20 mel-frequency filters (num_mels). The FFT module is
the larger component of the generated designs. Its size is only dependent on the f rame_size
parameter (from the parameters we varied). In other words, the only changing parameter
is the frame size.
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Looking at the data from the perspective of the Mel-Engine, its low resource consump-
tion and high throughput make it an efficient addition to the audio preprocessing pipeline,
as it significantly lowers the dimensionality of data, and thus also the complexity of the
processing needed to be performed by the KWS system.
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Figure 11. Resource consumption by frame size.

Figure 12 shows our circuits’ dynamic, static, and total power consumption by frame
size. The static power also remains constant among the designs at 0.093 W. Although
the static power consumption remains unchanged, the dynamic power consumption
does increase with frame size. Namely, it follows a similar trajectory to the growth in
resource consumption.
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Figure 12. Power consumption by frame size.

Our results are hard to directly compare with previous work because other works
target specific parameter designs and do not necessarily simplify the MFCC algorithm.
Among the approaches that introduce simplifications in the MFCC algorithm, the authors
of [5] obtain similar results for a frame size of 256 (they only provide results for this frame
size). Table 1 compares our Mel-Engine (ME) combined with SDF-FFT against the Mel-
Processing Unit (MPU) [5]. MPU uses more flip-flops and slightly more look-up tables than
our combined SDF-FFT and ME pipeline. However, MPU uses fewer DSP blocks.
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Table 1. Comparison of our hardware results with [5].

MPU-256 [5] ME/FFT-256

LUT 5349 5116

FF 3735 2874

DSP 5 46

7. Conclusions

We explored a hardware–software co-design approach for extracting audio features
that can be used for the keyword-spotting task. Slight modifications to the algorithm
lead only to a minor decrease in classification accuracy but a substantial decrease in
the computing requirements. This is especially relevant for resource-limited embedded
systems. Our Mel-Engine processing unit introduces only a minor overhead in terms of
FPGA resources but simultaneously reduces the dimensionality of the audio representation.
Consequently, the proposed approach relieves the subsequent neural network classifier of
unnecessary complexity. By developing custom Python classes, we increase the practical
value of the proposed solution. We intend to explore this area further, with possible
additional simplifications to both the algorithm and the hardware design. A piece that
needs to be added to our pipeline is the actual keyword-spotting system. We intend to
upgrade our framework, Chisel4ml, to support neural network topologies such as DS-CNN,
enabling the generation of the entire KWS system from Python.
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Appendix A. Using Chisel4ml

Listing A1 shows how to define a Keras model with the FFTLayer and LMFELayer classes.

Listing A1. Using chisel4ml.

1 import tensorflow as tf
2 import numpy as np
3 from chisel4ml import generate , FFTConfig , LMFEConfig , FFTLayer , LMFELayer
4

5 preproc_model = tf.keras.Sequential ()
6 preproc_model.add(tf.keras.layers.Input(num_frames , frame_length))
7 preproc_model.add(
8 FFTLayer(
9 FFTConfig(

10 fft_size=frame_length ,
11 num_frames=num_frames ,
12 win_fn=np.hamming(frame_length),
13 )
14 )
15 )
16 preproc_model.add(
17 LMFELayer(
18 LMFEConfig(
19 fft_size=frame_length ,
20 num_frames=num_frames ,
21 num_mels=num_mels ,
22 )
23 )
24 )
25 preproc_circuit = generate.circuit(preproc_model)
26

27 sw_res = preproc_model(audio_sample)
28 hw_res = preproc_circuit(audio_sample)
29 assert np.allclose(
30 sw_res.numpy ().flatten (),
31 hw_res.flatten (),
32 atol=1,
33 rtol =0.05
34 )

Appendix B. Synthesis Results

Table A1. Synthesis results.

Parameterization LUT FF DSP CYCLES T [Msamples/s] DP [W]
(128, 8, 10) 4353 2557 40 225 301.72 0.105
(128, 8, 13) 4362 2557 40 225 301.72 0.105
(128, 8, 15) 4351 2557 40 225 301.72 0.106
(128, 8, 20) 4353 2558 40 225 301.72 0.106

(128, 16, 10) 4360 2558 40 225 603.44 0.105
(128, 16, 13) 4358 2558 40 225 603.44 0.106
(128, 16, 15) 4355 2558 40 225 603.44 0.105
(128, 16, 20) 4362 2559 40 225 603.44 0.106
(128, 32, 10) 4349 2559 40 225 1206.87 0.105
(128, 32, 13) 4355 2559 40 225 1206.87 0.105
(128, 32, 15) 4354 2559 40 225 1206.87 0.105
(128, 32, 20) 4361 2560 40 225 1206.87 0.105
(128, 64, 10) 4356 2560 40 225 2413.74 0.106
(128, 64, 13) 4355 2560 40 225 2413.74 0.106
(128, 64, 15) 4357 2560 40 225 2413.74 0.106
(128, 64, 20) 4363 2561 40 225 2413.74 0.105
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Table A1. Cont.

Parameterization LUT FF DSP CYCLES T [Msamples/s] DP [W]
(256, 8, 10) 5110 2870 46 421 322.50 0.117
(256, 8, 13) 5112 2870 46 421 322.50 0.117
(256, 8, 15) 5114 2870 46 421 322.50 0.117
(256, 8, 20) 5115 2871 46 421 322.50 0.117

(256, 16, 10) 5114 2871 46 421 645.00 0.117
(256, 16, 13) 5114 2871 46 421 645.00 0.117
(256, 16, 15) 5113 2871 46 421 645.00 0.117
(256, 16, 20) 5114 2872 46 421 645.00 0.117
(256, 32, 10) 5107 2872 46 421 1290.00 0.117
(256, 32, 13) 5113 2872 46 421 1290.00 0.117
(256, 32, 15) 5107 2872 46 421 1290.00 0.117
(256, 32, 20) 5112 2873 46 421 1290.00 0.117
(256, 64, 10) 5113 2873 46 421 2580.01 0.117
(256, 64, 13) 5113 2873 46 421 2580.01 0.117
(256, 64, 15) 5115 2873 46 421 2580.01 0.117
(256, 64, 20) 5116 2874 46 421 2580.01 0.117
(512, 8, 10) 6216 3269 52 809 335.66 0.140
(512, 8, 13) 6218 3269 52 809 335.66 0.140
(512, 8, 15) 6221 3269 52 809 335.66 0.140
(512, 8, 20) 6224 3270 52 809 335.66 0.140

(512, 16, 10) 6222 3270 52 809 671.31 0.140
(512, 16, 13) 6217 3270 52 809 671.31 0.140
(512, 16, 15) 6215 3270 52 809 671.31 0.140
(512, 16, 20) 6222 3271 52 809 671.31 0.140
(512, 32, 10) 6221 3271 52 809 1342.63 0.140
(512, 32, 13) 6221 3271 52 809 1342.63 0.140
(512, 32, 15) 6219 3271 52 809 1342.63 0.140
(512, 32, 20) 6226 3272 52 809 1342.63 0.140
(512, 64, 10) 6219 3272 52 809 2685.25 0.140
(512, 64, 13) 6221 3272 52 809 2685.25 0.140
(512, 64, 15) 6222 3272 52 809 2685.25 0.140
(512, 64, 20) 6228 3273 52 809 2685.25 0.140
(1024, 8, 10) 7802 3716 58 1581 343.51 0.173
(1024, 8, 13) 7805 3716 58 1581 343.51 0.173
(1024, 8, 15) 7810 3716 58 1581 343.51 0.173
(1024, 8, 20) 7813 3717 58 1581 343.51 0.173
(1024, 16, 10) 7806 3717 58 1581 687.02 0.173
(1024, 16, 13) 7807 3717 58 1581 687.02 0.173
(1024, 16, 15) 7809 3717 58 1581 687.02 0.173
(1024, 16, 20) 7809 3718 58 1581 687.02 0.173
(1024, 32, 10) 7806 3718 58 1581 1374.05 0.173
(1024, 32, 13) 7809 3718 58 1581 1374.05 0.173
(1024, 32, 15) 7805 3718 58 1581 1374.05 0.173
(1024, 32, 20) 7810 3719 58 1581 1374.05 0.173
(1024, 64, 10) 7807 3719 58 1581 2748.09 0.173
(1024, 64, 13) 7807 3719 58 1581 2748.09 0.173
(1024, 64, 15) 7808 3719 58 1581 2748.09 0.173
(1024, 64, 20) 7813 3720 58 1581 2748.09 0.173
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